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SOLUTIONS OF COMPLEX EQUATIONS WITH ADOMIAN

DECOMPOSITION METHOD
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Abstract. In this study, first order linear complex differential equations have been
solved with adomian decomposition method.
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1. Introduction

The Adomian Decomposition Method (ADM) is a method which is used in several areas
of mathematics. Recently a great deal of interest has been focused on the application of
Adomian’s decomposition method to solve a wide variety of linear and nonlinear prob-
lems. This method has been introduced by Adomian[1] and it can be used in the linear
and nonlinear differential equations, in the differential equations systems, in the integral
equations, in the difference equations, in the differential-difference equations, and in the
algebraic equations [2,3,4,5,6,15,16,17,18].

This method generates a solution in the form of a series whose terms are determined
by a recursive relationship using the Adomian polynomials. Researchers who have used
the ADM, have frequently enumerated on the many advantages that it offers. Since it was
first presented in the 1980’s, Adomian decomposition method has led to several modifica-
tions on the method made by various researchers in an attempt to improve the accuracy
or expand the application of the original method[10,11,19]. Some of these modifications
are Modified Adomian Method[12,19], Wazwaz modifications[10,13], Two step Adomian
method[14], and restarted Adomian method[15,16]. Recently, the decomposition method
has been used in fractional differential equations [7, 8, 9] . In this study, we solve the com-
plex differential equations using ADM.

1.1. Derivatives of Complex Functions . Let w = w(z, z) be a complex function.
Here z = x+ iy, w(z, z) = u(x, y) + i.v(x, y) . A derivative according to z and z of w(z, z)
is defined as following
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If we write u + iv in place of w, we get that
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1.2. Adomian Decomposion Method. In this section, we mention from ADM. We
consider F (y(x)) = g(x), where F represents a general differential operator involving both
the linear and nonlinear terms. The linear term is decomposed into L+R, where L is the
highest order differential operator and R is the remainder of the linear operator. Thus the
equation can be written

Ly + Ry + Ny = g(x),

where Ny represents the nonlinear terms. For solving Ly, we can write as follows

Ly = g(x)−Ry −Ny

Because L is invertible, an equivalent expression is as follows

L−1Ly = L−1g − L−1Ry − L−1Ny.

If L is first order, L−1 is a integral operator. If L is second order, L−1 is two fold integration

operator. The nonlinear term Ny will be equated to
∞∑
n=0

An , where An are the Adomian

polynomials. Thus it can be written
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where y0 is solution Ly = g(x). Consequently we can write following equalities

y1 = −L−1Ry0 − L−1A0

y2 = −L−1Ry1 − L−1A1

y3 = −L−1Ry2 − L−1A2

...

yn+1 = −L−1Ryn − L−1An,

where An polynomials are determined as follows

Ny = f(y)
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2. Solution of Complex Equations with ADM.

Theorem 2.1. Let A,B,C, F be functions of z, z̄ and w = u+ iv a complex function. We
consider following problem
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The solution of above mentioned problem is w = u + iv,where
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A1 = ReA (z, z) , A2 = ImA (z, z) , B1 = ReB (z, z) , B2 = ImB (z, z) ,

C1 = ReC(z, z), C2 = ImC(z, z), F1 = ReF (z, z), F2 = ImF (z, z)

Proof. Let’s separate to real and imaginary parts that is given an equation using the
definition of complex derivatives .
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If the above equality is separated to real and imaginary parts, then we have following
equalities:



M.DUZ: SOLUTIONS OF COMPLEX EQUATIONS WITH ADOMIAN DECOMPOSITION... 69

A1 (x, y)
∂v

∂x
−A1 (x, y)

∂u

∂y
+ A2 (x, y)

∂u

∂x
+ A2 (x, y)

∂v

∂y
+ B1 (x, y)

∂v

∂x

+B1 (x, y)
∂u

∂y
+ B2 (x, y)

∂u

∂x
−B2 (x, y)

∂v

∂y
+ 2C1 (x, y) v + 2C2 (x, y)u

= 2F2 (x, y)

A1 (x, y)
∂u

∂x
+ A1 (x, y)

∂v

∂y
+ A2 (x, y)

∂u

∂y
−A2 (x, y)

∂v

∂x
+ B1 (x, y)

∂u

∂x

−B1 (x, y)
∂v

∂y
−B2 (x, y)

∂v

∂x
−B2 (x, y)

∂u

∂y
+ 2C1 (x, y)u− 2C2 (x, y) v

= 2F1 (x, y)

If A2 −B2 6= 0, then

Lyu =
2F1

A2 −B2
− 2C1

A2 −B2
u +

2C2

A2 −B2
v +

A2 + B2

A2 −B2
Lxv +

B1 −A1

A2 −B2
Lyv −

A1 + B1

A2 −B2
Lxu

Lyv =
2F2

A2 −B2
− 2C1

A2 −B2
v − 2C2

A2 −B2
u− A1 + B1

A2 −B2
Lxv +

A1 −B1

A2 −B2
Lyu−

A2 + B2

A2 −B2
Lxu

u =
∞∑
un,

n=0

u0 = L−1y

(
2F1

A2 −B2

)
+ u (x, 0)

v =

∞∑
vn,

n=0

v0 = L−1y

(
2F2

A2 −B2

)
+ v (x, 0)

un+1 = −L−1y

(
2C1

A2 −B2
un

)
+ L−1y

(
2C2

A2 −B2
vn

)
+ L−1y

(
A2 + B2

A2 −B2
Lxvn

)
+L−1y

(
B1 −A1

A2 −B2
Lyvn

)
− L−1y

(
A1 + B1

A2 −B2
Lxun

)

vn+1 = −L−1y

(
2C1

A2 −B2
vn

)
− L−1y

(
2C2

A2 −B2
un

)
− L−1y

(
A1 + B1

A2 −B2
Lxvn

)
+L−1y

(
A1 −B1

A2 −B2
Lyun

)
− L−1y

(
A2 + B2

A2 −B2
Lxun

)
If B1 −A1 6= 0, then

Lyu =
2F2

B1 −A1
− 2C1

B1 −A1
v − 2C2

B1 −A1
u− A1 + B1

B1 −A1
Lxv +

B2 −A2

B1 −A1
Lyv −

A2 + B2

B1 −A1
Lxu

Lyv =
2F1

A1 −B1
− 2C1

A1 −B1
u +

2C2

A1 −B1
v +

A2 + B2

A1 −B1
Lxv +

B2 −A2

A1 −B1
Lyu−

B1 + A1

A1 −B1
Lxu



70 TWMS J. APP. ENG. MATH. V.7, N.1, 2017

u =
∞∑
un,

n=0

u0 = L−1y

(
2F2

B1 −A1

)
+ u (x, 0)

v =

∞∑
vn,

n=0

v0 = L−1y

(
2F1

A1 −B1

)
+ v (x, 0)

un+1 = −L−1y

(
2C1

B1 −A1
vn

)
+ L−1y

(
2C2

B1 −A1
un

)
− L−1y

(
A1 + B1

B1 −A1
Lxvn

)
+L−1y

(
B2 −A2

B1 −A1
Lyvn

)
− L−1y

(
A2 + B2

B1 −A1
Lxun

)
vn+1 = −L−1y

(
2C1

A1 −B1
un

)
+ L−1y

(
2C2

A1 −B1
vn

)
+ L−1y

(
A2 + B2

A1 −B1
Lxvn

)
+L−1y

(
B2 −A2

A1 −B1
Lyun

)
− L−1y

(
B1 + A1

A1 −B1
Lxun

)
�

Example 2.1. Solve the following problem

4wz + wz = 0

with the condition

w (x, 0) = − 1

3x
.

Solution 2.1. Clearly the coefficients of equation which are as follows

A = 4, B = 1, C = 0, F = 0

u0 = u(x, 0) = − 1

3x
, v0 = v (x, 0) = 0
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81x4

u4 = −625y4
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Therefore,

u = u0 + u1 + u2 + u3 + u4 + · · · = − 1
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w = u + iv =
−3x− 5iy

9x2 + 25y2
=

1

z − 4z

Example 2.2. Solve the following problem

z.wz − z.wz = 2z2 + 5z

with the condition
w (x, 0) = 2x2 − 5x.
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Solution 2.2. The coefficients of equation are A = z,B = −z, C = 0, F = 2z2 + 5z.If the
coefficients separate real and imaginary parts we get that A1 = x,A2 = y,B1 = −x,B2 =
y, C1 = C2 = 0, F1 = 2x2 − 2y2 + 5x, F2 = 4xy − 5y
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Therefore
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∞∑
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w = u + iv = 2x2 − 5x + i (2xy + 5y) = z2 − 5z + z.z
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3. conclusion

In this study, we have studied solutions of first order complex partial differential equa-
tions by using ADM. Our next goal is a study to find solutions of first order nonlinear
complex equations and more higher order linear complex equations with ADM.
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