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ON THE CONSTRUCTION OF GENERAL SOLUTION OF THE

GENERALIZED SYLVESTER EQUATION

F.A. ALIEV1, V.B. LARIN2, §

Abstract. The problem of construction the general solution of the generalized matrix
Sylvester equation is considered. Conditions of existence of solution of this equation are
obtained and the algorithm for construction of this solution is given. For construction
of the algorithm of this solution and the formulation of the condition of existence of this
solution, the standard procedures of MATLAB package are used.
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1. Introduction

At the problems of creating the motion control algorithms of various systems, see for
example [1, 2, 5, 6, 8, 10, 12, 13, 19], an important place is occupied by procedures of
construction of solutions of different matrix equations, see [3-5, 14, 15] and references
therein. It may be noted that the algorithms of construction of solutions of Sylvester
equations have attracted the attention of researchers [7, 9, 18, 21]. For example, in [9]
the problem of construction of the general solution of a generalized Sylvester equation is
considered:

k∑
i=1

QiXRi +
∑̀
i=1

SiY Ti = B. (1)

Here X ∈ Rβ×γ , Y ∈ Rµ×ν , B ∈ Rα×δ; the other matrices in (1) have corresponding
dimensions. In [9] the solvability condition is formed and the algorithm of construction of
the general solution of the equation (1) is suggested.

Below these questions are also considered applying to equation (1). However, for the
construction of algorithm of solution (1) and formulation of the conditions of existence of
the solution the standard procedures of package of MATLAB are used. Thus, calculable
procedure is formed so that the used standard procedures of package of MATLAB enter
the Symbolic Math Toolbox. For illustration of algorithm an example is considered [9].
In this example the solution is formed which doesn’t appear in [9].
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2. General relations

As is known [16], by the use of Kronecker or tensor product, the equation (1) can be
presented [11, 20] as a system of linear algebraic equations :

G

[
x
y

]
= b, (2)

G =

[
k∑
i=1

Qi ⊗R′i +
∑̀
i=1

Si ⊗ T ′i

]
,

x =

 x′1∗
...
x′β∗

 , y =

 y′1∗
...
y′µ∗

 , b =

 b′1∗
...
b′α∗

 .
Hereinafter a stroke means the transposition, ⊗ is the operation of Kronecker product
(procedure kron.m), x′j∗, y

′
j∗, b

′
j∗ are the rows of matrices X,Y,B correspondingly. The

transition procedure from matrices X,Y,B to the vectors x, y, b is carried out by procedure
colon (:) (an inverse transition is carried out by procedure of reshape.m).

Thus, the problem of construction of the general solution of equation (1) is reduced to
the problem of construction of the general solution of the linear algebraic equation (2).

Consequently, the condition of existence of the solution (1) can be formulated as follows.
For existence of solution (1), the matrices G and [G b] must have an identical rank [16]
(for the calculation of rank of the matrix it is possible to use the procedure of rank.m).

3. The algorithm for construction of the general solution of (1)

Let produce the singular decomposition of the matrix G (procedure svd.m):

G = USV ′. (3)

In [3] U, V are orthogonal matrices, S is the diagonal matrix. The first r (r is the rank
of matrix G) elements of diagonal of S are not equal to zero. Let us consider the matrix
U ′G = SV ′. In connection with the marked structure of matrix S, only first r rows of the
matrix U ′G will not be equal to zero. We designate the matrix formed from the first r
rows of the matrix U ′G by Ag. Multiplying left and right part of equation (2) on a matrix
U ′ and leaving in both parts only first r rows, we will rewrite (2) as follows:

Ag

[
x
y

]
= bu. (4)

Here, the vector bu is formed from the first r components of vector U ′b.
Note that matrix Ag appearing in (4) is the complete rank matrix. Therefore, for deter-
mination of general solution of (2) it is possible to use the relation [17]:[

x
y

]
= Ag

′ (AgAg ′)−1 bu +Nξ,

N =
(
I −Ag ′

(
AgAg

′)−1Ag) . (5)

Here, the first member in the right part determines the particular solution (2) which has
a minimum norm, ξ is a vector of free parameters which defines the general solution (2).
In (5) and further, I is a identity matrix of corresponding size.

Let us produce the singular decomposition of matrix N , analogically to (3):
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N = UnSnV
′
n.

Let the first q diagonal elements of the matrix Sn be not equal to zero. Consequently, the
matrix NVn = UnSn will have only first q nonzero columns. The matrix which is formed
from the first q columns of the matrix NVn (determined the zero subspace of the matrix
Ag) is designated as Nq. The relation (5) is rewritten as follows:[

x
y

]
= Ag

′ (AgAg ′)−1 bu +Nqξq, (6)

where the dimension of vector of free parameters ξq is equal to q.

Defining the vector

[
x
y

]
accordingly to (6), i.e., the general solution of (2)(for the

given vector ξq), then, using the procedure of reshape.m, it is possible to construct the
matrices X,Y , which determine the general solution (1) using vectors x, y

A problem of choice of the vector of free parameters is considered. Obviously, in case of
choice of other free parameters (different from the parameters determined by the vector
ξq) the structure of (6) will not change. So, at the choice of new vector of free parameters
(vector c) and corresponding matrix Nc (the columns of which determine the zero subspace
of matrix Ag) we have:

Nqξq = Ncc. (7)

The relation (7) allows to set the connection between ξq and c. Note that for the calculation
of matrix Nc, it is possible to use the procedure of null.m.

Example. The initial data coincide with accepted in the example 1 [9].

B(1)k = 2, ` = 1, Q1 = Q1 =

 1 0 1
0 0 0
1 0 0

, Q2 =

 0 0 1
0 0 0
1 0 1

, R1 =

 1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

,

R2 =

 0 0 1 0 0
0 0 0 0 0
1 0 1 0 1

 , S1 =

 1 0
0 0
1 0

 , T1 =

[
1 0 0 0 1
0 0 1 0 0

]
, B =

 1 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 .
At these initial data the rank of the matrix G is equal to 4 and coincides with the rank of
the matrix [G, b]. Thus, at these initial data the equation (1) has a solution. In [9] the
next solution of (1) is given at the accepted initial data:

X = Φ(cr) + Λ(B),Φ(cr) =

 10c6 + 6c8 61c2 −3c6 − 14c8
61c1 61c3 61c5

−3c6 − 14c8 61c4 7c6 − 8c8

 ,
Y = Ψ(cr) + Π(B),Ψ(cr) =

[
−14c6 + 16c8 −8c6 + 44c8

61c8 61c9

]
,

Λ(B) =

 19
61 0 −24

61
0 0 0
37
61 0 − 5

61

 ,Π(B) =

[
10
61 − 3

61
0 0

]
.

Note that a coefficient c7 does not appear in matrices Φ(cr),Ψ(cr).
Using the relation (6), we will find that the first element of the first part of this relation
determines the matrices Λ(B), Π(B), which coincide with the given ones in [9].
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The matrices Φ(cr), Ψ(cr) are determining the matrix Nc, appearing in (7), in which the
seventh column is zero:

Nc =



0 0 0 0 0 10 0 6 0
0 61 0 0 0 0 0 0 0
0 0 0 0 0 − 3 0 − 14 0
61 0 0 0 0 0 0 0 0
0 0 61 0 0 0 0 0 0
0 0 0 0 61 0 0 0 0
0 0 0 0 0 − 3 0 − 14 0
0 0 0 61 0 0 0 0 0
0 0 0 0 0 7 0 − 8 0
0 0 0 0 0 − 14 0 16 0
0 0 0 0 0 − 8 0 44 0
0 0 0 0 0 0 0 61 0
0 0 0 0 0 0 0 0 61



.

It is possible to change the seventh column of the matrix Nc, i.e. to rewrite this matrix
in the form:

Nc7 =



0 0 0 0 0 10 0 6 0
0 61 0 0 0 0 0 0 0
0 0 0 0 0 − 3 1 − 14 0
61 0 0 0 0 0 0 0 0
0 0 61 0 0 0 0 0 0
0 0 0 0 61 0 0 0 0
0 0 0 0 0 − 3 1 − 14 0
0 0 0 61 0 0 0 0 0
0 0 0 0 0 7 1 − 8 0
0 0 0 0 0 − 14 − 2 16 0
0 0 0 0 0 − 8 − 4 44 0
0 0 0 0 0 0 0 61 0
0 0 0 0 0 0 0 0 61



.

We will note that the rank of this matrix is equal to 9 and it satisfies to the condition
AgNc7 = 0. Consequently, the general solution of (1) given in [9] must be completed by
matrices x7, y7, which are determined by the seventh column of the matrix Nc7.

X = Φ(cr) + Λ(B) + x7 · c7,

Y = Ψ(c2) + Π(B) + y7 · c7,

x7 =

 0 0 1
0 0 0
1 0 1

 , y7 =

[
−2 − 4

0 0

]
.

Let us note that, if in the right part of (1), as in an example 2 [9], the matrix

B0 =

 0 0 1 0 0
1 0 1 0 1
0 0 1 0 0

 ,
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appears, the rank of the matrix [G b] is equal to 5 and, consequently, the equation (1)
does not have a solution. This conclusion coincides with the conclusion of [9].

Conclusion
The problem of construction of the general solution of the generalized Sylvester matrix

equation is considered. The conditions of existence of the solution of this equation are
obtained and an algorithm of construction of the solution is given. For the construction
of the algorithm of solution and formulation of the condition of existence of the solution
the standard procedures of package of MATLAB are used.
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