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SOME RESULTS ON THE DISTANCE r-b-COLORING IN GRAPHS
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Abstract. Given a positive integer r, two vertices u, v ∈ V (G) are r- independent if
d(u, v) > r. A partition of V (G) into r-independent sets is called a distance r-coloring.
A study of distance r-coloring and distance r-b-coloring concepts are studied in this paper.
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1. Introduction

Consider a network and a coloring scheme for the nodes. Two nodes are compatible
if they receive the same color. The usual coloring scheme stipulates that adjacent nodes
should not receive the same color. Such a scheme is helpful in storage problems of chemicals
where two noncompatible chemicals (two chemicals which, when placed nearby, will cause
danger) cannot be stored in the same room. The chromatic number of such a scheme will
give the minimum number of storage spaces required for keeping all the chemicals without
any problem.

Two important aspects of graphs are partitions of vertex and edge sets into sets with
prescribed properties. The first gives rise to different types of colorings and the second
leads to decomposition in graphs. Various colorings starting from proper coloring have
been defined and studied.
In this paper, we introduce a new coloring based on the distance. Given a positive integer
r , two vertices u, v ∈ V (G) are r-adjacent if u, v are adjacent in Gr and are r-independent
if they are independent in Gr. A partition of V (G) into r-independent sets is called a dis-
tance r-coloring. These are same as proper coloring in Gr. The chromatic number of Gr

will coincide with the distance r-chromatic number of G. Variations of distance r-coloring
like distance r-dominator coloring and distance r − b-coloring are also discussed.

Definition 1.1. For any integer r ≥ 1, a graph G = (V,E) is said to be r-complete if
every vertex in V (G) is r-adjacent to every other vertex in V (G). The maximum cardi-
nality of a subset S of V (G) such that 〈S〉 is r-complete is called r-clique number of G
and is denoted by ωr(G).
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Definition 1.2. Let r ≥ 1. Let u, v ∈ V (G). A vertex u distance r-dominates a vertex v
if d(u, v) ≤ r.

Definition 1.3. A subset I of V (G) is distance r-independent set if for any u, v ∈ I,
d(u, v) > r. The maximum cardinality of a distance r-independent set of G is called the
distance r-independence number of G and is denoted by βr(G).

Definition 1.4. [14] A partition of V (G) is called distance r-independent color partition
of G if each element of the partition is distance r-independent. The minimum cardinality
of a distance r-independent color partition of G is called distance r-chromatic number and
is denoted by χr(G).

Remark 1.1. Let G be a simple graph. Let V (G) = {v1, v2, . . . vn}. Let π = {{v1}, {v2}, · · · , {vn}}
be a distance r-color partition of a graph G. Therefore existence of distance r-color parti-
tion of any graph is guaranteed.

Remark 1.2. Any distance r-color partition of G is a proper color partition of G but not
the other way.

For example,
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{v1, v6}, {v3, v5},{v2, v4} is a proper color partition of G, but it is not a distance 2-color
partition of G.

Lemma 1.1. For any graph G, χ(G) ≤ χr(G).

χr(G) for standard graphs:

(1) χr(Kn) = 1 , for all r.
(2) χr(Kn) = n, for all r.

(3) χr(K1,n) =

{
2, if r = 1

n+ 1, if r ≥ 2.

(4) χr(Wn) =


3, if r = 1 and n is odd

2, if r = 1 and n is even

n, if r ≥ 2.

(5) χr(Km,n) =

{
2, if r = 1

m+ n, if r ≥ 2.

(6) χr(Pn) =

{
r + 1, if 1 ≤ r < n− 1

n, if r ≥ n− 1.
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(7) χr(Cn) =


If r < bn/2c
r + 1, if n ≡ 0 mod(r + 1)

r + 2, otherwise

n, if r ≥ bn/2c
(8) Let D(m,n) be a double star (with m < n).

χr(Dm,n) =


2, if r = 1

m+ n+ 2, if r ≥ 3

n+ 2, if r ≥ 2.

Lemma 1.2. If G has diameter ≤ 2, then χr(G) =

{
n, if r ≥ 2

χ(G), if r = 1

Lemma 1.3. For any graph G, 1 ≤ χr(G) ≤ n.

Theorem 1.1. χr(G) = 1 if and only if G = Kn.

Proof:
Let χr(G) = 1. Suppose G is connected. Since χr(G) = 1, any two vertices of G are

at a distance > r ≥ 1. Therefore any two vertices of G are at a distance > 1, which is a
contradiction. Therefore G is disconnected. Suppose G1, G2, G3, · · · , Gt are the connected
components of G.
Suppose |V (Gi)| ≥ 2. Arguing as before, we get a contradiction. Therefore |V (Gi)| = 1,
for all i. Therefore G is totally disconnected. The Converse is obvious.

Theorem 1.2. For any graph G, χr(G) = n if and only if r ≥ diam(G).

Proof:
If r ≥ diam(G), then χr(G) = n. Suppose χr(G) = n and r < diam(G). Let u, v be two

vertices of G such that d(u, v) = diam(G) > r. Then {u, v} is a distance-r-independent
set and so χr(G) ≤ n− 1, a contradiction. Therefore r ≥ diam(G).

Theorem 1.3. Let G be a graph of order n.Then n
βr(G) ≤ χr(G) ≤ n− βr(G) + 1.

Proof:
Let χr(G) = s. Let π = {V1, V2, . . . Vs} be a χr-partition of V (G). Therefore βr(G) ≥

|Vi|, for all i,(1 ≤ i ≤ s). Now n = |V1|+|V2|+. . .+|Vs| ≤ sβr(G). Hence βr(G)χr(G) ≥ n.
Let D be a βr-set of G. Let D =

{
u1, u2, . . . , uβr(G)

}
. Let π = {D, {uβr+1} , . . . , {un}}.

Then π is a distance r-color partition of G. Therefore |π| ≥ χr(G).
That is n− βr(G) + 1 ≥ χr(G).

Corollary 1.1. Let G be a graph of order n. Then 2
√
n ≤ βr(G) + χr(G) ≤ n+ 1.

Remark 1.3. For any graph G, ωr(G) ≤ χr(G) ≤ 1 + ∆r(G).

Remark 1.4. For any graph G, if r = diam(G), then χr(G) = 1 + ∆r(G).

Proof: If r = diam(G), then every vertex of G is r-adjacent to every other vertex of G.
Hence χr(G) = n = 1 + ∆r(G).

Proposition 1.1. Given positive integers a, b, and r with a ≤ b, there exists a connected
graph G such that χ(G) = a, χr(G) = b.

Proof:
Case 1: a = b. For any r ≥ 1. Then χ(Ka) = χr(Ka) = a = b.
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Cases 2: a < b. Then r ≥ 2. Attach (b− a) pendent vertices at a vertex of Ka. Let G
be the resulting graph. Then χ(G) = a and χr(G) = b.

Proposition 1.2. Let G be a connected graph of order ≥ 3 which is non complete. Let G
have a full degree vertex. Then χ(G) 6= χr(G), for all r ≥ 2.

Proof:
Let G be a connected graph of order ≥ 3 which is non complete. Let G have a full

degree vertex. Then diam(G) ≤ 2 and hence χr(G) = |V (G)| and χ(G) < n. Therefore
χ(G) < χr(G). That is, χ(G) 6= χr(G), for all r ≥ 2. Suppose G has no full degree vertex.

Theorem 1.4. For any spanning subgraph H of G, χr(H) ≤ χr(G).

Theorem 1.5. Suppose G is disconnected. Let r ≥ 2. Then χr(G) = χ(G) if and only if
there exists a component of G which is complete and whose distance r-chromatic number
is χr(G).

Proof:
Let G be disconnected. Let G1, G2, . . . , Gk be the components of G. Let r ≥ 2 and

χ(G) = χr(G). χ(G) = max
1≤i≤k

{χ(Gi)} = χ(G) say χr(G) = max
1≤i≤k

{χr(Gi)} = χ(G1).

Without loss of generality,
let max

1≤i≤k
{χr(Gi)} = χr(Gs). Then χr(Gs) = χ(G1). But, χr(G1) ≥ χ(G1) = χr(Gs) ≥

χr(G1). Therefore χr(G1) = χr(Gs) and hence χr(G1) = χ(G1). Therefore G1 is complete
and χ(G1) = χ(G) = χr(G). Conversely, let G be disconnected and r ≥ 2.

Let G contain a component, say G1 which is complete and χr(G1) = χr(G). Since G1

is complete, χ(G1) = χr(G1) = χr(G). Suppose χ(G1) < χ(Gs) = χ(G). Then χr(G) <
χ(Gs) = χ(G), a contradiction. Thus χ(G1) ≥ χ(Gs), for all s and so χ(G1) = χ(G).

That is , χr(G) = χ(G).

2. Distance r − b-Coloring in Graphs

Definition 2.1. A distance-r-color partition is called a distance-r-b-color partition if for
every color class contains at least one vertex which is at a distance less than or equal
to r from each of the remaining color classes. Any χr-partition is a distance-r-b-color
partition. The maximum cardinality of a distance-r-b-color partition is called distance-
r-b-chromatic number and is denoted by φr(G). Clearly, χr(G) ≤ φr(G).

Definition 2.2. ∆r(G) = max{degr(v)}, where degr(v) = |{v ∈ V (G) : d(u, v) ≤ r}|. Let
v1, v2, · · · , vn be arranged such that degr(v1) ≥ degr(v2) ≥ · · · ≥ degr(vn). Let mr(G) =
max {i : degr(vi) ≥ i− 1}.

Theorem 2.1. For any graph G, χr(G) ≤ φr(G) ≤ mr(G).

Proof:
Let v1, v2, · · · , vn be arranged such that degr(v1) ≥ degr(v2) ≥ · · · ≥ degr(vn). Let

mr(G) = max {i : dr(vi) ≥ i − 1}. Then there exist a set of mr(G) vertices of (G), each
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with r-degree ≥ mr(G)−1 and the remaining vertices have r-degree < mr(G)−1. Suppose
φr(G) > mr(G). Let π = {V1, V2, · · · , Vφr(G)} be a color partition of G. Then there exist a
color class in which the r-degree of each vertex is ≤ mr(G)− 1. For: Suppose not, In each
color class, there exist a vertex whose r-degree is > mr(G) − 1. Therefore there exist at
least φr(G) vertices whose r-degree is > mr(G)− 1. That is there exist more than mr(G)
vertices whose r-degree is > mr(G) − 1, a contradiction. Hence there exist a color class
say, Vj in which the r-degree of each vertex is ≤ mr(G)− 1, which implies that there exist
a vertex
u ∈ Vj which r-dominates at least one vertex from each of the remaining color classes.
Therefore degr(u) ≥ φr(G) − 1 ≥ mr(G), a contradiction. Therefore φr(G) ≤ mr(G).
Therefore χr(G) ≤ φr(G) ≤ mr(G).

Lemma 2.1. For any graph G, mr(G) ≤ 1 + ∆r(G).

Proof: Suppose mr(G) > 1 + ∆r(G). Then there exist a set of mr(G) vertices each
with r-degree ≥ mr(G)− 1 > ∆r(G), a contradiction. Therefore mr(G) ≤ 1 + ∆r(G).

Lemma 2.2. χr(G) ≤ φr(G) ≤ mr(G) ≤ 1 + ∆r(G). Let G = Km,n and r = 2. Then
χ2(Km,n) = m+ n. 1 + ∆2(G) = m+ n. φ2(G) = m+ n. Therefore φ2(G) = 1 + ∆2(G).

φr(G) for standard graphs

(1) φr(Kn) = n for all r

(2) φr(Km,n) =

{
2, if r = 1

m+ n, if r ≥ 2

(3) φr(K1,n) =

{
2, if r = 1

n+ 1, if r ≥ 2

(4) φr(Wn) =


3, if n is odd and if r = 1

4, if n is even and if r = 1

n, if r ≥ 2

(5) φr(Pn) =


n, if n ≤ r + 1

r + 1 + b(n− 1)/(2r + 1)c , if r + 2 ≤ n ≤ 4r + 1

r + 2, if n ≥ 4r + 2

(6) φr(Cn) =


n, if n ≤ 2r + 1

(r + 1) +
⌊
n−2
2r+1

⌋
, if n = 2r + 2

r + 2, if n ≥ 2r + 3

Proposition 2.1. Given positive integers k, r with k > r, there exists a connected graph
G with φr(G) = k.

Proof:
Consider K(1,k−r+1). Attach a path of length r − 2 at each of the pendent vertices of

K(1,k−r+1). Let G be the resulting graph. Then φr(G) = (r − 2) + 1 + (k − r + 1) = k.
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K(r,t)-free graphs

Definition 2.3. Consider K(1,t). Attach a path of length r − 1 at each of the pendant
vertices of K(1,t). The resulting graph is called (r, t)-clawand is denoted by K(r,t).
G = K(3,4) is given below.

Example 2.1.

�
�

��

v

v v

vvvv

v v

v v v v

1

2 3 4 5

6 7 8 9

10 11 12 13

G :

Remark 2.1. βr(K(r,t)) = t.

Theorem 2.2. Let G be a K(r,t)-free graph, where t ≥ 3. Then φr(G) ≤ (t− 1)(χr(G)−
1) + 1.

Proof:
Let π =

{
V1, V2, . . . , V(φr)

}
be a φr(G)-coloring partition of G. Then each Vi contains a

vertex say xi which is at a distance ≤ r to each of the color classes Vj , j 6= i, 1 ≤ j ≤ φr(G).
Let y1, y2, . . . , y(φr)−1 be the vertices which are at a distance ≤ r from xi and having

(φr(G) − 1) colors. Let S =
{
y1, y2, . . . , y(φr−1)

}
. Let H = 〈S〉. φr(H) ≤ (t − 1). Since

n
βr(G) ≤ χr(G), |V (H)| ≤ (t−1)χr(H). Therefore (φr(G)−1) ≤ (t−1)(χr(G)−1). Hence

φr(G) ≤ (t− 1)(χr(G)− 1) + 1.
The following proposition shows that the bound is sharp for each t.
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Proposition 2.2. For any integer t ≥ 3 and k, there exist a K(r,t)-free graph G such that
χr(G) = r(k − 1) + 1 and
φr(G) = (χr(G)− 1)(t− 1) + 1.

Proof:
Let H be the graph constructed as follows:t
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Consider the vertex v. Let the neighbours of v form r(t − 1)-mutually disjoint cliques
each with (k − 1)-vertices. Subdivide each of these arms with r − 1-vertices such that
the subdivided point at the i-th level 1 ≤ i ≤ r form a clique. Take r(t − 1)(k − 1) + 1
disjoint copies of H and connect them sequentially by exactly one edge between any two
consecutive copies such that these edges are not incident with v or any of the images of
v. Let G be the resulting graph.

Then χr(H) = r(k − 1) + 1 and φr(H) = r(k − 1)(t− 1) + 1 = (χr(H)− 1)(t− 1) + 1.

Proposition 2.3. For any spanning subgraph H of G, φr(G) ≥ φr(H).

Theorem 2.3. For any vertex v of a graph G, φr(G−{v}) ≤ φr(G) ≤ φr(G−{v}) + 1.

Proof:
Let π = {V1, V2, . . . Vk} be a φr-coloring of G − {v}. If v is r-adjacent to each color

class Vi, 1 ≤ i ≤ k. Then {V1, V2, . . . , Vk, {v}} is a b-r-color partition of G, Otherwise
π′ = {V1, V2, . . . Vi ∪ {v} , . . . Vk} is a b-r-color partition of G, where v is not r-adjacent
to Vi. Therefore φr(G − v) ≤ φr(G). Let π = {V1, V2, . . . Vk} be a φr-coloring of G.
Let v ∈ Vi. If v is the only vertex in Vi which is r-adjacent to each color class Vi, 1 ≤
i ≤ k. Then

{
V1, V2, . . . , V(i−1), V(i+1) . . . Vk

}
is a b-r-color partition of G, otherwise π′ =

{V1, V2, . . . Vi − {v} , . . . Vk} is a b-r-color partition of G. Therefore φr(G) ≤ φr(G−v)+1.

Proposition 2.4. Let G be a graph without isolates. Let µ(G) denote the Mycielski graph
of G. Then

χr[µ(G)] =

{
n+ 1, if r ≥ 2

χ(G) + 1, if r = 1

Proof:
Let G be a graph without isolates. Let µ(G) denote the Mycielski graph of G. Let

V (G) = {u1, u2, . . . u2} and V (µ(G)) = V (G)∪{u′1, u′2, . . . u′n, v}. Nµ(G)(u
′
i) = N(G)(ui)∪
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{v}. N2µ(G)
(u′i) = N2(G)

(ui) ∪ {u′1, . . . , u′i, . . . u′n, v}. Nrµ(G)
(u′i) = V [µ(G)], when r ≥ 3.

Nµ(G)(v) = {u′1, . . . u′n}. Nrµ(G)
(v) = V [µ(G)], when r ≥ 2. Nµ(G)(u) = NG(u) ∪{

x′ : x ∈ N(G)(u)
}

. N2µ(G)
(u) = N2(G)

(u) ∪ {x′ : x ∈ N2G(u)} ∪ {v}. N3µ(G)
(u) =

N3(G)
(u) ∪ {u′1, u′2, . . . u′n, v}. Nrµ(G)

(u) = V [µ(G)], when r ≥ 4.

χr[µ(G)] =

{
n+ 1, if r ≥ 2

χ(G) + 1, if r = 1
.

Lemma 2.3.

For any connected graph G, φr(G) ≤ φ(r+1)(G), for all r ≥ 1 (since χr(G) ≤ χ(r+1)(G)
, for all r ≥ 1).

Lemma 2.4.

For any connected graph G, χr(G) ≤
⌈

∆r(G) +ωr(G)
2

⌉
+ 1, where ωr(G)is the maximum

cardinality of a maximal r-complete subgraph of G.

Lemma 2.5.

If G is a graph with φr(G) = 1+∆r(G). Then φr(G)+1 ≤ φr(µ(G)) ≤ (r+1)φr(G)−1.

Lemma 2.6.

χr(µ(G)) ≤ φr(µ(G)) ≤ 1 + ∆r(G). If r = diam(G), then φr(µ(G)) = χr(µ(G)) =
1 + ∆r(G).

Conclusion: In this paper, a study of new parameter called distance r− b-coloring is
defined and discussions about it on various dimensions are carried out. A study of these
parameters with the different types of coloring such as dominator coloring and achro-
matic coloring is also possible. There is a good scope for further investigation on these
parameters.
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