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ON APPROXIMATE METHODS FOR FRACTAL VEHICULAR

TRAFFIC FLOW

H. K. JASSIM1, §

Abstract. In this paper, we find the approximate solutions for partial differential equa-
tions arising in fractal vehicular traffic flow by using the local fractional Laplace decompo-
sition method (LFLDM) and local fractional series expansion method (LFSEM). These
methods provide us with a convenient way to find the approximate solution with less
computation as compared with local fractional variational iteration method. The results
obtained by the proposed methods (LFLDM) and (LFSEM) are compared with the re-
sults obtained by (LFLVIM). Some examples are presented to illustrate the efficiency
and accuracy of the proposed methods.
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1. Introduction

Lighthill and Whitham (1955), and Richards (1956) independently presented a macro-
scopic model of traffic flow to describe the dynamic characteristics of traffic on a ho-
mogeneous and unidirectional highway, which is now known as the LWR model in the
literature of traffic flow theory. The LWR model is still widely used for the modeling
of traffic flow, because of its simplicity and good explanatory power to understand the
qualitative behavior of road traffic [1].

The Lighthill-Whitham-Richards model was studied by Li [2] and Wang [3] on a finite
length highway and reads as follows

∂ϑM(x, t)

∂tϑ
+ µ

∂ϑM(x, t)

∂xϑ
= 0, 0 < ϑ ≤ 1 (1)

where the initial and boundary conditions are presented as follows

M(x, 0) = ϕ(x);

M(0, t) = ψ(t). (2)

There are some developed technologies to solve partial differential equations with local
fractional operator such as the local fractional variational iteration method [4, 5], local
fractional series expansion method [6, 7], local fractional decomposition method [7, 8],
local fractional function decomposition method [9, 10], local fractional Laplace variational
iteration method [2, 11, 12], and local fractional reduce differential transform method [13].
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of Mathematics, 2017; all rights reserved.

58



H. K. JASSIM: ON APPROXIMATE METHODS FOR FRACTAL VEHICULAR TRAFFIC FLOW 59

In this work, two methods; namely the local fractional Laplace decomposition method and
local fractional series expansion method with local fractional operators, are proposed to
solve the linear partial differential equations arising in fractal vehicular traffic flow.

2. Local Fractional Laplace Decomposition Method

Let us consider the following, the local fractional differential operator;

LϑM(x, t) +RϑM(x, t) = h(x, t) (3)

where Lϑ =
∂ϑ

∂tϑ
denotes the linear local fractional differential operator, Rϑ is the remain-

ing linear operator, and h(x, t) is a source term.
Taking local fractional Laplace transform on (3), we obtain

L̃ϑ {LϑM(x, t)}+ L̃ϑ {RϑM(x, t)} = L̃ϑ {h(x, t)} . (4)

By applying the local fractional Laplace transform differentiation property, we have

sϑL̃ϑ {M(x, t)} −M(x, 0) + L̃ϑ{RαM(x, t)} = L̃ϑ{h(x, t)}. (5)

or equivalently

L̃ϑ {M(x, t)} =
1

sϑ
M(x, 0) +

1

sϑ
L̃ϑ {h(x, t)} − 1

sϑ
L̃ϑ {RϑM(x, t)} . (6)

Taking the inverse of local fractional Laplace transform on Eq. (6), we have

M(x, t) = M(x, 0) + L̃−1ϑ

[
(

1

sϑ
L̃ϑ{h(x, t)}

]
− L̃−1ϑ

[
1

sϑ
L̃ϑ {RϑM(x, t)}

]
. (7)

We are going to represent the solution in an infinite series given below:

M(x, t) =

∞∑
n=0

Mn(x, t). (8)

Substituting (8) into (7), which give us this result:

∞∑
n=0

M(x, t) = M(x, 0) + L̃−1
[

1

sϑ
Lϑ{h(x, t)}

]
− L̃−1ϑ

[
1

sϑ
L̃

{
Rϑ

∞∑
n=0

Mn(x, t)

}]
. (9)

When we compare the left and right hand sides of (9) we obtain

M0(x, t) = M(x, 0) + L̃−1
[

1

sϑ
L̃ϑ{h(x, t)}

]
,

M1(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ {RϑM0(x, t)}

]
,

M2(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ {RϑM1(x, t)}

]
, (10)

M3(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ {RϑM2(x, t)}

]
,

...
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The recursive relation, in general form is

M0(x, t) = M(x, 0) + L̃−1
[

1

sϑ
L̃ϑ{h(x, t)}

]
,

Mn+1(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ {RϑMn(x, t)}

]
. (11)

3. Local Fractional Series Expansion Method

We can written the equation (1) in the form

∂ϑM(x, t)

∂tϑ
= RϑM(x, t), (12)

where RϑM(x, t) = −µL(ϑ)
x M(x, t) is linear local fractional derivative operator of order ϑ

with respect to x.
In accordance with the results in [6, 7], there are multiterm separated functions of

independent variables x and t reads as

M(x, t) =
∞∑
i=0

Ti(t)Φi(x), (13)

where Ti(t) and Φi(x) are local fractional continuous functions.
In view of (13), we consider

Ti(t) =
tiϑ

Γ(1 + iϑ)
, (14)

so that

M(x, t) =

∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi(x). (15)

In view of (15), we obtain

∂ϑM(x, t)

∂tϑ
=
∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi+1(x), (16)

and

RϑM(x, t) = Rϑ

( ∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi(x)

)
=

∞∑
i=0

tiϑ

Γ(1 + iϑ)
(RϑΦi) (x), (17)

Making use of (17), we get

∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi+1(x) =

∞∑
i=0

tiϑ

Γ(1 + iϑ)
(RϑΦi) (x). (18)

Hence, from (18), the recursion reads as follows:

Φi+1(x) = (RϑΦi) (x). (19)

By using (19), we arrive at the following result:

M(x, t) =
∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi(x). (20)
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4. Illustrative Examples

In this section, we present the initial and boundary value problems for linear partial
differential equations arising in fractal vehicular traffic flow.

Example 4.1. Let us consider the Lighthill-Whitham-Richards model on a finite length
highway as

∂ϑM(x, t)

∂tϑ
+ µ

∂ϑM(x, t)

∂xϑ
= 0, 0 < ϑ ≤ 1 (21)

where the initial and boundary conditions are presented as follows:

M(x, 0) = Eϑ(xϑ);

M(0, t) = coshϑ(µtϑ)− sinhϑ(µtϑ). (22)

I. By using LFLDM
In view of (11) and (21) the local fractional iteration algorithm can be written as follows:

M0(x, t) = Eϑ(xϑ);

Mn+1(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑMn(x, t)

∂xϑ

}]
, n ≥ 0. (23)

Therefore, from (23) we give the components as follows:

M0(x, t) = Eϑ(xϑ); (24)

M1(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑM0(x, t)

∂xϑ

}]
= −L̃−1ϑ

[ µ
s2ϑ

Eϑ(xϑ)
]

= − µtϑ

Γ(1 + ϑ)
Eϑ(xϑ); (25)

M2(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑM1(x, t)

∂xϑ

}]
= L̃−1ϑ

[
µ2

s3ϑ
Eϑ(xϑ)

]
=

µ2t2ϑ

Γ(1 + 2ϑ)
Eϑ(xϑ); (26)

M3(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑM2(x, t)

∂xϑ

}]
= −L̃−1ϑ

[
µ3

s4ϑ
Eϑ(xϑ)

]
= − µ3t3ϑ

Γ(1 + 3ϑ)
Eϑ(xϑ); (27)

M4(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑM3(x, t)

∂xϑ

}]
= L̃−1ϑ

[
µ4

s5ϑ
Eϑ(xϑ)

]
=

µ4t4ϑ

Γ(1 + 4ϑ)
Eϑ(xϑ). (28)
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Consequently, we obtain

M(x, t) = Eϑ(xϑ)

[
1 +

µ2t2ϑ

Γ(1 + 2ϑ)
+

µ4t4ϑ

Γ(1 + 4ϑ)
+ · · ·

]
−Eϑ(xϑ)

[
µtϑ

Γ(1 + ϑ)
+

µ3t3ϑ

Γ(1 + 3ϑ)
+ · · ·

]
= Eϑ(xϑ) coshϑ(µtϑ)− Eϑ(xϑ) sinhϑ(µtϑ) (29)

II. By using LFSEM
From (19), we obtain the following iterative formula;

Φi+1(x) = −µL(ϑ)
x Φi(x), (30)

where

Φ0(x) = Eϑ(xϑ). (31)

In view of (30) and (31), we obtain the approximations given by

Φ1(x) = −µL(ϑ)
x Φ0(x) = −µEϑ(xϑ);

Φ2(x) = −µL(ϑ)
x Φ1(x) = µ2Eϑ(xϑ);

Φ3(x) = −µL(ϑ)
x Φ2(x) = −µ3Eϑ(xϑ); (32)

Φ4(x) = −µL(ϑ)
x Φ3(x) = µ4Eϑ(xϑ);

Φ5(x) = −µL(ϑ)
x Φ4(x) = −µ5Eϑ(xϑ);

...

Therefore, by using (20) and (33) we get the solution

M(x, t) =
∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi(x)

= Eϑ(xϑ)

[
1− µtϑ

Γ(1 + ϑ)
+

µ2t2ϑ

Γ(1 + 2ϑ)
− µ3t3ϑ

Γ(1 + 3ϑ)
+

µ4t4ϑ

Γ(1 + 4ϑ)
− · · ·

]
= Eϑ(xϑ)

[
1 +

µ2t2ϑ

Γ(1 + 2ϑ)
+

µ4t4ϑ

Γ(1 + 4ϑ)
+ · · ·

]
−Eϑ(xϑ)

[
µtϑ

Γ(1 + ϑ)
+

µ3t3ϑ

Γ(1 + 3ϑ)
+ · · ·

]
= Eϑ(xϑ) coshϑ(µtϑ)− Eϑ(xϑ) sinhϑ(µtϑ). (33)

From Eqs. (29) and (33), the approximate solution of the given problem (21), by using local
fractional Laplace decomposition method and local fractional series expansion method, is
the same results as that obtained by the local fractional Laplace variational iteration
method.

Example 4.2. Let us consider the Lighthill-Whitham-Richards model on a finite length
highway as:

∂ϑM(x, t)

∂tϑ
+
∂ϑM(x, t)

∂xϑ
= 0, 0 < ϑ ≤ 1 (34)

where the initial and boundary conditions are presented as follows:

M(x, 0) = sinhϑ(xϑ);

M(0, t) = 0. (35)
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I. By using LFLDM
In view of (11) and (34) the local fractional iteration algorithm can be written as follows:

M0(x, t) = sinhϑ(xϑ);

Mn+1(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ

{
∂ϑMn(x, t)

∂xϑ

}]
, n ≥ 0. (36)

Therefore, from (36) we give the components as follows:

M0(x, t) = sinhϑ(xϑ); (37)

M1(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ

{
∂ϑM0(x, t)

∂xϑ

}]
= −L̃−1ϑ

[
1

s2ϑ
sinhϑ(xϑ)

]
= − tϑ

Γ(1 + ϑ)
sinhϑ(xϑ); (38)

M2(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ

{
∂ϑM1(x, t)

∂xϑ

}]
= L̃−1ϑ

[
1

s3ϑ
sinhϑ(xϑ)

]
=

t2ϑ

Γ(1 + 2ϑ)
sinhϑ(xϑ); (39)

M3(x, t) = −L̃−1ϑ

[
1

sϑ
L̃ϑ

{
∂ϑM2(x, t)

∂xϑ

}]
= −L̃−1ϑ

[
1

s4ϑ
sinhϑ(xϑ)

]
= − t3ϑ

Γ(1 + 3ϑ)
sinhϑ(xϑ); (40)

M4(x, t) = −L̃−1ϑ

[
µ

sϑ
L̃ϑ

{
∂ϑM3(x, t)

∂xϑ

}]
= L̃−1ϑ

[
1

s5ϑ
sinhϑ(xϑ)

]
=

t4ϑ

Γ(1 + 4ϑ)
sinhϑ(xϑ). (41)

Consequently, we obtain

M(x, t) = sinhϑ(xϑ)

[
1 +

t2ϑ

Γ(1 + 2ϑ)
+

t4ϑ

Γ(1 + 4ϑ)
+ · · ·

]
− sinhϑ(xϑ)

[
tϑ

Γ(1 + ϑ)
+

t3ϑ

Γ(1 + 3ϑ)
+ · · ·

]
= sinhϑ(xϑ) coshϑ(tϑ)− sinhϑ(xϑ) sinhϑ(tϑ). (42)

II. By using LFSEM
From (19), we obtain the following iterative formula:

Φi+1(x) = −L(ϑ)
x Φi(x), (43)
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where

Φ0(x) = sinhϑ(xϑ). (44)

In view of (43) and (44), we obtain the approximations given by

Φ1(x) = −L(ϑ)
x Φ0(x) = − sinhϑ(xϑ);

Φ2(x) = −L(ϑ)
x Φ1(x) = sinhϑ(xϑ);

Φ3(x) = −L(ϑ)
x Φ2(x) = − sinhϑ(xϑ); (45)

Φ4(x) = −L(ϑ)
x Φ3(x) = sinhϑ(xϑ);

Φ5(x) = −L(ϑ)
x Φ4(x) = − sinhϑ(xϑ).

...

Therefore, by using (20) and (46) we get the solution

M(x, t) =
∞∑
i=0

tiϑ

Γ(1 + iϑ)
Φi(x)

= sinhϑ(xϑ)

[
1− tϑ

Γ(1 + ϑ)
+

t2ϑ

Γ(1 + 2ϑ)
− t3ϑ

Γ(1 + 3ϑ)
+

t4ϑ

Γ(1 + 4ϑ)
− · · ·

]
= sinhϑ(xϑ)

[
1 +

t2ϑ

Γ(1 + 2ϑ)
+

t4ϑ

Γ(1 + 4ϑ)
+ · · ·

]
− sinhϑ(xϑ)

[
tϑ

Γ(1 + ϑ)
+

t3ϑ

Γ(1 + 3ϑ)
+ · · ·

]
= sinhϑ(xϑ) coshϑ(tϑ)− sinhϑ(xϑ) sinhϑ(tϑ). (46)

From Eqs.(42) and (46), the approximate solution of the given problem (34), by using local
fractional Laplace decomposition method and local fractional series expansion method, is
the same results as that obtained by the local fractional Laplace variational iteration
method.

5. Conclusions

In this work, we have successfully provided new applications of the local fractional Ado-
mian decomposition method and the local fractional series expansion method for solving
linear partial differential equations arising in fractal vehicular traffic flow. The approxi-
mate solutions are obtained in series form that rapidly converges in a closed exact formula
with simply computable terms. These techniques can be extended to solve various linear
and nonlinear fractional problems in applied science.
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