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CERTAIN INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL

FORMULAS FOR THE EXTENDED HYPERGEOMETRIC

FUNCTIONS

R.K. PARMAR1, S.D. PUROHIT2, §

Abstract. In this present paper, we derive various integral transforms, including Euler,
Varma, Laplace, and Whittaker integral transforms for the extended hypergeometric
functions which has recently been introduced by Choi et al.[3]. Further, we also apply
Saigo’s fractional integral operators for this extended hypergeometric function. Some
interesting special cases of our main results are also considered.
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1. Introduction and preliminaries

Extensions, generalizations, and unifications of Euler’s Beta function together with re-
lated higher transcendent hypergeometric type special functions were investigated recently
by several authors, consult for instance (see, e.g., [1], [2], [6], [9] and for a very recent work,
see also [10], [11]). In particular, Chaudhry et al. [2, p. 20, Equation (1.7)] presented the
following extension of the Beta function as:

B(x, y; p) =

∫ 1

0
tx−1 (1− t)y−1 e

− p
t(1−t) dt , (<(p) > 0 ); (1)

where for p = 0, min{<(x), <(y)} > 0. They obtained related connections of B(x, y; p)
with Macdonald (or modified Bessel function of the second kind), error and Whittaker
functions. Further, Chaudhry et al. [1] used B(x, y; p) to extend the Gaussian hypergeo-
metric function in the following manner

Fp(a, b; c; z) =
∞∑
n≥0

(a)n
B(b+ n, c− b ; p)

B(b, c− b)
zn

n!
(p ≥ 0, |z| < 1 ; <(c) > <(b) > 0 ). (2)

Recently, Choi et al. [3] introduce further extension of B(x, y; p) and Fp(a, b; c; z) in the
following manner:

B(x, y ; p, q) :=

∫ 1

0
tx−1(1− t)y−1 exp

(
−p
t
− q

1− t

)
dt (3)
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min{<(x),<(y)} > 0; min{<(p),<(q)} ≥ 0

)
and

Fp,q (a, b; c; z) := 2F1 (a, b; c; z p, q) =
∞∑
n=0

(a)n
B(b+ n, c− b ; p, q)

B(b, c− b)
zn

n!
(4)(

p ≥ 0, q ≥ 0; |z| < 1; <(c) > <(b) > 0
)
.

The present investigation requires the concept of Hadamard product which can be used
to decompose a newly-emerged function into two known functions. Let f (z) :=

∑∞
n=0 anz

n

and g (z) :=
∑∞

n=0 bnz
n be two power series whose radius of convergence are given by Rf

and Rg, respectively. Then their Hadamard product (see [12]) is the power series defined
by

(f ∗ g) (z) :=

∞∑
n=0

anbnz
n. (5)

The radius of convergenceR of the Hadamard product series (f ∗ g) (z) satisfiesRf ·Rg ≤
R. If, in particular, one of the power series defines an entire function, then the Hadamard
product series defines an entire function, too.

Here, we aim to establish certain new integral transforms as Euler, Varma, Laplace, and
Whittaker and Saigo fractional integral operators involving the extended hypergeometric
functions Fp,q(z) given by Choi et al. [3], which include special cases as Riemann-Liouville
and Erdélyi-Kober fractional integrals operators. This work is motivated by the authors
recent work [5].

2. Certain integral transforms

Below, we present certain integral transforms, as Euler, Varma, Laplace, and Whittaker
of extended hypergeometric function Fp,q(z) defined by (4). To do this, we begin by
recalling the following beta transform of a function f(z) (see [13]):

B{f(z) : a, b} =

1∫
0

za−1(1− z)b−1f(z) dz. (6)

Theorem 2.1. Let min{<(l), <(m), <(p), <(q)} > 0 and <(c) > <(b) > 0. Then the
following beta transform formula holds true:

B

{
Fp,q

[
l +m, b

c
; yz

]
: l,m

}
= B(l,m)Fp,q

[
l, b
c

; y;

]
(|y| < 1), (7)

where B is the beta transform in (6) and the beta transform of Fp,q(·) is assumed to exist.

Proof. Let L be the left-hand side of (7). Applying the beta transform (6) to the function
(4), we get

L =

1∫
0

zl−1(1− z)m−1
∞∑
n=0

(l +m)n
Bp,q(b+ n, c− b)

B(b, c− b)
(yz)n

n!
dz. (8)

By changing the order of integration and summation which may be verified under the
conditions, and using the classical beta function B(α, β) (see, e.g., [14]), we obtain

L =

∞∑
n=0

(l +m)n
Bp,q(b+ n, c− b)

B(b, c− b)
Γ(l + n)Γ(m)

Γ(l +m+ n)

yn

n!
, (9)
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which, in view of (4), is seen to lead to the right-hand side of (7). �

The Varma transform of a function f(z) is defined by the following integral equation
(see Mathai et al. [8, p. 55]):

V (f, k,m; s) =

∞∫
0

(sz)m−
1
2 exp

(
−1

2
sz

)
Wk,m(sz)f(z) dz (<(s) > 0), (10)

where Wk,m is the Whittaker function defined by (Mathai et al. [8, p. 55])

Wk,m(z) =
∑
m,−m

Γ(−2m)

Γ(12 − k −m)
Mk,m(z) (11)

where the summation symbol indicates that the expression following it, a similar expression
with m replaced by −m is to be added and

Mk,m(z) = zm+ 1
2 e−

z
2 1F1

(
1

2
− k +m; 2m+ 1; z

)
. (12)

The following formula (see Mathai et al. [8, p. 56]) will be used:

∞∫
0

zρ−1 exp

(
−1

2
sz

)
Wk,ν(sz) dz = s−ρ

Γ(ρ+ ν + 1
2)Γ(ρ− ν + 1

2)

Γ(1− k + ρ)

(<(s) > 0, <(ρ± ν) > −1/2) .

(13)

Theorem 2.2. Let y ≥ 0, <(s) ≥ 0, min{<(p), <(q)} > 0, <(c) > <(b) > 0, and |ys | < 1.
Then the following Varma transform formula holds true:

V

{
zl−1 Fp,q

[
a, b
c

; yz

]}
=

1

sl
Γ(l)Γ(2m+ l)

Γ(m+ l − k + 1
2)

× Fp,q

[
a, b
c

;
y

s

]
∗3 F1

[
1, 2m+ l, l;

m+ l − k + 1
2 ;

y

s

]
,

(14)

where V is the Varma transform in (10) and both sides of (14) are assumed to exist.

Proof. Let L be the left-hand side of (14). Then, a similar argument as in the proof of
Theorem 2.1 is seen to give the following result:

L =
1

sl

∞∑
n=0

(a)n
Bp,q(b+ n, c− b)

B(b, c− b)
Γ(l + n)Γ(2m+ l + n)

Γ(m+ l − k + 1
2 + n)

(ys )n

n!
, (15)

which, upon using the definition of Hadamard product series (5) and extended hypergeo-
metric function (4), leads to the right-hand side of (14). �

It is interesting to observe that, for k = m+ 1
2 in (14), the Varma transform defined by

(10) reduces to the well-known Laplace transform of a function f(z) (see, e.g., [13]):

L{f(z) : s} =

∞∫
0

e−szf(z) dz. (16)

In fact, we have an interesting Laplace transform asserted by the following corollary.
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Corollary 2.1. Let y ≥ 0, <(s) ≥ 0, min{<(p), <(q)} > 0, <(c) > <(b) > 0, and |ys | < 1.
Then the following Laplace transform formula holds true:

L

{
zl−1 Fp,q

[
a, b
c

; yz

]}
=

Γ(l)

sl
Fp,q

[
a, b
c

;
y

s

]
∗ 2F0

[
1, l;
−;

y

s

]
, (17)

where L is the Laplace transform in (16) and both sides of (17) are assumed to exist.

Theorem 2.3. Suppose that w ≥ 0, <(p) ≥ 0, <(q) ≥ 0 and ρ, δ ∈ C are parameters.
Then the following Whittaker transform formula holds true:

∞∫
0

tρ−1e
−δt
2 Wλ,µ(δt) Fp,q

[
a, b
c

;wt

]
dt = δ−ρ

Γ
(
1
2 + µ+ ρ

)
Γ
(
1
2 − µ+ ρ

)
Γ (1− λ+ ρ)

×Fp,q
[
a, b
c

;
w

δ

]
∗ 3F1

[
1, 12 + µ+ ρ, 12 − µ+ ρ;

1− λ+ ρ;

w

δ

]
, (18)

provided that the integral transform converges.

Proof. Let L be the left-hand side of (18). Then, by applying (4) and setting δt = ν, and
changing the order of integration and summation, we obtain

L = δ−ρ
∞∑
n=0

(a)n
Bp,q(b+ n, c− b)

B(b, c− b)
(w)n

δnn!

∞∫
0

νρ+n−1e
−ν
2 Wλ,µ(ν)dν. (19)

Here we use the following integral formula involving the Whittaker function (see Mathai
et al. [8, p. 56])

∞∫
0

tν−1e−
t
2Wλ,µ(t) dt =

Γ
(
1
2 + µ+ ν

)
Γ
(
1
2 − µ+ ν

)
Γ (1− λ+ ν)

(<(ν ± µ) > −1/2) .

(20)

Then, after a little simplification, we get

L = δ−ρ
∞∑
n=0

(a)n
Bp,q(b+ n, c− b)

B(b, c− b)
(w)n

δnn!

Γ
(
1
2 + µ+ ρ+ n

)
Γ
(
1
2 − µ+ ρ+ n

)
Γ (1− λ+ ρ+ n)

, (21)

which, upon using the definition of Hadamard product series (5) and extended hypergeo-
metric function (4), leads to the right-hand side of (18). �

3. Fractional calculus approach

Fractional integral operators involving the various special functions have been actively
investigated in various mathematical tools (see, e.g., [4]). Here we establish some fractional
integral formulas for the extended hypergeometric function Fp,q(a, b; c; z). To do this, we
recall the following pair of Saigo hypergeometric fractional integral operators (see Mathai
et al. [8, p. 104]): For <(µ) > 0,

(Iµ,ν,η0+ f(t))(x) =
x−µ−ν

Γ(µ)

x∫
0

(x− t)µ−12F1

(
µ+ ν,−η;µ; 1− t

x

)
f(t) dt (22)

and

(Iµ,ν,η− f(t))(x) =
1

Γ(µ)

∞∫
x

(t− x)µ−1t−µ−ν2F1

(
µ+ ν,−η;µ; 1− x

t

)
f(t) dt, (23)
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where the function f(t) is so constrained that the defining integrals in (22) and (23) exist.
The operator Iµ,ν,η0+ (·) contains both the Riemann-Liouville Iµ0+(·) and the Erdélyi-Kober

I+η,µ(·) fractional integral operators by means of the following relationships:

(Iµ0+f(t))(x) = (Iµ,−µ,η0+ f(t))(x) =
1

Γ(µ)

x∫
0

(x− t)µ−1f(t) dt (24)

and

(I+η,µf(t))(x) = (Iµ,0,η0+ f(t))(x) =
x−µ−η

Γ(µ)

x∫
0

(x− t)µ−1tηf(t) dt. (25)

It is noted that the operator (23) unifies the Weyl type and the Erdélyi-Kober fractional
operators as follows:

(Iµ−f(t))(x) = (Iµ,−µ,η− f(t))(x) =
1

Γ(µ)

∞∫
x

(t− x)µ−1f(t) dt (26)

and

(K−η,µf(t))(x) = (Iµ,0,η− f(t))(x) =
xη

Γ(µ)

∞∫
x

(t− x)µ−1t−µ−ηf(t) dt. (27)

We also use the following image formulas which are easy consequences of the operators
(22) and (23) (see Mathai et al. [8, p. 107]):

(Iµ,ν,η0+ tλ−1)(x) =
Γ(λ)Γ(λ− ν + η)

Γ(λ− ν)Γ(λ+ µ+ η)
xλ−ν−1

(<(λ) > 0, <(λ− ν + η) > 0)

(28)

and

(Iµ,ν,η− tλ−1)(x) =
Γ(ν − λ+ 1)Γ(η − λ+ 1)

Γ(1− λ)Γ(ν + µ− λ+ η + 1)
xλ−ν−1

(<(ν − λ+ 1) > 0, <(η − λ+ 1) > 0).

(29)

The Saigo fractional integrations of the generalized Gauss hypergeometric type functions
Fp,q(a, b; c; z) are given in Theorems 3.1 and 3.2.

Theorem 3.1. Suppose x > 0, then the following fractional integral formula holds true:(
Iµ,ν,η0+

[
tρ−1 Fp,q

[
a, b
c

; et

]])
(x) = xρ−ν−1

Γ(ρ)Γ(ρ− ν + η)

Γ(ρ+ µ+ ν)Γ(ρ− ν)

× Fp,q

[
a, b
c

; ex

]
∗ 3F2

[
1, ρ, ρ− ν + η;

ρ− ν, ρ+ µ+ η;
ex

]
, (30)

provided min {<(p), <(q), <(µ), <(ρ)} > 0 and <(ρ) > max{0, <(ν − η)}.

Proof. Let L be the left-hand side of (30). Then, using (4) and changing the order of
integration and summation, which is valid under the given conditions, we have

L =
∞∑
n=0

(a)n
Bp,q(b+ n, c− b)

B(b, c− b)
(e)n

n!

(
Iµ,ν,η0+ {tρ+n−1}

)
(x). (31)
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Here, making use of the result (28), we obtain

L = xρ−ν−1
∞∑
n=0

(a)n
Bp,q(b+ n, c− b)

B(b, c− b)

× Γ(ρ+ n)Γ(ρ− ν + η + n)

Γ(ρ− ν + n)Γ(ρ+ µ+ η + n)

(ex)n

n!
,

(32)

which, in view of upon using the definition of Hadamard product series (5) and extended
hypergeometric function (4), gives the right-hand side of (30). �

Theorem 3.2. Let x > 0, min {<(p), <(q), <(µ), <(ρ)} > 0 and <(ρ) < 1+min{<(η), <(ν)}.
Then the following fractional integral formula holds true:(

Iµ,ν,η−

[
tρ−1 Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ−ν−1

Γ(1− ρ+ ν)Γ(1− ρ+ η)

Γ(1− ρ)Γ(1− ρ− η + ν + µ)

×Fp,q
[
a, b
c

;
e

x

]
∗ 3F2

[
1, 1− ρ+ ν, 1− ρ+ η;

1− ρ, 1− ρ+ µ+ ν − η;

e

x

]
. (33)

Proof. Similarly as in the proof of Theorem 3.1, taking the operator (23) and the result
(29) into account will establish the result (33). So the details of proof are omitted. �

Setting ν = 0 in Theorems 3.1 and 3.2 yields certain interesting results asserted by the
following corollaries.

Corollary 3.1. Let x > 0, min {<(p), <(q), <(µ), <(ρ)} > 0 and <(ρ) > <(−η). Then
the right-side Erdélyi-Kober fractional integrals of the extended hypergeometric function
are given as follows:(

I+η,µ

[
tρ−1 Fp,q

[
a, b
c

; et

]])
(x) = xρ−1

Γ(ρ+ η)

Γ(ρ+ µ)

×Fp,q
[
a, b
c

; ex

]
∗ 2F1

[
1, ρ+ η;

ρ+ µ+ η;
ex

]
. (34)

Corollary 3.2. Let x > 0, min {<(p), <(q), <(µ), <(ρ)} > 0 and <(ρ) < 1 + <(η). The
following identity holds true:(

K−η,µ

[
tρ−1 Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ−1

Γ(1− ρ+ η)

Γ(1− ρ− η + µ)

× Fp,q

[
a, b
c

;
e

x

]
∗ 2F1

[
1, 1− ρ+ η;

1− ρ+ µ− η;

e

x

]
. (35)

Further, replacing ν by −µ in Theorems 3.1 and 3.2 and making use of the relations (24)
and (26) gives the other Riemann-Liouville and Weyl fractional integrals of the extended
hypergeometric function in (4) given by the following corollaries.

Corollary 3.3. Let x > 0 and min {<(p), <(q), <(µ), <(ρ)} > 0. Then the following
formula holds true:(

Iµ0+

[
tρ−1 Fp,q

[
a, b
c

; et

]])
(x) = xρ+µ−1

Γ(ρ+ µ+ η)

Γ(ρ+ µ)
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× Fp,q

[
a, b
c

; ex

]
∗ 2F1

[
1, ρ;

ρ+ µ;
ex

]
. (36)

Corollary 3.4. Let x > 0 and min {<(p), <(q), <(µ), <(ρ)} > 0. Then the following
formula holds true:(

Iµ−

[
tρ−1 Fp,q

[
a, b
c

;
e

t

]])
(x) = xρ+µ−1

Γ(1− ρ− µ)

Γ(1− ρ)

Γ(1− ρ+ η)

Γ(1− ρ− η)

× Fp,q

[
a, b
c

;
e

x

]
∗ 3F2

[
1, 1− ρ− µ, 1− ρ+ η;

1− ρ, 1− ρ− η;

e

x

]
. (37)
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