
TWMS J. App. Eng. Math. V.6, N.2, 2016, pp. 244-250

ANTIMAGIC LABELING OF THE UNION OF SUBDIVIDED STARS

A.ABDUL RAHEEM1, B.ABDUL QUDAIR BAIG1, §

Abstract. Enomoto et al. (1998) defined the concept of a super (a, 0)-edge-antimagic
total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic
total labeling. In support of this conjecture, the present paper deals with different results
on antimagicness of subdivided stars and their unions.
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1. Introduction

All graphs in this paper are simple, finite and undirected. For a graph G, V (G) and
E(G) denote the vertex-set and the edge-set. A (v, e)-graph G is a graph such that
v = |V (G)| and e = |E(G)|.

In this paper, the domain will be the set of all vertices and edges, and such a labeling
is called a total labeling. Details on antimagic labeling can be seen in [7]. The subject of
edge-magic total labeling of graphs has its origin in the works of Kotzig and Rosa [1, 2] on
what they called magic valuations of graphs. The definition of (a, d)-edge-antimagic total
labeling was introduced by Simanjuntak, Bertault and Miller in [21] as a natural extension
of edge-magic labeling defined by Kotzig and Rosa. Enomoto et al. also proposed the
following conjecture:
Conjecture 1.1 [6] Every tree admits a super edge-magic total labeling.

In favour of this conjecture, many authors have considered super edge-magic total labeling
for particular classes of trees for example [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 23, 24, 25]. Lee and Shah [22] verified this conjecture by a computer search for
trees with at most 17 vertices. However, this conjecture is still open.

A star is a particular type of tree graph and many authors have proved the magicness
for subdivided stars. Lu [24, 25] called the subdivided star T (m,n, k) as a three path
trees and proved that it is super edge-magic if n and k are odd, k = n+1 or n+2. Ngurah
et al. [5] proved that T (m,n, k) is also super edge-magic if k = n + 3 or n + 4. In [3],
Salman et al. found the super edge-magic total labeling of a subdivision of a star Sm

n for
m = 1, 2. Javaid et al. [17] furnished super edge-magic total labeling on subdivided star
K1,4 and w-trees.
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Definition 1.1 A graph G is called (a, d)-edge-antimagic total ((a, d)−EAT ) if there exist
integers a > 0, d ≥ 0 and a bijection
λ : V (G) ∪ E(G)→ {1, 2, ..., v + e} such that W = {w(rs) : rs ∈ E(G)} forms an arith-
metic progression starting from a with the difference d, where w(rs) = λ(r) +λ(s) +λ(rs)
for any rs ∈ E(G). W is called the set of edge-weights of the graph G.
Definition 1.2 A (a, d)-edge-antimagic total labeling λ is called super (a, d)-edge-antimagic
total labeling if λ(V (G)) = {1, 2, ..., v}.
Definition 1.3 For ni ≥ 1 and r ≥ 3, let G ∼= T (n1, n2, ..., nr) be a graph obtained
by inserting ni − 1 vertices to each of the i-th edge of the star K1,r, where 1 ≤ i ≤ r.
Definition 1.4 Two graphs G1 and G2 are said to be isomorphic if their exist a bijective
function λ : V (G1) → V (G2) such that for all x, y ∈ V (G1) : xy ∈ E(G1) if and only if
λ(x)λ(y) ∈ E(G2)

2. Main Results

We consider the following proposition which we will use frequently in the main results.
Proposition 2.1. [14] If a (v, e)-graph G has a (s, d)-EAV labeling then

(i) G has a super (s+ v + 1, d+ 1)-EAT labeling,
(ii) G has a super (s+ v + e, d− 1)-EAT labeling. �
Theorem 2.1. For all n ≥ 1, G ∼= T (n+ 1, n, n+ 2, n+ 3, n5, ..., np) admits super (a, 0)-
edge-antimagic total labeling with a = 2v + s − 1 and super (a, 2)-edge-antimagic total

labeling with a = v + s + 1 where v = |V (G)|, s = 2(n + 3) +
p∑

m=5
[2m−5(n + 2) + 1] and

np = 2r−4(n+ 2) + 1.
Proof. We denote the vertices and edges of G as follows:
V (G) = {c} ∪ {xlii | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni},
E(G) = {c x1i | 1 ≤ i ≤r} ∪ {xlii x

li+1
i | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni − 1}.

Therefore,

v = (4n+ 7) +

p∑
m=5

[2m−4(n+ 2) + 1]

and e = v − 1.

We define the labeling λ : V (G)→ {1, 2, ..., v} as follows:

λ(c) = (3n+ 5) +

p∑
m=5

[2m−5(n+ 2) + 1].

For odd 1 ≤ li ≤ ni, where i = 1, 2, 3, 4 and 5 ≤ i ≤ r, we define

λ(u) =



l1+1
2 , for u = xl11 ,

(n+ 2)− l2+1
2 , for u = xl22 ,

n+ 1 + l3+1
2 , for u = xl33 ,

(2n+ 5)− l4+1
2 , for u = xl44 .
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λ(xlii ) = (2n+ 5) +
i∑

m=5

[2m−5(n+ 2) + 1]− li + 1

2
respectively.

For even 1 ≤ li ≤ ni, and α = 2(n+ 2) +
r∑

m=5
[2m−5(n+ 2) + 1]

For i = 1, 2, 3, 4 and 5 ≤ i ≤ r, we define

λ(u) =



α+ l1
2 , for u = xl11 ,

(α+ n+ 1)− l2
2 , for u = xl22 ,

(α+ n+ 1) + l3
2 , for u = xl33 ,

(α+ 2n+ 4)− l4
2 , for u = xl44 .

and

λ(xlii ) = (α+ 2n+ 4) +
i∑

m=5

[2m−5(n+ 2)]− li
2
respectively.

The set of all edge-sums generated by the above formula forms a set of consecutive
integer sequence s = α + 2, α + 3, · · · , α + 1 + e. Therefore, by Lemma 2.1, λ can be
extended to a super (a, 0)-edge-antimagic total labeling and we obtain the magic constant

a = v + e + s = (10n + 29) +
p∑

m=5
[2m−55(n + 2) + 3]. Similarly by Lemma 2.2, λ can be

extended to a super (a, 2)-edge-antimagic total labeling and we obtain the magic constant

a = v + 1 + s = (6n+ 14) +
p∑

m=5
[2m−53(n+ 2) + 2]. �

Theorem 2.2. For all n ≥ 1 and r ≥ 5, G ∼= T (n + 1, n, n + 2, n + 3, n5, ..., np) admits
super (a, 1)-edge-antimagic total labeling with a = s+ 3v

2 if v is even, where v = |V (G)|,

s = 2(n+ 3) +
p∑

m=5
[2m−5(n+ 2) + 1] and np = 2r−4(n+ 2) + 1.

Proof. Let us consider the vertices and edges of G, as defined in Theorem 2.6 . Now, we
define the labeling λ : V (G) → {1, 2, ..., v} as in same theorem. It follows that the edge-
weights of all edges of G constitute an arithmetic sequence s = α+ 2, α+ 3, · · · , α+ 1 + e

with common difference 1, where α = 2(n+2)+
p∑

m=5
[2m−5(n+2)+1]. We denote it by A =

{ai; 1 ≤ i ≤ e}. Now for G we complete the edge labeling λ for super (a, 1)-edge-antimagic
total labeling with values in the arithmetic sequence v+ 1, v+ 2, · · · , v+ e with common
difference 1. Let us denote it by B = {bj ; 1 ≤ j ≤ e}. Define C = {a2i−1 + be−i+1 ; 1 ≤
i ≤ e+1

2 } ∪ {a2j + b e−1
2

−j+1 ; 1 ≤ j ≤ e+1
2 − 1}. It is easy to see that C constitutes an

arithmetic progration with d = 1 and a = s+ 3(v)
2 = 1

2(16n+ 33) + 1
2

p∑
m=5

[2m−2(n+ 2) + 5]

Consequently, λ is a super (a, 1)-edge-antimagic total labeling.
�

Theorem 2.3. For all positive integers n, G ∼= 2T (n+ 1, n, n, n+ 1, n5, n6, ..., np) admits
super (a, 0)-edge-antimagic total labeling with a = 2v + s − 2 and super (a, 2)-edge-
antimagic total labeling with a = v + s + 1 where ni = 2i−4(n + 1)fori = 5, 6, ..., p − 1,
np = 2i−4(n+ 1)− 1 and v = |V (G)|.
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Proof. We suppose the vertex-set and the edge-set of G as follows: V (G) = {cj | 1 ≤
j ≤ 2} ∪ {xliij | 1 ≤ i ≤ p ; 1 ≤ li ≤ ni; 1 ≤ j ≤ 2},
E(G) = {cjx1i |1 ≤ i ≤p ; 1 ≤ j ≤ 2} ∪
{xliijx

li+1
ij | 1 ≤ i ≤ p ; 1 ≤ li ≤ ni − 1 ; 1 ≤ j ≤ 2}.

If v = |V (G)| and e = |E(G)| then

v = 4n+ 2p−2(n+ 1)

and

e = 4n− 2 + 2p−2(n+ 1).

Now, we define the vertex labeling λ : V (G)→ {1, 2, ..., v} as follows:

λ(cj) = 3(n+ 1) + 2p−3(n+ 1) + [(n− 1) + 2p−4(n+ 1)](j − 1), j = 1, 2.

For odd li 1 ≤ li ≤ ni, we define

λ(u) =



l1+1
2 + [(n+ 1) + 2p−4(n+ 1)](j − 1), for u = xl11j ,

2n+3−l2
2

+[(n+ 1) + 2p−4(n+ 1)](j − 1), for u = xl22j ,

(2n+3)+l3
2

+[(n+ 1) + 2p−4(n+ 1)](j − 1), for u = xl33j ,

4n+5−l4
2

+[(n+ 1) + 2p−4(n+ 1)](j − 1), for u = xl44j ,

(n+ 1 + 2p−4(n+ 1))j, for u = x
lp
pj ,

for lp = 1,

2n+3+2k−3(n+1)−lk
2

+[(n+ 1) + 2p−4(n+ 1)](j − 1), for u = xlkkj ,

for k = 5, 6, ..., p− 1,

2n+3+2p−3(n+1)−lp
2

+[3n+ 2p−4(3n+ 3)](j − 1), for u = x
lp
pj ,

for 4 ≤ lp ≤ np.
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For even li , 1 ≤ li ≤ ni ,we define

λ(u) =



4(n+1)+2p−2(n+1)+l1
2

+[(n− 1) + 2p−4(n+ 1)](j − 1), for u = xl11j ,

6(n+1)+2p−2(n+1)−l2
2

+[(n− 1) + 2p−4(n+ 1)](j − 1), for u = xl22j ,

6(n+1)+2p−2(n+1)+l3
2

+[(n− 1) + 2p−4(n+ 1)](j − 1), for u = xl33j ,

6(n+1)+(2p−2+2k−3)(n+1)−lk
2

+[(n− 1) + 2p−4(n+ 1)](j − 1), for u = xlkkj ,

for k = 4, 5, ..., p− 1,

6(n+1)−2+2p−33(n+1)−lp
2

−[(n+ 2p−4(n+ 1)](j − 1), for u = x
lp
pj ,

for 2 ≤ lp ≤ np.

The set of all edge-sums generated by the above formula forms a set of consecutive
integer sequence S = {(2n + 3) + 2p−3(n + 1) + 1, (2n + 3) + 2p−3(n + 1) + 2, ..., (2n +
3) + 2p−3(n + 1) + e}, where s = min(S). Therefore, by Proposition 2.1, λ can be
extended to a super (a, 0)-edge-antimagic total labeling and we obtain the magic constant
a = 2v + s − 2 = 2(5n + 1) + 5(n + 1)2p−3. Similarly by Proposition 2.1, λ can be
extended to a super (a, 2)-edge-antimagic total labeling and we obtain the magic constant
a = v + 1 + s = 6n+ 5 + 3(n+ 1)2p−3. �
Theorem 2.4. For all positive integers n, G ∼= 2T (n + 1, n, n, (n + 1), n5, ..., np) admits
super (a, 1)-edge-antimagic total labeling with a = v+s+e and super (a, 3)-edge-antimagic
total labeling with a = v+s+1 where v = |V (G)|, s = 4, ni = 2i−4(n+1) for i = 5, 6, ..., np
and np = 2i−3(n+ 1)− 1.
Proof. We suppose the vertex-set and the edge-set of G as follows: V (G) = {cj | 1 ≤
j ≤ 2} ∪ {xliij | 1 ≤ i ≤ 5 ; 1 ≤ li ≤ ni; 1 ≤ j ≤ 2},
E(G) = {cjx1i |1 ≤ i ≤5 ; 1 ≤ j ≤ 2} ∪
{xliijx

li+1
ij | 1 ≤ i ≤ 5 ; 1 ≤ li ≤ ni − 1 ; 1 ≤ j ≤ 2}.

If v = |V (G)| and e = |E(G)| then

v = 2(2n+ 1) + 2p−2(n+ 1)

and

e = 4n+ 2p−2(n+ 1)

Now, we define the vertex labeling λ : V (G)→ {1, 2, ..., v} as follows:

λ(cj) = 2(2n+ 1) + j, j = 1, 2.
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For all li 1 ≤ li ≤ ni, we define

λ(u) =



2(l1 − 1) + j, for u = xl11j ,

2(2n+ 1)− 2l2 + j, for u = xl22j ,

2(2n+ 3)− 2l3 + j, for u = xl33j ,

(10n+ 12) + j − 2l4, for u = xl44j ,

2(4n+ 3) +
i∑

m=5
[2m−3(n+ 1)]− 2li + j, for u = xliij , i ≥ 5.

The set of all edge-sums generated by the above formula forms a set of consecutive
integer sequence s = {4, 4+2, ..., 4+2(e−1)}, where s = min(S). Therefore, by Proposition
2.1, λ can be extended to a super (a, 1)-edge-antimagic total labeling and we obtain the
magic constant a = v + e + s = 2(4n + 3) + 2p−1(n + 1). Similarly by Proposition 2.1, λ
can be extended to a super (a, 3)-edge-antimagic total labeling and we obtain the magic

constant a = v + 1 + s = 4n+ 7 + 2p−2(n+1). �

3. Conclusion

In this paper, we have shown that a subclass of trees, namely subdivided stars G ∼=
2T (n + 1, n, n, n + 1, n5, n6, ..., np) admits super (a,d)-edge-antimagic total labeling for
d = 0, 1, 2, 3, for all positive integers n. However the problem of the magicness is still open
for different values of magic constant (minimum edge-weight a).
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