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NUMERICAL SOLUTION OF THE INTERRELATED DIFFERENTIAL

EQUATION OF MOTION IN PHONON ENGINEERING

A. ALIZADEH1, H.R. MARASI2 , §

Abstract. In this work, we study numeric calculations of phonon modes in nanostruc-
tures. The motion equation of atoms in a crystal with some simplification, results in a
second order ordinary differential equation and two interrelated second order differential
equations for 3 polarizations according to 3 dimensions. Although first equation can
easily be solved, the next two interrelated equations cannot be solved by usual numerical
methods. Based on discretization, a new technique is proposed for studying the motion
equations. The results are presented by dispersion curves for shear, dilatational, and
flexural modes of phonons.
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1. Introduction

In physics and electronics, the quantized energies of elastic vibration in a crystal are
called phonons. Similar to electrons, phonons are characterized by their dispersion ω(q),
where ω is an angular frequency, and q is three dimensional wave vector of a phonon [1].
In order to find the phonon dispersion, the equation of motion for elastic vibration should
be solved. In general, the equation of motion for the elastic vibrations in an anisotropic
medium can be written as [2,3]

ρ
∂2Um

∂t2
=
∂σmi
∂xi

m, i = x, y, z (1)

where ~U (Ux, Uy, Uz) is the displacement vector in three dimensions, ρ is the mass density
of the materials, σmi is the elastic stress tensor and is equal to σmi = CmikjSkj ; with Skj
being the strain tensor, Cmikj being the fourth-order tensor and i, j, and k are three x,y,z
directions. Because of symmetry in the above equations Skj and σmi, as shown in equations
(2) and (3), the 3 × 3 matrices of stress and strain diminishes to six element vectors.
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Furthermore, the forth order tensor of stiffens factors, Cmikj , converts to a symmetric
two-index notation presented with Cij .

Skj =

 Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 , Sxy = Syx , Sxz = Szx, Syz = Szy, (2)

σmi =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , σxy = σyx , σxz = σzx, σyz = σzy. (3)

Adopting the two-index notation as: xxxx → 11; yyyy → 22; zzzz → 33; xxyy → 12;
xxzz → 13; yzyz → 44; xzxz → 55; xyxy → 66, leads to [4,5]:

σxx
σyy
σzz
σyz
σxz
σxy

 =


C11 C12

C22

SYM

C13

C23

C33

C14

C24

C34

C44

C15

C25

C35

C45

C55

C16

C26

C36

C46

C56

C66




Sxx
Syy
Szz
Syz
Sxz
Sxy

 . (4)

In this research we consider the wurtzite crystals for layers for which the 6× 6 matrix of
the elastic constants Cij is given in [6]:

C =


C11

C12

C13

0
0
0

C12

C11

C13

0
0
0

C13

C13

C33

0
0
0

0
0
0
C44

0
0

0
0
0
0
C44

0

0
0
0
0
0
C44

 . (5)

The axis x is assumed to be along the propagation direction of the waves. Since the
considered structure is a multi-layer hetero-structure with layer growth direction along the
z-axis (non-uniform along the z-axis), ρ and Cij(i,j=1,. . . ,6) depend on the z coordinate
only. We look for a numerical solution [7-12] of equation (1) in the following form of
sinusoidal traveling waves subjected to appropriate boundary conditions

Ui (x, z, t) = ui (z) ei(wt−qx), i = x, y, z. (6)

where ui are the amplitudes of the displacement vector components. Substituting equation
(6) for i = y in equation (1), the partial differential equation (1) transforms into an
ordinary second order differential equation as below[5]

−ρ(z)ω2uy(z) = C44(z) ·
d2uy(z)

dz2
+
dC44(z)

dz
· duy(z)

dz
− C66(z)q

2uy(z), (7)

with the initial condition resulting from force equilibrium on the outer surfaces by:

∂uy
∂z
|z=±L/2 = 0. (8)

Substituting equation (6) for i = x, z in equation (1), the following two interrelated equa-
tions results[5]

−ρω2ux(z) = −q2C11ux(z)+C44
d2ux(z)

dz2
+q(C11+C44)

du′z(z)

dz
+
dC44

dz
(
dux(z)

dz
+qu′z(z)), (9)
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−ρω2u′z(z) =− q2C44u
′
z(z) + C33

d2u′z(z)

dz2
+
dC33

dz

du′z(z)

dz

− q
[
(C44 + C13)

du′z(z)

dz
+
dC13

dz
ux(z)

]
, (10)

where u′z = −iuz, and the boundary conditions on the outer surfaces of structure yields:

∂ux
∂z

+ qu′z

∣∣∣∣
z=±L/2

= 0, (11)

C33
∂u′z
∂z
− qC13ux

∣∣∣∣
z=±L/2

= 0. (12)

2. Results:

By discretization and using finite difference method for solving the equation (7), it
could be converted to an eigenvalue problem (EVP). Since the materials are homogenous,
derivative(dC44(z))/dz is zero everywhere other than on the boundaries. Even on the
boundaries, the derivative is ignored because the C44 is very close for the two adjacent
layers. The equation (7) converts to the following matrix equation

Au = ω2u, (13)

where A is an n × n tri-diagonal matrix, u is displacement vector with n points, and is
angular frequency corresponding to each wave vector q. The matrix A will be of the form

A = 1/h2



As
A2

...

...

A1

A3

A2
...

...

A1

A3
...

...

A1
...
A2

...

...
A3

A2
...

...
A1

A3
...

...

A1
...
A2

...

...
A3

A2

...

...
A1

Ae


(14)

where As =Ae=
C44

n−qC66
n

ρn , A1=
−C44

n+1

ρn+1 , A2=
−C44

n−1

ρn−1 , A3=
2C44

n−qC66
n

ρn , h is differential

element, and n is row index. For each value of the vector q in A3,s,e, one can solve the
equation (13) as an eigenvalue problem (EVP). Solving the EVP, the resulted eigenvectors
represent the displacement vectorsand the eigenvalues represent square of corresponding
angular frequencies. Varying q from its minimum to maximum and solving the associated
EVP, the dispersion curves of phonon are found. These modes or polarization of dis-
placement of atoms have been named shear modes. Six smallest shear modes of acoustic
phonons for a three layer hetero-structure are shown in Fig.1.

For the other two vibrational polarizations of the displacement vector components ux
and uz, are obtained by substituting equation (6) in equation (1) (for i = x, z). The
resulted equations (9) and (10), interrelated and could not be solved easily as equation

(7). Taking an equally spaced mesh and using the central difference approximation for d2

dz2
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Figure 1. Shear modes for 9129 nm AlAs-GaAs-AlAs heterostructure [1].

with error O(h2) and forward difference approximation for d
dz in (9) and (10) yields the

approximating schemes:

−1

ρ
C44

1

h2
ui−1x +

(
2C44

ρh2
+ q2

C11

ρ

)
uix −

C44

ρh2
ui+1
z +

q(C13 + C44)

ρh
ui−1z +

−q(C13 + C44)

ρh
uiz = ω2uix, (15)

−1

ρh
(C13+C44)u

i−1
x +

q

ρh
(C13 + C44)u

i
x +
−C33

ρh2
ui−1z +(

2C33

ρh2
+ q2

C44

ρ

)
uiz −

C33

ρh2
ui+1
z = ω2uiz. (16)

Now incorporating the boundary conditions, (11) gives

u0x = u1x + hqu1z, (17)

uN+1
x = uNx + hquNz , (18)

for i = 1 and i = N , respectively. Moreover from the boundary condition (12) we get

u0z =
−hqC13

C33
− u1z, (19)

uN+1
z =

−hqC13

C33
− uNz . (20)

Substituting (17) and (19) in the first point of (9) and (10) (i = 1), one can deduce[
C44

ρh2
+ q2

C11

ρ
− q2C13 (C13 + C44)

ρC33

]
u1x −

C44

ρh2
u2x +

[
−q (2C13 + 3C44)

ρh

]
u1z = ω2u1x, (21)

−C13q

ρh
u1x +

[
3C33

ρh2
+
q2C13

ρ

]
u1z −

C33

ρh2
u2z = ω2u1z. (22)

Similarly, for i = N in the last point of (9) and (10) using (18) and (20) the following
equations are derived

−C44

ρh2
ω2uN−1x +

[
C44

ρh2
+
q2C11

ρ

]
uNx +

q

ρh
(C13 + C44)u

N−1
z +

[
−qC13

ρh

]
uNz = ω2uNx , (23)

−q(C13 + C44)

ρh
uN−1x +

q(2C13 + C44)

ρh
uNx −

C33

ρh2
uN−1z +

[
C33

ρh2
+
q2C44

ρ

]
uNz = ω2uNz .(24)
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Therefore (9) and (10) can be written in matrix form as the following order n systems{
Aux + Buz = ω2ux,
Cux + Duz = ω2uz.

(25)

So, we have the new eigenvalue problem of order 2n× 2n[
A B
C D

] [
ux
uz

]
= ω2

[
ux
uz

]
(26)

where

ux =



u1x
u2x
...

uNx


uz =



u1z
u2z
...

uNz


A =



As
A2

A1

A3

A2

A1

A3

. . .

A1

. . .
. . .

A2 A3

A2

A1

Ae



As =
C44

1

ρ1h2
+ q2

[ C11
1C33

1 − (C13)
2 − C13

1C44
1]

ρ1C33
1 , A1 = −C44

n+1

ρn+1h2
, A2 = −C44

n−1

ρn−1h2
,

A3 =
2C44

n

ρnh2
+ q2

C11
n

ρn
, Ae =

C44
N

ρNh2
+ q2

C11
N

ρN
,

and

B =



Bs
B1 B2

B1 B2

. . .
. . .

. . .

B1 B2

B1 Be


Bs = −q(2C13

1 + 3C44
1)

ρ1h
,B1 =

q(C13
n−1 + C44

n−1)

ρn−1h
,B2 = −q(C13

n + C44
n)

ρnh
,Be = −qC13

N

ρNh
,

also

C =



Cs
C1 C2

C1 C2

. . .
. . .

. . .

C1 C2

C1 Ce


Cs = −qC

1
13

ρ1h
,C1 = −q(C13

n−1 + C44
n−1)

ρn−1h
,C2 =

q(C13
n + C44

n)

ρnh
,Ce =

q(2C13
N + C44

N )

ρNh
,
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Figure 2. Dilatational and flexural modes. q⊥ is in-plane wave vector
(qx, qy) with 0 to π range.

and finally

C =



Ds

D2

D1

D3

D2

D1

D3

. . .

D1

. . .
. . .

D2 D3

D2

D1

De


Ds =

3C33
1

ρ1h2
+ q2

C13
1

ρ1
, D1 = −C33

n+1

ρn+1h2
, D2 = −C33

n−1

ρn−1h2
,

D3 =
2C33

n

ρnh2
+ q2

C44
n

ρn
, De =

C33
N

ρNh2
+ q2

C44
N

ρN
.

For each eigenvalue, ω, there will be ux and uz eigenvectors. Because of symmetry in ux
and uz, we can see that for any ω, when the ux is symmetrical, the uz is asymmetrical and
vice versa. Due to the spatial symmetry of the considered three layered structure and the
mathematical form of Eqs.(9) and (10), the displacement vector should have components
with opposite parity, e.g. (uSx , uAz ), when ux is a symmetrical function of z while uz is an
asymmetrical function of z; or (uAx , uSz ) for the case ux is an asymmetrical function of z
while uz is a symmetrical function. The (uSx , uAz ) and (uAx , uSz ) have been denoted with uSA

and uAS respectively. The upper indices SA and AS of displacement vectors distinguish
independent vibrational polarizations which, together with the shear modes, compose a
full set of normal vibrational modes in the structure. In the case of a slab the SA modes
are referred to as dilatational modes while AS modes are termed the flexural modes. As
a result, for the same structures whit shear modes shown in Fig.1, the dilatational and
flexural modes of phonon or atom displacements are shown in Fig.2.

3. Conclusion

Phonons play a major role in many physical and electrical properties of condensed mat-
ter, such as thermal and electrical conductivity. The calculation of phonon dispersion
curves is an important part of condensed matter studies. Material properties such as ther-
mal capacity and conduction, phonon density of states, electrical conduction and mobility
directly depend on finding phonon dispersion curves. In this paper, using discretization,
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and a new proposed technique, the resulted motion equations were converted to an eigen-
value problem. The results were presented as dispersion curves for shear, dilatational, and
flexural modes of phonons.
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