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EXISTENCE AND MULTIPLE POSITIVE SOLUTIONS TO SYSTEMS

OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
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Abstract. We show under some conditions the existence and multiplicity of positive
solutions for a system of differential equations of fractional order, subject to two-point
boundary conditions by applying the fixed point index theory in cones.
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1. Introduction

Fractional calculus is a very old concept dating back to 17th century; it involves frac-
tional integration and fractional differentiation. At the first stage, fractional calculus
theory is mainly focused on pure mathematical fields. In the last few decades, fractional
differential equations and fractional integration equations have found many applications
in various fields, such as science and engineering, physics, chemistry, biology, economics,
and signal and image processing. In recent years, fractional differential equations have
attracted increasing interests for their extensive applications, which leads to intensive
development of the theory of fractional calculus.

Recently, much interest has been created in establishing positive solutions and mul-
tiple positive solutions for two-point and multi-point boundary value problems (BVPs)
associated with ordinary and fractional order differential equations by using different
methods such as fixed point theorems in cones, the Leray-Schauder continuation theo-
rem and its nonlinear alternatives and the coincidence degree theory. To mention the
related papers along these lines, we refer to Agarwal and O’regan [2], Henderson and
Luca [12, 14, 15], Henderson and Ntouyas [16], Henderson, Ntouyas and Purnaras [17],
Prasasd, Kameswararao and Nageswararao [18], Zhou and Xu [27] for ordinary differential
equations. Agarwal, Zhou snd He [3], Ahmad and Ntouyas [4], Bai [5], Bai and Lu [6],
Henderson and Luca [13], Khan, Rehman and Henderson [18], Kauffman and Mboumi
[20], Liang and Zhang [22] for frcational order differential equations.

In this paper, we consider the existence and multiplicity of positive solutions to system
of nonlinear differential equations of fractional order having the form

Dν1
0+
u(t) + f(t, v(t)) = 0,

Dν2
0+
v(t) + g(t, u(t)) = 0,
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where t ∈ (0, 1), ν1, ν2 ∈ (n− 1, n] for n > 3 and n ∈ N, subject to a couple of boundary
conditions

u(i)(0) =0 = v(i)(0), 0 ≤ i ≤ n− 2,

[Dα
0+u(t)]t=1 =0 = [Dα

0+v(t)]t=1, 1 ≤ α ≤ n− 2,
(2)

where f, g ∈ C([0, 1]× [0,∞), [0,∞)).
Under the sufficient conditions on functions f and g, we study the existence and

multiplicity of positive solutions of problem (1)-(2) by using the fixed point index the-
orems [1, 27]. By a positive solution of problem (1)-(2) we mean a pair of functions
(u, v) ∈ C[0, 1]× C[0, 1] satisfying (1) and (2) with u(t) > 0, v(t) > 0 for all t ∈ [0, 1] and
supt∈[0,1] u(t) > 0, supt∈[0,1] v(t) > 0.

The rest of this paper is organized as follows. In Section 2, we present the necessary
definitions and properties from the fractional calculus theory and we give the Greens
function for the homogeneous BVP and estimate the bounds for the Greens function. In
Section 3, we shall prove some existence and multiplicity results for positive solutions with
respect to a cone for our problem (1)-(2), which are based on the three fixed point index
theorems. Finally, in Section 5, we shall provide some numerical examples which shall
explicate the applicability of our results.

2. Preliminaries

For the convenience of the reader, we present here some definitions, lemmas, and basic
results that will be used in the proofs of our theorems.

Definition 2.1. Let ν > 0 with ν ∈ R. Suppose that y : [a,+∞) → R. Then the νth
Riemann-Liouville fractional integral is defined to be

D−ν
a+
y(t) =

1

Γ(ν)

∫ t

a
y(s)(t− s)ν−1ds,

whenever the right-hand side is defined. Similarly, with ν > 0 and ν ∈ R, we define the
νth Riemann-Liouville fractional derivative to be

Dν
a+y(t) =

1

Γ(n− ν)

dn

dtn

∫ t

a

y(s)

(t− s)ν+1−nds,

whenever n ∈ N is the unique positive integer satisfying n− 1 ≤ ν < n and t > a.

Remark 2.1. In the sequel, we shall usually suppress the explicit dependence of D−ν
a+

on
a. It will be clear from the context. In fact, in this paper a = 0 throughout.

Lemma 2.1. Let α ∈ R. Then DnDαy(t) = Dn+αy(t), for each n ∈ N0, where y(t) is
assumed to be sufficiently regular so that both sides of equality are well-defined. Moreover,
if β ∈ (−∞, 0] and γ ∈ [0,+∞), then DγDβy(t) = Dγ+βy(t).

Lemma 2.2. The general solution Dνy(t) = 0, where n − 1 < ν ≤ n and ν > 0, is the
function y(t) = c1t

ν−1 + c2t
ν−2 + · · ·+ cnt

ν−n where ci ∈ R for each i.

Lemma 2.3. [9] Let h(t) ∈ Cn[0, 1] be given. Then the unique solution to the problem

−Dν
0+u(t) = h(t) (3)

together with the boundary conditions

u(i)(0) = 0 = [Dα
0+u(t)]t=1 (4)
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where 1 ≤ α ≤ n− 2 and 0 ≤ i ≤ n− 2 is

u(t) =

∫ 1

0
G1(t, s)h(s)ds, (5)

where

G1(t, s) =

{
tν−1(1−s)ν−α−1−(t−s)ν−1

Γ(α) , 0 ≤ s ≤ t ≤ 1
tν−1(1−s)ν−α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1
(6)

is the Green’s function for this problem.

Lemma 2.4. [9] Let G1(t, s) be as in the statement of Lemma 2.3. Then we find that:
(i) G1(t, s) is a continuous function on the unit square [0, 1]× [0, 1];
(ii) G1(t, s) ≥ 0, for each (t, s) ∈ [0, 1]× [0, 1];
(iii) maxt∈[0,1]G1(t, s) = G1(1, s), for each s ∈ [0, 1].

Lemma 2.5. [9] Let G1(t, s) be as given in the statement of Lemma 2.3. Then there exists
a constant γ1 ∈ (0, 1) such that

min
t∈[(1/2),1]

G1(t, s) ≥ γ1 max
t∈[0,1]

G1(t, s) = γ1G1(1, s). (7)

We can also formulate similar results as Lemma 2.4-2.5 above, for the fractional differ-
ential equation

−Dν
0+v(t) = h(t) (8)

v(i)(0) = 0 = [Dα
0+v(t)]t=1. (9)

We denote by G2 and γ2 the corresponding Green’s function and constant for the problem
(8)-(9) defined in a similar manner as G1 and γ1 respectively.

We present now the Fixed point index theorems [1, 27] that we will use in the proofs of
main results.
Fixed point index theorems: Let E be a real Banach space, P ⊂ E a cone, ” ≤ ” the
partial ordering defined by P and θ the zero element in E. For ρ > 0, let Bρ = {u ∈ E :
‖u‖ < ρ}. The proofs of our results are based upon on the application of the following
fixed point index theorems.

Theorem 2.1. [1] Let A : Bρ ∩P → P be a completely continuous operator which has no
fixed point on ∂Bρ ∩ P . If ‖Au‖ ≤ ‖u‖, ∀u ∈ ∂Bρ ∩ P . Then i(A,Bρ ∩ P, P ) = 1.

Theorem 2.2. [1] Let A : Bρ ∩ P → P be a completely continuous operator. If there
exists u0 ∈ P \ {θ} such that

u−Au 6= λu0, ∀λ ≥ 0, u ∈ ∂Bρ ∩ P.

Then i(A,Bρ ∩ P, P ) = 0.

Theorem 2.3. [27] Let A : Bρ ∩ P → P be a completely continuous operator which has
no fixed point on ∂Bρ ∩ P . If there exists a linear operator L : P → P and u0 ∈ P \ {θ}
such that

(i) uo ≤ Lu0, (ii) Lu ≤ Au, ∀u ∈ ∂Bρ ∩ P.

Then i(A,Bρ ∩ P, P ) = 0.
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3. Main Results

In this section, we shall investigate the existence and multiplicity of positive solutions
for our problem (1)-(2) under various assumptions on f and g.

We present the assumptions that we shall use in the sequel:

(A1) The functions f, g ∈ C([0, 1] × [0,∞), [0,∞)) and f(t, 0) ≡ 0, g(t, 0) ≡ 0 for all
t ∈ [0, 1].

(A2) There exists a positive constant p ∈ (0, 1] such that

(i) f i∞ = lim
u→∞

inf
t∈[(1/2),1]

f(t, u)

up
∈ (0,∞]; (ii) gi∞ = lim

u→∞
inf

t∈[(1/2),1]

g(t, u)

u1/p
=∞.

(A3) There exists a positive constant q ∈ (0,∞) such that

(i) fs0 = lim
u→0+

sup
t∈[0,1]

f(t, u)

uq
∈ [0,∞); (ii) gs0 = lim

u→0+
sup
t∈[0,1]

g(t, u)

u1/q
= 0.

(A4) There exists a positive constant r ∈ (0,∞) such that

(i) fs∞ = lim
u→∞

sup
[0,1]

f(t, u)

ur
∈ [0,∞); (ii) gs∞ = lim

u→∞
sup
t∈[0,1]

g(t, u)

u1/r
= 0.

(A5) The following conditions are satisfied

f i0 = lim
u→0+

inf
t∈[(1/2),1]

f(t, u)

u
∈ (0,∞]; gi0 = lim

u→0+
inf

t∈[(1/2),1]

g(t, u)

u
=∞.

(A6) f(t, u), g(t, u) are all nondecreasing with respect to u and there exists a constant
N > 0 such that

f
(
t,m0

∫ 1

0
g(s,N)ds

)
<

N

m0
, ∀t ∈ [0, 1],

wherem0 = max{K1,K2}, K1 = maxs∈[0,1]G1(1, s)ds andK2 = maxs∈[0,1]G2(1, s)ds.

A pair of functions (u, v) ∈ C[0, 1] × C[0, 1] is a solution of the problem (1)-(2) if and
only if (u, v) ∈ C[0, 1] × C[0, 1] is a solution of the following system of nonlinear integral
equations:

u(t) =

∫ 1

0
G1(t, s)f(s, v(s)ds,

v(t) =

∫ 1

0
G2(t, s)g(s, u(s))ds.

Moreover, the above system can be written as the nonlinear integral equation

u(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds.

We consider the Banach space X = C[0, 1] with supremum norm ‖ · ‖ and define the

cone P ⊂ X by P =
{
u ∈ X : u(t) ≥ 0,∀t ∈ [0, 1]

}
.

We also define the operator A : P → X by

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds,

and B : P → X, C : P → X by

(Bu)(t) =

∫ 1

0
G1(t, s)u(s)ds, (Cu)(t) =

∫ 1

0
G2(t, s)u(s)ds.
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Under the assumption (A1) and Lemmas 2.4 and 2.5, it is easy to see that A,B and C
are completely continuous from P to P . Thus, the existence and multiplicity of positive
solutions of the system (1)-(2) are equivalent to the existence and multiplicity of fixed
points of the operator A.

Theorem 3.1. Assume (A1)-(A3) hold. Then the problem (1)-(2) has at least one positive
solution (u(t), v(t)) with u(t) > 0, v(t) > 0, ∀t ∈ (0, 1).

Proof. From assumption (i) of (A2), we know that there exist constants C1 > 0, C2 > 0
such that

f(t, u) ≥ C1u
p − C2, ∀(t, u) ∈ [0, 1]× [0,∞). (10)

Hence, for u ∈ P , by using (10), the reverse form of Holder’s inequality and Lemma 2.5,
we have for p ∈ (0, 1],

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≥
∫ 1

0
G1(t, s)

[
C1

(∫ 1

0
G2(s, τ)g(τ, u(τ)dτ

)p
ds− C2

]
ds

≥ C1

∫ 1

0
G1(t, s)

[ ∫ 1

0

(
G2(s, τ)

)p
(g(τ, u(τ)))pdτ

]
ds− C2

∫ 1

0
G1(t, s)ds

≥ C1

∫ 1

0
G1(t, s)

[ ∫ 1

0

(
G2(s, τ)

)p
(g(τ, u(τ)))pdτ

]
ds− C3, t ∈ [0, 1],

where C3 = C2

∫ 1
0 G1(1, s)ds. Therefore, for u ∈ P , we have

(Au)(t) ≥ C1

∫ 1

1/2
G1(t, s)

(∫ 1

0

(
G2(s, τ)

)p
(g(τ, u(τ)))pdτ

)
ds− C3, ∀t ∈ [0, 1]. (11)

We define the cone

P0 =
{
u ∈ P : inf

[(1/2),1]
u(t) ≥ γ‖u‖

}
,

where γ = {γ1, γ2}. From our assumptions and Lemma 2.5, it can be shown that for any
y ∈ P , the functions u(t) = (By)(t) and v(t) = (Cy)(t) satisfy the inequalities

inf
t∈[(1/2),1]

u(t) ≥ γ1‖u‖ ≥ γ‖u‖, inf
t∈[(1/2),1]

v(t) ≥ γ2‖v‖ ≥ γ‖v‖.

So u = By ∈ P0, v = Cy ∈ P0. Therefore, we deduce that B(P ) ⊂ P0, C(P ) ⊂ P0.
Now we consider the function u0(t), t ∈ [0, 1], the solution of problem (3)-(4) with

y = y0, where y0(t) = 1 for all t ∈ [0, 1]. Then u0(t) =
∫ 1

0 G1(t, s)ds = (By0)(t), t ∈ [0, 1].
Obliviously, we have u0(t) ≥ 0 for all t ∈ [0, 1]. Let

M =
{
u ∈ P : u = Au+ λu0, λ ≥ 0

}
.

In the following we show that M ⊂ P0 and M is a bounded subset of X. If u ∈ M , then
there exists λ ≥ 0 such that u(t) = (Au)(t) + λu0(t), t ∈ [0, 1]. From the definition of u0,
we have

u(t) = (Au)(t) + λ(By0)(t) = B(Fu(t)) + λ(By0)(t) = B
(
Fu(t) + λy0(t)

)
∈ P0,

where F : P → P is defined by

(Fu)(t) = f
(
t,

∫ 1

0
G2(t, s)g(s, u(s))ds

)
,
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hence, M ⊂ P0 and from the definition of P0, we have

‖u‖ ≤ 1

γ
· min

[(1/2),1]
u(t), ∀u ∈M. (12)

From (ii) of assumption (A2), we conclude that for ε0 =
(

2
C1m1m2γ1γ

p
2

)1/p
> 0, there exists

a constant C4 > 0 such that(
g(t, u)

)p ≥ εp0u− C4, ∀(t, u) ∈ [0, 1]× [0,∞), (13)

where

m1 =

∫ 1

1/2
G1(t, s)ds > 0, m2 =

∫ 1

1/2
(G2(t, τ))pdτ > 0.

For u ∈ M and t ∈ [(1/2), 1], by using Lemma 2.5 and the relations (11) and (12), it
follows that

u(t) = (Au)(t) + λu0(t) ≥ (Au)(t)

≥ C1

∫ 1

1/2
G1(t, s)

[ ∫ 1

1/2

(
G2(s, τ)

)p
(g(τ, u(τ)))pdτ

]
ds− C3

≥ C1γ1

∫ 1

1/2
G1(1, s)

(∫ 1

1/2
(γ2G2(1, s))p(εp0u− C4)dτ

)
ds− C3

≥ C1γ1γ
p
2ε
p
0

(∫ 1

1/2
G1(1, s)ds

)(∫ 1

1/2

(
G2(1, s)

)p
u(τ)dτ

)
− C5

≥ C1γ1γ
p
2ε
p
0

(∫ 1

1/2
G1(1, s)ds

)(∫ 1

1/2

(
G2(1, s)

)p
dτ

)
inf

τ∈[(1/2),1]
u(τ)− C5

= 2 inf
τ∈[(1/2),1]

u(τ)− C5,

where C5 = C3 + C1C4m1m2γ1γ
p
2 > 0 is a constant. Since Bu ∈ P0, we have

inf
t∈[(1/2),1]

u(t) ≥ 2 inf
t∈[(1/2),1]

u(t)− C5,

and so

inf
t∈[(1/2),1]

u(t) ≤ C5, ∀u ∈M. (14)

Now the relation (12) and (14), it can be shown that

‖u‖ ≤ 1

γ
inf

t∈[(1/2),1]
u(t) ≤ C5

γ
,

for all u ∈M , that is, M is a bounded subset of X.
Besides, there exists a sufficiently large L > 0 such that u(t) 6= (Au)(t) + λu0, ∀u ∈

∂BL ∩ P, λ ≥ 0. From Theorem 2.2, we deduce that

i(A,BL ∩ P, P ) = 0. (15)

Next, from (i) of assumption (A3), we conclude that there exists M0 > 0 such that

f(t, u) ≤M0u
q, ∀(t, u) ∈ [0, 1]× [0, 1]. (16)

From (ii) of assumption (A3) and (A1), it can be shown that for

ε1 = min
{

1
M2
,
(

1
2M0M1M

q
2

)1/q}
> 0, there exists δ1 ∈ (0, 1) such that

g(t, u) ≤ ε1u1/q, ∀(t, u) ∈ [0, 1]× [0, δ1],
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where M1 =
∫ 1

0 G1(1, s)ds > 0, M2 =
∫ 1

0 G2(1, s)ds > 0. Hence, we have

∫ 1

0
G2(t, s)g(s, u(s))ds ≤ ε1

∫ 1

0
G2(t, s)(u(s))1/qds

≤ ε1M2‖u‖1/q ≤ 1, ∀u ∈ Bδ1 ∩ P, t ∈ [0, 1].

(17)

Therefore, by (16) and (17) we deduce

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≤M0

∫ 1

0
G1(1, s)

(∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)q
ds

≤M0ε
q
1M

q
2‖u‖

∫ 1

0
G1(1, s)ds

= M0ε
q
1M1M

q
2‖u‖ ≤

1

2
‖u‖, ∀u ∈ Bδ1 ∩ P, t ∈ [0, 1].

This implies that ‖Au‖ ≤ 1
2‖u‖, ∀u ∈ ∂Bδ1 ∩ P . From Theorem 2.1, we have

i(A,Bδ1 ∩ P, P ) = 1. (18)

Combining (15) and (18), we have

i(A, (BL \Bδ1) ∩ P, P ) = i(A,BL ∩ P, P )− i(A,Bδ1 ∩ P, P ) = −1.

We conclude that A has at least one fixed point u1 ∈ (BL\Bδ1)∩P , that is δ1 < ‖u1‖ < L.
Let

v1(t) =

∫ 1

0
G2(t, s)g(s, u1(s))ds,

then (u1, v1) ∈ P × P is a solution of the problem (1)-(2). In addition ‖v1‖ > 0. Indeed,
if we suppose that v1(t) = 0, for all t ∈ [0, 1], then by using (A1) we have f(s, v1(s)) =

f(s, 0) ≡ 0, for all s ∈ [0, 1]. This implies that u1(t) =
∫ 1

0 G1(t, s)f(s, v1(s))ds = 0 for all
t ∈ [0, 1], which contradicts ‖u1‖ > 0. The proof of Theorem 3.1 is completed. �

Theorem 3.2. Assume (A1), (A4) and (A5) hold. Then the problem (1)-(2) has at least
one positive solution (u(t), v(t)), t ∈ [0, 1].

Proof. From assumption (i) of (A4), we know that there exist constants C6 > 0, C7 > 0
such that

f(t, u) ≤ C6u
r + C7, ∀(t, u) ∈ [0, 1]× [0,∞). (19)

From (ii) of (A4), we conclude that for ε2 =
(

1
2C6M1Mr

2

)1/r
there exists C8 > 0 such that

g(t, u) ≤ ε2u1/r + C8, ∀(t, u) ∈ [0, 1]× [0,∞). (20)



298 TWMS J. APP. ENG. MATH. V.7, N.2, 2017

Hence, for u ∈ P , by using (19) and (20), we obtain

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≤
∫ 1

0
G1(t, s)

[
C6

(∫ 1

0
G2(s, τ)g(τ, u(τ)dτ

)r
+ C7

]
ds

≤ C6

∫ 1

0
G1(t, s)

[ ∫ 1

0
G2(s, τ)

(
ε2(u(τ))1/r + C8

)
dτ

]r
ds+M1C7

≤ C6

(
ε2‖u‖1/r + C8

)r(∫ 1

0
G1(1, s)ds

)(∫ 1

0
G2(1, τ)dτ

)r
+M1C7.

Therefore, we have

(Au)(t) ≤ C6M1M
r
2

(
ε2‖u‖1/r + C8

)r
+M1C7, ∀t ∈ [0, 1]. (21)

After some assumptions, it can be shown that

lim
‖u‖→∞

C6M1M
r
2

(
ε2‖u‖1/r + C8

)r
+M1C7

‖u‖
=

1

2
,

so, there exists a sufficiently large R > 0 such that

C6M1M
r
2

[
ε2‖u‖1/r + C8

]r
+M1C7 ≤

3

4
‖u‖, ∀u ∈ P with ‖u‖ ≥ R. (22)

Hence, from (21) and (22), we have ‖Au‖ ≤ 3
4‖u‖ < ‖u‖, ∀ ∈ ∂BR∩P , and from Theorem

2.1, we have

i(A,BR ∩ P, P ) = 1. (23)

On the other hand, from (i) of assumption (A5), we know that there exist constants
C9 > 0 and ũ1 > 0 such that

f(t, u) ≥ C9u, ∀(t, u) ∈ [0, 1]× [0, ũ1].

From (ii) of assumption (A5), for ε = C0/C9 > 0 with C0 = 1
γ1γ2m1m2

> 0 and m3 =∫ 1
1/2G2(1, τ)dτ > 0, we conclude that there exist ˜̃u1 > 0 such that g(t, u) ≥ C0

C9
u for all

(t, u) ∈ [0, 1]× [0, ˜̃u1]. We consider u1 = min{ũ1, ˜̃u1} and then we obtain

f(t, u) ≥ C9u, g(t, u) ≥ C0

C9
u, ∀(t, u) ∈ [0, 1]× [0, u1]. (24)

From the fact g(t, 0) ≡ 0 and the continuity of g(t, u), we know that there exists a suffi-
ciently small δ2 ∈ (0, u1) such that

g(t, u) ≤ u1

M2
, ∀(t, u) ∈ [0, 1]× [0, δ2].

Hence,∫ 1

0
G2(s, τ)g(τ, u(τ))dτ ≤

∫ 1

0
G2(1, s)g(τ, u(τ))dτ ≤ u1, ∀u ∈ Bδ2 ∩ P, s ∈ [0, 1]. (25)
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From (24), (25) and Lemma 2.5, we have

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≥ C9

∫ 1

0
G1(t, s)

(∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≥ C0

∫ 1

0
G1(t, s)

(∫ 1

0
G2(s, τ)u(τ)dτ

)
ds

≥ C0

∫ 1

1/2
G1(t, s)

(∫ 1

0
G2(s, τ)u(τ)dτ

)
ds

≥ C0γ2

∫ 1

1/2
G1(t, s)

(∫ 1

0
G2(1, τ)u(τ)dτ

)
ds

= (Lu)(t), ∀u ∈ ∂Bδ2 ∩ P, t ∈ [0, 1]

where the linear operator L : P → P is defined by

(Lu)(t) = C0γ2

(∫ 1

0
G1(1, τ)u(τ)dτ

)(∫ 1

1/2
G1(t, s)ds

)
.

Hence, we obtain

Au ≥ Lu, ∀u ∈ ∂Bδ2 ∩ P. (26)

For w0(t) =
∫ 1

1/2G1(t, s)ds, t ∈ [0, 1], we have w0 ∈ P \ {θ0} and

(Lw0)(t) = C0γ2

[ ∫ 1

0
G2(1, τ)

(∫ 1

1/2
G1(τ, s)dτ

)](∫ 1

1/2
G1(t, s)ds

)
≥ C0γ1γ2

(∫ 1

1/2
G2(1, τ)dτ

)(∫ 1

1/2
G2(1, τ)dτ

)(∫ 1

1/2
G1(t, s)ds

)
= C0γ1γ2m1m3

∫ 1

1/2
G1(t, s)ds =

∫ 1

1/2
G1(t, s)ds = w0(t), t ∈ [0, 1].

Therefore

Lw0 ≥ w0. (27)

We may suppose that A has no fixed point in ∂Bδ2 ∩ P (otherwise, the proof is finished).
From (26), (27) and Theorem 2.3 (with u0 = w0), we have

i(A,Bδ2 ∩ P, P ) = 0. (28)

Hence, from (23) and (28), we have

i(A, (BR \Bδ2) ∩ P, P ) = i(A,BR ∩ P, P )− i(A,Bδ2 ∩ P, P ) = 1.

We conclude that A has at least one fixed point (BR \Bδ2) ∩ P , thus the problem (1)-(2)
has at least one positive solution (u, v) ∈ P × P with u(t) > 0, v(t) > 0, ∀t ∈ [0, 1] and
‖u‖ > 0, ‖v‖ > 0. Thus completes the proof of Theorem 3.2 �

Theorem 3.3. Assume that (A1), (A2), (A5) and (A6) hold. Then the problem (1)-(2)
has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1].
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Proof. From (iii) of Lemma 2.4, we haveG1(t, s) ≤ G1(1, s) ≤ K1 andG2(t, s) ≤ G2(1, s) ≤
K2,∀ (t, s) ∈ [0, 1]× [0, 1]. Hence, from (A6), we have

(Au)(t) =

∫ 1

0
G1(t, s)f

(
s,

∫ 1

0
G2(s, τ)g(τ, u(τ))dτ

)
ds

≤
∫ 1

0
G1(t, s)f

(
s,K2

∫ 1

0
g(τ, u(τ))dτ

)
ds

≤
∫ 1

0
G1(t, s)f

(
s,m0

∫ 1

0
g(τ,N)dτ

)
ds

<
N

m0

∫ 1

0
G1(t, s)ds ≤ N

m0
K1 ≤ N, ∀u ∈ ∂BN ∩ P, t ∈ [0, 1],

so, ‖Au‖ < ‖u‖, for all u ∈ ∂BN ∩ P . By Theorem 2.1, we conclude that

i(A,BN ∩ P, P ) = 1. (29)

On the other hand, from (A2), (A5) and the proofs of Theorem 3.1 and Theorem 3.2,
we know that there exists a sufficiently large L > N and a sufficiently small δ2 with
0 < δ2 < N such that

i(A,BL ∩ P, P ) = 0, i(A,Bδ2 ∩ P, P ) = 0. (30)

From the relations (29) and (30), we obtain

i(A, (BL \BN ) ∩ P, P ) = i(A,BL ∩ P, P )− i(A,BN ∩ P, P ) = −1,

i(A, (BN \Bδ2) ∩ P, P ) = i(A,BN ∩ P, P )− i(A,Bδ2 ∩ P, P ) = 1.

Then A has at least one fixed point u1 in (BL \ BN ) ∩ P and has one fixed point u2

in (BN \ Bδ2) ∩ P respectively. Therefore, the problem (1)-(2) has two distinct positive
solutions (u1, v1), (u2, v2) ∈ P × P with ui(t) > 0, vi(t) > 0 for all t ∈ (0, 1) and ‖ui‖ >
0, ‖vi‖ > 0, i = 1, 2. The proof of Theorem 3.3 is completed. �

4. Numerical Examples

We now present three numerical examples illustrating, respectively, Theorems 3.1, 3.2
and 3.3.

Let ν1 = 5.2, ν2 = 5.95 and α = 1.5.
We consider the system of fractional differential equations

D5.2
0+u(t) + f(t, v(t)) = 0, t ∈ (0, 1)

D5.95
0+ v(t) + f(t, u(t)) = 0, t ∈ (0, 1)

(31)

subject to the boundary conditions

u(i)(0) = 0 = v(i)(0), 0 ≤ i ≤ 4,

and
[
D1.5

0+u(t)
]
t=1

= 0 =
[
D1.5

0+ v(t)
]
t=1

(32)

The Green’s functions G1(t, s) and G2(t, s) of corresponding homogeneous BVPs are given
by

G1(t, s) =

{
t4.2(1−s)2.7−(t−s)4.2

Γ(5.2) , 0 ≤ s ≤ t ≤ 1
t4.2(1−s)2.7

Γ(5.2) , 0 ≤ t ≤ s ≤ 1
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and

G2(t, s) =

{
t4.95(1−s)3.45−(t−s)4.95

Γ(5.95) , 0 ≤ s ≤ t ≤ 1
t4.95(1−s)3.45

Γ(5.95) , 0 ≤ t ≤ s ≤ 1.

We deduce that γ1 = 0.0544, γ2 = 0.03235 and γ = 0.03235.

4.1. Example. Let f(t, v) = v1/2, g(t, u) = u3, p = 1
2 , q = 1

2 . Then the assumptions (A2)

and (A3) are satisfied; indeed, we have f i∞ = 1, gi∞ = ∞, fs0 = 1, gs0 = 0. Hence by
Theorem 3.1, we deduce that the problem (31)-(32) has at least one positive solution.

4.2. Example. Let f(t, v) = v1/2, g(t, u) = u1/2, q = 1
2 , r = 1

2 . Then the assumptions

(A4) and (A5) are satisfied; indeed, we have fs∞ = 1, gs∞ = 0, f i0 = ∞, gi0 = ∞. Hence by
Theorem 3.2, we deduce that the problem (31)-(32) has at least one positive solution.

4.3. Example. Let f(t, v) = v2 + v1/2, g(t, u) = u3 + u1/2. We have K1 = 0.0307,
K2 = 0.0091 then m0 = max{K1,K2} = 0.0091. The functions f(t, v) and g(t, u) are
nondecreasing with respect to u, for any t ∈ [0, 1], and for p = 1

2 , the assumptions (A2)

and (A5) are satisfied; indeed we obtain f i∞ =∞, gi∞ =∞, f i0 =∞, gi0 =∞. Take N = 1
then the assumption (A6) is satisfied. Hence, by Theorem 3.3, we deduce that the problem
(31)-(32) has at least two positive solutions.
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