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SOME RESULTS ON GENERALIZED TOEPLITZ OPERATOR ON

GENERALIZED HARDY SPACE

SH.AL-SHARIF1, Y.JEBREEL2, A.KHANFER3, §

Abstract. In this paper, we define and study some properties of the generalized Hardy
space HF,2, where F is an injective linear transform from Lp (Π) into Lp (Π) and Π is
the unit circle in the complex plane C. Also we introduce the concept of a generalized
Toeplitz operator on HF,2 and prove some of its properties. Further results are presented.
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1. Introduction

Let Π = {z ∈ C : |z| = 1} represent the unit circle in the complex plane C and µ be
the Lebesgue measure on Π. Then Lp(Π) shall denote the Banach space of Lebesgue
measurable functions on Π with

||f ||p =

{
1

2π

∫ 2π

0
|f(θ)|pdµ (θ)

} 1
p

<∞, 1 ≤ p <∞,

and L∞(Π) denotes the Banach space of bounded measurable functions f on Π with
||f ||∞ = ess sup{|f(θ)|, θ ∈ [0, 2π]} < ∞, see [2, 3]. If z ∈ Π, we can write z in the form
z = eiθ for some θ ∈ [0, 2π] . For all n ∈ Z, the complex valued function χn is defined on

the set Π by χn (z) = zn or we write χn
(
eiθ
)

= einθ. The set ℘ =

{
N∑

n=−N
αnχn : αn ∈ C

}
is called the set of trigonometric polynomials, while the set of all polynomials, ℘+ ={

N∑
n=0

αnχn : αn ∈ C
}

is called the set of analytic trigonometric polynomials.

The Hardy space Hp is the space of all functions f ∈ Lp (Π) such that

2π∫
0

f
(
eiθ
)
χn

(
eiθ
)
dµ (θ) = 0 for all n > 0, p = 1, 2,∞.
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It is known [3] that χn are orthonormal Schauder basis for Lp (Π) and Hp is a closed
subspace of Lp (Π).

For the case p = 2, L2 (Π) is a Hilbert space and H2 is a complemented subspace of
L2 (Π) see, [3]. That is there exists a bounded projection P : L2 (Π)→ H2. If ϕ ∈ L∞ (Π) ,
then ϕ

(
H2
)
⊆ L2 (Π) . So we can define the operator Tϕ : H2 → H2 by Tϕ (f) = P (ϕf) .

Tϕ is called the Toeplitz operator with symbol ϕ. For more on Toeplitz operator and Hardy
spaces we refer the reader to [3]-[10] and references therein.

In this paper, we define, study and prove some properties of the generalized Toeplitz
operator Tϕ,F on the generalized Hardy space HF,p, where F is an injective linear transform
from Lp (Π) into Lp (Π) and Π is the unit circle in the complex plane C.

2. Generalized Hardy space

Let F : Lp (Π) → Lp (Π) be a linear operator such that rang(F ) ∩ Hp 6= {0} , and
F (f) = 0 if and only if f = 0, that is, F is one to one. For p = 1, 2, ∞, the generalized
Hardy space HF,p (Π) = HF,p is defined to be the collection of all functions f ∈ Lp (Π) for
which

2π∫
0

F (f)
(
eiθ
)
. χn

(
eiθ
)
dµ (θ) = 0, for n > 0.

The condition that rang(F ) ∩Hp is to avoid that HF,p = {0} . It is clear that if F is the
identity operator, then HF,p = Hp.

Proposition 2.1. f ∈ HF,p if and only if F (f) ∈ Hp.

Proof. For all f ∈ Lp (Π), F (f) ∈ Lp (Π) and so, f ∈ HF,p if and only if

2π∫
0

F (f)
(
eiθ
)
.χn

(
eiθ
)
dµ (θ) = 0,

for n > 0 if and only if F (f) ∈ Hp. �

Lemma 2.1. HF,p is a normed space under the norm ‖f‖F,p = ‖F (f)‖p , for all f ∈ HF,p,
p = 1, 2, ∞.

Proof. For p = 1, 2, ∞, f ∈ HF,p, ‖f‖F,p ≥ 0, follows from the definition. Suppose that

‖f‖F,p = ‖F (f)‖p = 0. Since F is one to one and ‖.‖p is a norm on Hp, it follows that
f = 0. The other properties of the norm follows from linearity of F. �

In the following we give conditions under which HF,p (Π) is a Banach space.

Theorem 2.1. For P = 1, 2, if F is continuous, then HF,p (Π) is closed subspace of
Lp (Π) and hence HF,p is a Banach space.

Proof. Let fn be a sequence in HF,p which converges to f. To show that HF,p is a closed
subspace of Lp (Π) it is sufficient to show that f ∈ HF,p. Since

Lim
n→∞

‖fn − f‖F,p = Lim
n→∞

‖F (fn − f)‖p

=
∥∥∥F (Lim

n→∞
(fn − f)

)∥∥∥
p

= ‖F (0)‖p = ‖0‖p = 0,

we have f ∈ HF,p. Since a closed subspace of a Banach space is Banach space using Lemma
2.1, HF,p is a Banach space. �
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Example 2.1. Let ϕ ∈ L∞ (Π) and F : L2 (Π) → L2 (Π) be the multiplication operator
F (f) = ϕ.f. Then F is bounded. Hence continuous and HF,p is a Banach space.

The following example shows that if F is not continuous, HF,p needs not to be a Banach
space.

Example 2.2. Let F : L2 (Π) → L2 (Π) be such that F

( ∞∑
n=1

anz
n

)
=
∞∑
n=1

an
4n z

n+1. Let

f ∈ L2 (Π) be such that f(z) =
∞∑
n=2

1
3n z

n ∈ H2. If f ∈ rang(F ), then f = F (g) for some

g =
∞∑
n=1

anz
n ∈ L2 (Π) . Hence

f(z) =

∞∑
n=2

1

3n
zn =

∞∑
n=1

an
4n
zn+1.

Therefore an = 4n

3n+1 and f /∈ rang(F ) . By Theorem 2.2 in [5], HF,2 is not a Banach space.
Hence F is not continuous.

Proposition 2.2. If F is continuous, then HF,2 is a Hilbert space.

Proof. Since H2 is a Hilbert space, there exists an inner product on H2 denoted it by
〈x, y〉H2 . Define an inner product on HF,2 by

〈f, g〉F,2 = 〈F (f) , F (g)〉H2

for all f , g ∈ HF,2. Using Theorem 2.1 and the properties of the inner product on H2 it
follows easily that HF,2 is a Hilbert space. �

Let F be an injective linear transform from L2 (Π) into L2 (Π) such that rang(F )∩Hp 6=
{0} . For ϕ ∈ L∞ (Π) , the multiplication operator Mϕ,F : L2 (Π) → L2 (Π) is defined by
Mϕ,F (f) = ϕF (f).

Theorem 2.2. Let H2 ⊂ rang(F ). If HF,2 is an invariant subspace for Mϕ.F , then ϕ is
in HF,∞.

Proof. Since 1 ∈ H2 and H2 ⊂ rang(F ) , there exists w ∈ L2 (Π) such that F (w) = 1. But
Mϕ,F (HF,2) is contained in HF,2. Therefore

Mϕ,F (w) = ϕF (w) = ϕ.1 = ϕ ∈ HF,2,

which implies that

2π∫
0

F (ϕ)
(
eiθ
)
. χn

(
eiθ
)
dµ (θ) = 0, for n > 0.

But ϕ ∈ L∞ (Π). Hence ϕ ∈ HF,∞. �

Theorem 2.3. If ϕ ∈ H∞ and H2 ⊂ range(F ), then HF,2 is an invariant subspace for
Mϕ.F .

Proof. Let ϕ ∈ H∞, f ∈ HF,2. Since

Mϕ,F (HF,2) = {ϕF (f) : f ∈ HF,2}
=

{
ϕF (f) : F (f) ∈ H2

}
⊂ Mϕ

(
H2
)
⊂ H2 ⊂ range(F ),
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it follows that

Mϕ,F (HF,2) ⊂ HF,2.

�

3. Generalized Toeplitz operator Tϕ,F on HF,2

Let F : Lp (Π)→ Lp (Π) be a linear operator such that rang(F ) ∩Hp 6= {0} . If HF,2 is
closed subspace of L2 (Π) , there exists a bounded projection P of L2 (Π) onto HF,2. For
ϕ in L∞ (Π) , the generalized Toeplitz operator Tϕ,F on HF,2 is defined by

Tϕ,F (f) = P (ϕ.F (f)) .

Since for f ∈ HF,2, F (f) ∈ H2, Tϕ,F (f) = Tϕ (F (f)) , it is easy to define a map ζ
from L∞ (Π) into £ (HF,2) by ζ (f) = Tϕ,F (f) , where £ (HF,2) is the space of all bounded
linear operators on HF,2.

In the following, we prove some properties of the generalized Toeplitz operator Tϕ,F .

Theorem 3.1. The mapping ζ is a contractive ∗−linear from L∞ (Π) into £ (HF,2) .

Proof. 1) ζ is contractive: For f ∈ HF,2, ϕ, ψ ∈ L∞ (Π)

‖(ζ (ϕ)− ζ (ψ)) f‖F,2 = ‖(Tϕ,F − Tψ,F ) f‖F,2
= ‖Tϕ,F (f)− Tψ,F (f)‖F,2
= ‖P (ϕ.F (f))− P (ψ.F (f))‖F,2
= ‖P (ϕ.F (f)− ψ.F (f))‖F,2
= ‖P ((ϕ− ψ) .F (f))‖F,2
≤ ‖P‖ ‖(ϕ− ψ) .F (f)‖F,2
≤ ‖(ϕ− ψ) .F (f)‖F,2
≤ ‖(ϕ− ψ)‖F,2 ‖F (f)‖F,2
≤ ‖(ϕ− ψ)‖F,2 .

2) ζ is linear: For f ∈ HF,2, λ ∈ C

(λζ (ϕ) + ζ (ψ)) f = ((λTϕ,F + Tψ,F ) f)

= P (λϕ.F (f)) + P (ψ.F (f))

= P (λϕ.F (f) + ψ.F (f))

= P ((λϕ+ ψ) .F (f))

= Tλϕ+ψ,F (f) = ζ (λϕ+ ψ)
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3) To prove that ζ (ϕ)∗ = ζ (ϕ), let f, g ∈ HF,2. Then

〈Tϕ,F (f) , F (g)〉F,2 = 〈P (ϕF (f)) , F (g)〉F,2
= 〈ϕF (f) , P (F (g))〉F,2
= 〈ϕF (f) , F (g)〉F,2
= 〈F (f) , ϕF (g)〉F,2
= 〈P (F (f)) , ϕF (g)〉F,2
= 〈F (f) , P (ϕF (g))〉F,2
= 〈F (f) , Tϕ (F (g))〉F,2
=

〈
T ∗ϕ (F (f)) , F (g)

〉
F,2

=
〈
T ∗ϕ,F (f) , F (g)

〉
F,2

,

which implies that

ζ (ϕ)∗ = T ∗ϕ,F = Tϕ,F = ζ (ϕ) .

�

Theorem 3.2. If ϕ is in L∞ (Π) and ψ ∈ H∞, then TϕTψ,F = Tϕω,F .

Proof. Let f ∈ HF,2. Since ψ ∈ H∞ and F (f) ∈ H2, ψF (f) ∈ H2. Hence P (ψF (f)) =
ψF (f) and

TϕTψ,F (f) = Tϕ (P (ψF (f)))

= Tϕ (ψF (f))

= P (ϕψF (f))

= Tϕω,F (f) ,

that is, TϕTψ,F = Tϕψ,F . �

Theorem 3.3. If ϕ ∈ L∞ (Π), θ ∈ H∞, then Tθ,FTϕ = Tθϕ,F .

Proof.

(Tθ,FTϕ)∗ = T ∗ϕT
∗
θ,F

= TϕTθ,F
= Tϕθ,F
= Tθϕ,F
= Tθϕ,F

= T ∗θϕ,F ,

which implies that (Tθ,FTϕ)∗ = T ∗θϕ,F . By taking adjoints to both sides, we get Tθ,FTϕ =
Tθϕ,F . �

Theorem 3.4. Let ϕ ∈ L∞ (Π) and H2 ⊂ rang(F ). Then ϕ is invertible in L∞ (Π), if
Tϕ,F is invertible.

Proof. It is sufficient to show that Mϕ is an invertible operator if Tϕ,F is. If Tϕ,F is
invertible, then there exists ε > 0 such that

‖Tϕ,F (f)‖ = ‖TϕF (f)‖ ≥ ε ‖F (f)‖
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for all f ∈ HF,2. which implies that for each n ∈ Z, f ∈ HF,2, we have

‖Mϕ (χnF (f))‖ = ‖ϕχnF (f)‖
= ‖ϕF (f)‖
≥ ‖P (ϕF (f))‖
= ‖Tϕ,F (f)‖
≥ ε ‖F (f)‖
= ε ‖χnF (f)‖ .

Since the set
{
χnF (f) : F (f) ∈ H2, n ∈ Z

}
is dense in L2 (Π) , we get that:

‖Mϕ (g)‖ ≥ ε ‖g‖ .

for all g ∈ L2 (Π) . Similarly ‖Mϕ (f)‖ ≥ ε ‖f‖ using that Tϕ,F is invertible and then Mϕ

its self is invertible. �

4. Further Results

Let Y =
{
f ∈ L1 [0, 2π] : f (t) = 0 for all 0 ≤ t < π

}
. Since for all ϕ ∈ L∞ [0, 2π], f ∈

L1 [0, 2π],

2π∫
0

|ϕ (θ) .f (θ)| dµ (θ) =

2π∫
0

|ϕ (θ)| |f (θ)| dµ (θ)

≤ ‖ϕ (θ)‖∞

2π∫
0

|f (θ)| dµ (θ) <∞,

the multipliers of L1 [0, 2π] is the space L∞ [0, 2π] .

Theorem 4.1. Y is a complemented subspace of L1 [0, 2π] .

Proof. For f ∈ L1 [0, 2π], define f1, f2 as

f1 (t) =

{
0 , 0 ≤ t < π

f (t) , π ≤ t ≤ 2π
,

and

f2 (t) =

{
f (t) , 0 ≤ t < π

0 , π ≤ t ≤ 2π
.

Then f = f1 + f2, f1 ∈ Y, that is, L1 [0, 2π] = Y +K, where

K = {f ∈ X : f (t) = 0 for all π ≤ t ≤ 2π} .

It is easy to that ‖f‖1 = ‖f1‖1 + ‖f2‖1 �

Since Y is a complemented subspace of L1 (0, 2π) , there exists a bounded projection P :
L1 (0, 2π) → Y. For ϕ ∈ L∞ [0, 2π], ϕg ∈ L1 (0, 2π) for all g ∈ Y. Define Tϕ (g) = P (ϕg) .
Then Tϕ is a linear mapping from Y into Y . Tϕ is called a Toeplitz Type operator.

Theorem 4.2. The mapping ζ : £
(
L1 (0, 2π)

)
−→ £ (Y ) defined by ζ (ϕ) = Tϕ is a

bounded linear operator such that ζ (ϕ∗) = (ζ (ϕ))∗ ,where £ (X) is the space of all bounded
linear operators on X.
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Proof. 1) ζ is linear: Let f, g ∈ L∞ [0, 2π], α ∈ C. Then

ζ (f + g)ϕ = Tf+g (ϕ)

= P ((f + g)ϕ)

= P (fϕ+ gϕ)

= P (fϕ) + P (gϕ)

= Tf (ϕ) + Tg (ϕ)

= ζ (f)ϕ+ ζ (g)ϕ

= (ζ (f) + ζ (g))ϕ.

To end the linearity of ζ,

ζ (αf)ϕ = Tαf (ϕ) = P (αfϕ) = αP (fϕ) = αTf (ϕ) = αζ (f)ϕ.

2) ζ is bounded. Since ‖Tϕ‖ ≤ ‖P‖ ‖ϕ‖, it follows that Tϕ is bounded and hence ζ (ϕ)
is bounded.

3) ζ (ϕ∗) = (ζ (ϕ))∗ . For y ∈ Y,〈
T ∗ϕ (y∗) , y

〉
= 〈y∗, Tϕ (y)〉
= 〈y∗, P (ϕy)〉
= 〈P ∗ (y∗) , ϕy〉
= 〈P (y∗) , ϕy〉
= 〈y∗, ϕy〉
= 〈ϕ∗y∗, y〉
= 〈ϕ∗y∗, P (y)〉
= 〈P (ϕ∗y∗) , y〉
= 〈Tϕ∗ (y∗) , y〉 ,

that is,

(Tϕ)∗ = Tϕ∗ ,

which implies that

ζ (ϕ∗) = Tϕ∗ = (Tϕ)∗ = (ζ (ϕ))∗ .

�
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