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SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA

MODEL BY NSFD SCHEMES

S.ZIBAEI1, M.NAMJOO1, §

Abstract. In this paper, we introduce fractional-order into a model competitive Lotka-
Volterra prey-predator system. We will discuss the stability analysis of this fractional
system. The non-standard finite difference (NSFD) scheme is implemented to study the
dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard
numerical scheme is compared with the forward Euler and fourth order Runge-Kutta
methods. Numerical results show that the NSFD approach is easy and accurate for
implementing when applied to fractional-order Lotka-Volterra model.
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1. Introduction

The study of biological systems has been developed through many years. In these sys-
tems it is common that state variables represent non-negative quantities, such as concentra-
tions, physical properties, the size of populations and the amount of chemical compounds
[11]. These biological models are commonly based on systems of ordinary differential
equations (ODEs). Exact solutions of these systems are rarely accessible and usually com-
plicated; hence good approximations are required. The interspecies interaction is among
the most intensively explored fields of biology. The increasing amount of realistic mathe-
matical models in that area helps in understanding the population dynamics of analyzed
biological systems. Mathematical models of predator-prey systems, characterized by de-
creasing growth rate of one of the interacting populations and increasing growth rate of
the other, consist of the ODEs systems. The current technological advance has made it
possible for humans to disturb the environmental balance in nature that may cause im-
mense damages, such as species extinction or starvation. Therefore, understanding the
behaviour of the interaction between the species may help biologists and other related
parties to prevent those events from happening. The real interaction of prey-predator in
nature is complex and comprises both interspecies and external environmental factors.
Therefore, several simplifications are usually assumed so that a basic model can be con-
structed and then developed or modified to approach the real system.

In most of the interactions modeled, all rate of changes are assumed to be time indepen-
dent, which makes the corresponding systems autonomous. It is not always possible to find
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the exact solutions of the nonlinear models that have at least two ODEs. It is sometimes
more useful to find numerical solutions of these type systems in order to programme easily
and visualize the results. By applying a numerical method on a continuous differential
equation system, it becomes a difference equation system, i.e., discrete time system. While
applying these numerical methods, it is necessary that the new difference equation system
provide the positivity conditions and exhibit the same quantitative behaviours of continu-
ous system such as stability, bifurcation and chaos. It is well known that some traditional
and explicit schemes such as forward Euler and Runge-Kutta are unsuccessful at generat-
ing oscillation, bifurcation, chaos and false steady states, despite using adaptive step size
[10, 13]. Instead of classical methods, NSFD schemes can alternatively be used to obtain
more qualitative results and remove numerical instabilities. These schemes are developed
for compensating the weaknesses, such as numerical instabilities that may be caused by
standard finite difference methods. The most important advantages of this scheme is that
choosing a convenient denominator function instead of the step size h, better results can
be obtained. If the step size h is chosen small enough, the obtained results do not change
significantly but if the step size h gets larger this advantage comes into focus.
As is well known, in field of mathematical biology, the traditional Lotka-Volterra systems
are very important mathematical models which describe multispecies population dynam-
ics in a non-autonomous environment. The Lotka-Volterra equations are a system of
differential equations of the following form:

x′ = ax− bxy,

y′ = −cy + dxy,

x(0) = x0, y(0) = y0,

where x and y are prey and predator, respectively. The parameter a stands for the prey
growth rate in the absence of the predators, b is the capture rate of prey per predator, d
is the rate at which each predator converts captured prey into predator births and c is the
constant rate at which death occurs in the absence of prey. They showed that ditrophic
food chains (i.e., prey-predator systems) permanently oscillate for any initial condition if
the prey growth rate is constant and the predator functional response is linear. Thus the
basic Lotka-Volterra model is represented by the system of the two previous differential
equations.

A slight variation of the Lotka-Volterra model, the competition model, is also quite
useful in comparing the numerical approximation methods. Let x(t) and y(t) represent
the number of individuals or population density in species x and y respectively in a food
web at time t, a sensible model for the food web population at time t is competitive
Lotka-Volterra system of the form

x′ = x(r1 − a11x− a12y),

y′ = y(r2 − a21x− a22y),

x(0) = x0, y(0) = y0,

(1)

where r1, r2, a11, a22 > 0 and a12, a21 ≥ 0. In this model the parameters ri, i = 1, 2 are
the intrinsic growth rates for the two species x and y. In addition, a12 and a21 present
the interspecific acting coefficients.

The dynamics of the model is well-known [2] and we will briefly mention the main
properties of the system.



266 TWMS J. APP. ENG. MATH. V.6, N.2, 2016

In order to get a better analysis for the system, we reduce the number of parameters
using the nondimensionalization method as in [11] as follows. Letting

u(T ) =
a11
r1
x(t), v(T ) =

a12
r1
y(t),

where T = r1t, consequently we get

x′(t) =
r21
a11

u′(T ), y′(t) =
r21
a12

v′(T ). (2)

Substituting (2) into (1) and renaming T to t, we have
u′ = u(1− u− v),

v′ = v(A−Bu− Cv),

u(0) = u0, v(0) = v0,

(3)

where

A =
r2
r1
, B =

a21
a11

, C =
a22
a12

,

with

u0 =
a11
r1
x0, v0 =

a12
r1
y0.

This paper is organized as follows: In the next section, we elaborate some basic defini-
tions and properties of the Grünwald-Letnikov (GL) approximation and provides a brief
overview of the important feature of the procedures for constructing NSFD schemes for
systems of ODEs. In Section 3, fractional-order of the competitive Lotka-Volterra prey-
predator model is introduced and also stability theorems are given for the local asymptotic
stability of the fractional systems. In Section 4, we will discuss the stability analysis of
fractional-order system. In Section 5, we present the idea of NSFD scheme for solving the
fractional-order competitive Lotka-Volterra prey-predator system. Finally, the theoretical
results obtained in former section are compared with the other numerical methods and
the simulated results are given.

2. Preliminaries

Fractional differential equations (FDEs) have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry and engineering
[12]. In the recent years, the dynamic behaviors of fractional-order differential systems
have received increasing attention. Although the concept of the fractional calculus was
discussed in the same time interval of integer-order calculus, the complexity and the lack of
applications postponed its progress till a few decades ago. Recently, most of the dynamical
systems based on the integer-order calculus have been modified into the fractional order
domain due to the extra degrees of freedom and the flexibility which can be used to
precisely fit the experimental data much better than the integer-order modeling.

2.1. Grünwald-Letnikov approximation. Derivatives of fractional-order have been in-
troduced in several ways. In this paper, we consider GL approach. The GL method for
the one-dimensional fractional derivative takes the following form [12]:

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ], (4)

Dαx(t) = lim
h→0

h−α
[ t
h
]∑

j=0

(−1)j
(
α

j

)
x(t− jh),
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where 0 < α ≤ 1, Dα denotes the fractional derivative and h is the step size and [ th ]

denotes the integer part of t
h . Therefore, Eq. (4) is discretized as follows:

n∑
j=0

cαj xn−j = f(tn, xn), n = 1, 2, 3, ...

where tn = nh, xn−j is an approximation of x(tn−j) and c1, c2, . . . , cn are GL coefficients
that defined as:

cαj = (1− 1 + α

j
)cαj−1, cα0 = h−α, j = 1, 2, 3, . . . , n.

2.2. Non-standard finite difference schemes. The initial foundation of NSFD schemes
came from the exact finite difference schemes. These schemes are well developed by Mick-
ens [8, 9] in the past decades. These schemes are developed for compensating the weak-
nesses such as numerical instabilities that may be caused by standard finite difference
methods. Regarding the positivity, boundedness and monotonicity of solutions, NSFD
schemes have a better performance over the standard finite difference schemes, due to its
flexibility to construct a NSFD scheme that can preserve certain properties and structures,
which are obeyed by the original equations. The advantages of NSFD schemes have been
shown in many numerical applications. Gonzalez-Parra et al. [4] and Arenas et al. [3] de-
veloped NSFD schemes to solve population and biological models. Jordan [5] constructed
NSFD schemes for heat transfer problems.
To describe NSFD scheme, we consider an ODEs such as

x′ = f(t, x, λ), x(0) = x0, t ∈ [0, tf ],

where λ is a parameter and f(t, x, λ) is a nonlinear function. For a discrete-time grid with
step size, 4t = h, we replace the independent variable t by

t ≈ tn = nh, n = 0, 1, 2, . . . , N

where h =
tf
N . The dependent variable x(t) is replaced by

x(t) ≈ xn,
where xn is the approximation of x(tn).

The first NSFD requirement is that the dependent functions should be modeled on
the discrete-time computational grid. Particular examples of this include the following
functions [8, 9]. 

xy ≈ 2xn+1yn − xn+1yn+1,

x2 ≈ xn+1xn,

x3 ≈ (
xn+1 + xn−1

2
)x2n.

A standard way for representing a discrete first-derivative is given by

x′ ∼=
xn+1 − xn

h
.

However, the NSFD scheme requires that x′ has the more general representation

x′ ∼=
xn+1 − xn

φ
,

where the denominator function, i.e., φ has the properties:
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i: φ(h) = h+O(h2),

ii: φ(h) is an increasing function of h,

iii: φ(h) may depends on the parameters appearing in the differential equations.

Examples of denominator function that satisfy condition (i) are

h, sin(h), 1− e−h, 1− e−λh

λ
,

and so forth. The paper of Mickens [8] gives a general procedure for determining φ(h) for
systems of ODEs. An example of the NSFD discretization process is its application to the
decay equation

x′ = −λx,

where λ is a constant. The discretization scheme is as follows [8]:

xn+1 − xn
φ

= −λxn, φ(h, λ) =
1− e−λh

λ
.

Another example is given by

x′ = λ1x− λ2x2,

where the NSFD scheme is

xn+1 − xn
φ

= λ1xn − λ2xn+1xn, φ(h, λ1) =
eλ1h − 1

λ1
.

It should be noted that the NSFD schemes for these two ODEs are exact in the sense that
xn = x(tn) for all values of h > 0. In general, for an ODE with polynomial term

x′ = ax+ (NL), NL ≡ Nonlinear terms,

the NSFD discretization for the linear expression is given by Mickens [8]:

xn+1 − xn
φ

= axn + (NL)n,

where the denominator function is

φ(h, a) =
eah − 1

a
.

It follows that if x′ is to a function of x which does not have a linear term, then the
denominator function is just h, i.e., φ(h) = h.
By applying this technique and using the GL discretization method, it yields the following
relations

xn+1 =

−
n+1∑
j=1

cαj xn+1−j + f(tn+1, xn+1)

cα0
, n = 0, 1, 2, ...

where cα0 = φ(h)−α.
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3. Fractional-Order Competitive Lotka-Volterra system

Now we introduce fractional-order form of system Eqs. (3). The new system is described
by the following set of fractional ODEs of order α1, α2:

Dα1u(t) = u(1− u− v),

Dα2v(t) = v(A−Bu− Cv),

0 < αi ≤ 1, i = 1, 2

(5)

with initial conditions

u(0) = u0, v(0) = v0.

In order to analyze the stability of the model, stability theorems on fractional-order sys-
tems and fractional Routh-Hurwitz stability conditions for fractional-order differential
equations are introduced. The first stability theorem has been given for incommensurate
fractional-order systems.

Theorem 3.1. ([7]) Consider the incommensurate fractional-order system

Dαx(t) = f(x(t)), x(0) = x0, (6)

where α = (α1, . . . , αn), αi ∈ (0, 1] for i = 1, 2, . . . , n and x ∈ Rn. The equilibrium points
of system Eqs. (6) are calculated by solving the equation:

f(x) = 0.

These points are locally asymptotically stable if all eigenvalues λ of the Jacobian matrix
J ≡ ∂f

∂x evaluated at the equilibrium points satisfy:

|arg(λ)| > α?
π

2
, α? = max(α1, . . . , αn), i = 1, . . . , n.

Theorem 3.2. ([6]) Consider the commensurate fractional-order system Eqs. (6), i.e.,
α1 = α2 = · · · = αn = α??. If all eigenvalues of the Jacobian matrix of an equilibrium
point satisfy:

|arg(λ)| > α??
π

2
, (7)

then, the fractional system is locally asymptotically stable at the equilibrium point.

Proposition 3.1. ([6]) Suppose that P (λ) = λ2 + a1λ + a2 is characteristic polynomial

of the Jacobian matrix ∂f
∂x , evaluated at the equilibrium point E. For 0 < α ≤ 1, the

eigenvalues of the Jacobian matrix ∂f
∂x , satisfy condition (7) in Theorem 3.2 if

a1 > 0, a2 > 0,

or

a1 < 0, 4a2 > a21, |tan−1(
√

4a2 − a21
a1

)| > α??
π

2
.

In addition a2 > 0, is a necessary condition for |arg(λ)| > α?? π2 .
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4. Stability analysis of the equilibrium points

In this section we deal with asymptotically stability of the equilibrium points of system
Eqs. (5). The equilibrium points of this system are:

E0 = (0, 0), E1 = (1, 0), E2 = (0,
A

C
), E3 = (

A− C
B − C

,−A−B
B − C

).

Only the equilibrium points E1, E2 and E3 have real biological meaning. Note that the
equilibrium point E3 has real biological meaning when C > A > B. Jacobian matrix of
the system Eqs. (5) at the equilibrium point E = (u, v) is

J(E) =

(
1− 2u− v −u
−Bv A−Bu− 2Cv

)
, (8)

with the characteristic polynomial P

P (λ) = λ2 + a1λ+ a2. (9)

The asymptotically stability conditions of these equilibrium points are as follows:
i: The Jacobian matrix of the system Eqs. (5) at the equilibrium point E1 = (1, 0) is

J(1, 0) =

 −1 −1

0 A−B

 . (10)

In this case the characteristic equation is

P (λ) = λ2 + a1λ+ a2 = 0,

where
a1 = 1−A+B, a2 = −A+B.

Therefore, the eigenvalues of the Jacobian matrix (10) corresponding to the equilibrium
point E1 are

λ1 = −1, λ2 = A−B.
If A < B, then these eigenvalues are negative, hence by Theorem 3.2 and Proposition 3.1
a necessary and sufficient condition, for stability the equilibrium point E1 is A < B.
ii: The Jacobian matrix of the system Eqs. (5) at the equilibrium point E2 = (0, AC ) is

J(0,
A

C
) =


C −A
C

0

−AB
C

−A

 . (11)

The characteristic equation of the Jacobian matrix J evaluated at the equilibrium point
E2 is

P (λ) = λ2 + a1λ+ a2 = 0,

where

a1 =
AC +A− C

C
, a2 =

A(A− C)

C
.

Eigenvalues of the Jacobian matrix J at the equilibrium point E2 are

λ1 = −A, λ2 = −A− C
C

.

These eigenvalues are negative if A > C, hence by Theorem 3.2 and Proposition 3.1 a
necessary and sufficient condition, for stability the equilibrium point E2 is A > C.
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iii: The Jacobian matrix (8) at the equilibrium point E3 = (A−CB−C ,−
A−B
B−C ) is

J(
A− C
B − C

,−A−B
B − C

) =


−A− C
B − C

−(A− C)

B − C
(A−B)B

B − C
−(A−B)C

B − C

 ,

with the characteristic equation

P (λ) = λ2 + a1λ+ a2 = 0,

where

a1 = −−BC −A+AC + C

B − C
, a2 =

(A−B)(A− C)

B − C
.

Note that inequalities a1, a2 > 0 hold, provided C > A > B. We now consider the following
two cases:

i: If 4a2 − a21 ≤ 0 then

λ1 =
−a1 −

√
a21 − 4a2

2
< 0, λ2 =

−a1 +
√
a21 − 4a2

2
< 0.

ii: If 4a2 − a21 > 0 then

λ1 =
−a1 + i

√
4a2 − a21

2
, λ2 =

−a1 − i
√

4a2 − a21
2

.

In both cases, since a1 > 0, hence by Theorem 3.2 and Proposition 3.1 a necessary and
sufficient condition for stability the equilibrium point E3 is C > A > B.

Theorem 4.1. Let 0 < αi ≤ 1 for i = 1, 2 then for the equilibrium points E1 , E2 and E3

of system Eqs. (5), the following statements hold.

i: If A < B, then the equilibrium point E1 is stable.
ii: If A > C, then the equilibrium point E2 is stable.

iii: If C > A > B, then the equilibrium point E3 is stable.

5. NSFD scheme for fractional-order competitive Lotka-Volterra model

In this section, we present numerical simulation to illustrate the results obtained in the
previous section. By using definition of GL derivative and use NSFD for the model we
have:

n+1∑
j=0

cα1
j un+1−j = un − un+1un − un+1vn,

n+1∑
j=0

cα2
j vn+1−j = Avn −Bun+1vn+1 − Cvn+1vn.

(12)

Comparing Eqs. (12) with system Eqs. (5), we note that the following statements:
i: The linear and nonlinear terms on the right-hand side of the first equation in system
(5) are in the form

u→ un, −u2 → −un+1un, −uv → −un+1vn.
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ii: The linear and nonlinear terms on the right-hand side of the second equation in system
(5) are

v → vn, −uv → −un+1vn+1, −v2 → −vn+1vn.

Manipulating previous discretization we get the following equations

un+1 =

−
n+1∑
j=1

cα1
j un+1−j + un

cα1
0 + un + vn

,

vn+1 =

−
n+1∑
j=1

cα2
j vn+1−j +Avn

cα2
0 +Bun+1 + Cvn

,

(13)

where
cα1
0 = φ1(h)−α1 , cα2

0 = φ2(h)−α2 ,

with [14]

φ1(h) = eh − 1, φ2(h) =
eAh − 1

A
.

Proposition 5.1. The numerical solutions obtained from system (13) for case 0 < αi ≤ 1,
i = 1, 2 satisfy

un > 0, vn > 0 =⇒ un+1 > 0, vn+1 > 0, (14)

for all relevant values of n.

Proof. Since cαi
0 > 0, for i = 1, 2 by recursive relation

cαi
j = (1− 1 + αi

j
)cαi
j−1, j = 1, 2, . . . , n

we have cαi
j < 0 for j > 0, therefore the system Eqs. (13) show that relation (14) is

established. For case αi = 1, i = 1, 2 by considering the following system

un+1 − un
φ1

= un − un+1un − un+1vn,

vn+1 − vn
φ2

= Avn −Bun+1vn+1 − Cvn+1vn,

and solving this system in terms of un+1, vn+1 we conclude the relation (14) holds. �

6. Numerical results

Analytical studies always remain in complete without numerical verification of the re-
sults. In this section, numerical results from the implementation of NSFD scheme for
the fractional-order competitive Lotka-Volterra model are presented. The approximate
solutions displayed in Figs. 1 and 2 for the step size h = 0.5 and different 0 < αi ≤ 1, for
i = 1, 2 and parameters A = 1, B = 2 and C = 3 with the initial conditions u(0) = 2 and
v(0) = 1, for simulation time 30s.

The approximate solutions displayed in Figs. 3 and 4 for the step size h = 0.5 and
different 0 < αi ≤ 1, for i = 1, 2 and parameters A = 2, B = 2 and C = 1 with the initial
conditions u(0) = 1 and v(0) = 1, for simulation time 30s.
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Figure 1. Plot of populations u, v over time for different α1 and α2 with
step size h = 0.5.
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Figure 2. Plot of populations u, v for different α1 and α2 with step size
h = 0.5.
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Figure 3. Plot of populations u, v over time for different α1 and α2 with
step size h = 0.5.

The approximate solutions displayed in Fig. 5 and 6 for the step size h = 1 and
different 0 < αi ≤ 1, for i = 1, 2 and parameters A = 1, B = 0.5 and C = 2 with the
initial conditions u(0) = 1 and v(0) = 1, for simulation time 50s.
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Figure 4. Plot of populations u, v for different α1 and α2 with step size
h = 0.5.
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Figure 5. Plot of populations u, v over time for different α1 and α2 with
step size h = 1.
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Figure 6. Plot of populations u, v for different α1 and α2 with step size
h = 1.

In Tables 1, 2 and 3, for different step sizes h, the qualitative stability results, obtained
by NSFD scheme, of the equilibrium points E1, E2 and E3 are respectively compared to
classical methods such as forward Euler and fourth order Runge-Kutta methods. If step
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size h is chosen small enough, the results of the proposed NSFD scheme are similar with
the results of the other two numerical methods, but if the step size h is chosen larger, the
efficiency of NSFD scheme is clearly seen. As we observe, the CPU times of the NSFD
method is less than the CPU times forward Euler and fourth order Runge-Kutta methods.

Table 1. Qualitative results of the equilibrium point E1 for different time
step sizes, t= 0-60.

h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.001 Convergence 0.011167 Convergence 0.027123 Convergence 0.001486

0.01 Convergence 0.010702 Convergence 0.026794 Convergence 0.001301

0.1 Convergence 0.010605 Convergence 0.025951 Convergence 0.000815
0.3 Divergence – Convergence 0.024713 Convergence 0.000302

1 Divergence – Divergence – Convergence 0.000153

10 Divergence – Divergence – Convergence 0.000020

Table 2. Qualitative results of the equilibrium point E2 for different time
step sizes, t= 0-60.

h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.001 Convergence 0.001586 Convergence 0.003324 Convergence 0.001820

0.01 Convergence 0.000922 Convergence 0.002973 Convergence 0.000153
0.1 Convergence 0.000868 Convergence 0.002926 Convergence 0.000079

1 Divergence – Convergence 0.002682 Convergence 0.000035

1.2 Divergence – Divergence – Convergence 0.000020
10 Divergence – Divergence – Convergence 0.000007

Table 3. Qualitative results of the equilibrium point E3 for different time
step sizes, t= 0-50.

h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.001 Convergence 0.001586 Convergence 0.003324 Convergence 0.001820
0.01 Convergence 0.000922 Convergence 0.002973 Convergence 0.000153

0.1 Convergence 0.000868 Convergence 0.002926 Convergence 0.000079

0.7 Divergence – Convergence 0.002682 Convergence 0.000035
1 Divergence – Divergence – Convergence 0.000020

10 Divergence – Divergence – Convergence 0.000007

In Figs. 7, 8 and 9, the NSFD solutions of u and v converge to equilibrium points E1, E2

and E3 as simulated and also forward Euler and Runge-Kutta methods are compared with
NSFD scheme graphically. All the numerical calculations and simulations are performed
by using Matlab programme. In conclusion, the efficiency of the proposed NSFD scheme
is investigated and compared with other numerical methods.

7. Conclusion

In this paper, the fractional form of the competitive Lotka-Volterra model is introduced.
The stability of the equilibrium points are studied. Exploiting the NSFD scheme, we study
the stability analysis as well as the dynamic behaviour of mentioned system. Moreover the
obtained numerical results of NSFD scheme are compared with forward Euler and fourth
order Runge-Kutta methods in integer-order case. Numerical results show the accuracy
and efficiency of the NSFD scheme.
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Figure 7. Numerical solutions of forward Euler and fourth order Runge-
Kutta and NSFD methods converge to the equilibrium point E1 with step
size h = 0.1 for α1 = α2 = 1.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u
(t

)

 

 
NSFD
Forward Euler
4th order Runge−Kutta

0 20 40 60 80 100 120

0.8

1

1.2

1.4

1.6

1.8

2

t

v
(t

)

 

 
NSFD
Forward Euler
4th order Runge−Kutta

Figure 8. Numerical solutions of forward Euler and fourth order Runge-
Kutta and NSFD methods converge to the equilibrium point E2 with step
size h = 0.1 for α1 = α2 = 1.
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Figure 9. Numerical solutions of forward Euler and fourth order Runge-
Kutta and NSFD methods converge to the equilibrium point E3 with step
size h = 0.1 for α1 = α2 = 1.
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