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APPROXIMATION TO DISTRIBUTED ACTIVATION ENERGY

MODEL FOR RESIDUAL LOGGING OF CEDRUS DEODORA USING

WEIBULL DISTRIBUTION

ALOK DHAUNDIYAL1 AND SURAJ B. SINGH2

Abstract. The paper focuses to explain the influence of some relevant parameters of
biomass pyrolysis on the numerical solution of isothermal nth order distributed activa-
tion energy model (DAEM). The upper limit of “dE”, the frequency factors, the reac-
tion order, the shape and location parameters of the Weibull distribution are studied.
These parameters have been used for estimating the kinetic parameters of the isothermal
Weibull DAEM from thermo analytical data of loose biomass. Moreover, asymptotic
approach has been adopted to find the solution of DAEM.

Keywords: Pyrolysis, distributed activation energy model (DAEM), isothermal kinetics,
asymptotic solution, Weibull distribution.

1. Introduction

India produces 450–500 tonnes of biomass per year which contributes 23% of India’s
primary energy, whereas 77% is obtained through various conventional sources of energy.
More than 40% of energy is being produced via coal sources. Hitherto, the overdependence
on the fossil fuels captured the energy sector, while the huge share of biomass is dumped
on the forest floor. The collateral damage due to fossil fuel can be known by the fact
that the average temperature of the earths surface rises with increasing concentration of
CO2 and other green house gases (GHGs) in the atmosphere. The consequence of global
warming due to conventional fuels affect the level of glacier. It has been reported that
Gangotri glacier retreated by 3 km from its original position in two centuries. Therefore,
it is dire need of alternative new renewable energy source which can neutralize the effect
of pollutants. For the same good cause, utilization of residual biomass would help to slow
down the depletion of fossil fuel reservoirs and prevent the unexpected forest inferno.

Merits of using biomass is to observe it as a CO2- neutral source of energy as the
evolved amount of CO2 during combustion is balanced by the amount of CO2 needed for
the photosynthesis process. Instead of getting heat, biomass can also be used for synthesis
of bio-fuel through the process of pyrolysis. During the pyrolysis process, the biomass
changes into gases, liquid oils and char. The literature dealing with pyrolysis and thermal
analysis is broadly discussed in the papers of Colomba Di Blasi [1] and John E.White [2].
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Mathematically simulating the biomass decomposition kinetics is one of main problems
of pyrolysis as several decomposition reactions occur simultaneously and their mechanisms
are unknown, various mathematical tools have been adopted for successful elaboration of
the process of decomposition [3, 4, 5, 6, 7]. The most common approach used for estimat-
ing kinetic parameters is isoconversional models, which presume that kinetic parameters,
namely frequency factor and activation energy are inconstant during the process of de-
composition but are function of conversion (X) [8]. Another model named as the lumped
kinetic model [9, 10, 11], propounds a large number of parallel decomposition nth order
reactions. These partial reactions contribute to overall decomposition process of biomass.
Recently, the distributed activation energy model has been adopted frequently. This model
belongs to multi-reaction models as it presumes that several decomposition nth order re-
actions with distributed activation energies take place simultaneously [12, 13, 14]. The
objective of the lumped kinetic model is very similar to the DAEM and the main difference
is in the number of expected decomposition reactions. The distributed activation energy
model is only used for describing decomposition process of biomaterial, but it can also be
applicable for thermal decomposition of coal [15] and other thermally degradable material
[16, 17].

Distributed activation energy model (DAEM) contains rapidly varying functions, which
may require the large computational effort and therefore creates significant numerical dif-
ficulties. Asymptotic expansion is used to allow rapid calculation of DAEM solution and
give an accurate approximation to double integrals which are demarcated by two distinct
and physically relevant regimes. Thus, the method provides a rapid and highly effective
way of estimating kinetic parameters and the distribution of activation energies among
other components of biomass. Application of asymptotic technique encompasses the prob-
lem of computational fluid dynamics (C.F.D) and modeling of coal-fired boilers, where
it is important to estimate the double integral quickly. The reason of using asymptotic
expansion is clear from its analytical insight into solution behaviour, as the asymptotic
forms are explicit in nature.

In this study, the accurate approximation of DAEM for isothermal pyrolysis and the
influence of various parameters related to biomass pyrolysis on the numerical solution of
the isothermal nth order DAEM using Weibull distribution are discussed.

2. Material and Methods

2.1. Modeling of biomass pyrolysis. The DAEM is a type of multi reaction models,
which postulated that the decomposition mechanism takes a large number of independent,
parallel and the first order chemical reactions with different activation energies. The
isothermal nth order DAEM equation is shown below.

(1−X) =


∫∞
0 exp

[
−
∫ T
T0

A
θ exp

(−E
RT

)
dT
]
f(E)dE, n = 1∫∞

0

[
1− (1− n)

∫ T
T0

A
θ exp

(−E
RT

)
dT
]( 1

1−n)
f(E)dE, n(nth order) 6= 1

(1)

where, E is activation energy, A is the frequency factor, R is the universal gas constant, θ
is the heating rate, n is the reaction order, T is the absolute temperature, T0 is the initial
reaction temperature and f(E) is the distribution of activation energies.

Choosing an appropriate alternative distribution function for the molecular activation
energies, the better converging mathematical solution of DAEM can be obtained. It
would be very promising to use an asymmetric distribution to know the kinetic activities
of biomass pyrolysis, such as the Weibull distribution over a symmetric one [18]. Moreover,
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the Weibull distribution is mathematically flexible and hence it can be optimized without
much constraint. The Weibull distribution can be expressed as:

f(E) =
β

η

(
E − γ
η

)(β−1)
exp

[(
E − γ
η

)β]
(2)

In the equation (2), η is the width parameter, β is the shape parameter and γ is the
activation energy threshold or location parameter of the Weibull distribution, where E ≥ 0,
η ≥ 0, β ≥ 0; γ, η and E are expressed in kJmol−1.

The mean and variance of distribution is denoted by E0 and σ2 respectively.

E0 = γ + ηΓ

(
1

β
+ 1

)
σ2 = η2Γ

(
2

β
+ 1

)
− η2Γ2

(
1

β
+ 1

)
Significance of threshold value of activation energy γ tells the least value of activation

energies need to commence all the reactions. Therefore, the lowest limit of ‘dE’ in the
equation (1) is substitute with E = γ. The non-isothermal nth – order DAEM involved
Weibull distribution is expressed as:

1−X =



∫ i
γ nfty

β
η

(
E−γ
η

)(β−1)
exp

[
−
∫ T
T0

A
θ exp

(
− E
RT

)
dT −

(
E−γ
η

)β]
dE

(first order)∫ β
γ
β
η

(
β−γ
η

)(β−1)
exp

[
−
(
E−γ
η

)β] [
1− (1− n)

∫ T
T0

A
θ exp

(−E
RT

)
dT
]( 1

1−n)
dE

nth order (n 6= 1)
(3)

2.2. Asymptotic technique. As it can be seen from equation (3), there are two inte-
grals. The first part is double exponential term (DExp) that depends on time through
temperature range applied in the experiment. The inner ‘dT ’ integration is defined as
the temperature integral or Arrhenius integral. The second part is invariable of time and
varies with distribution function f(E). The isothermal temperature profile is adopted
wherin the temperature remains constant with time.

Approximations to the double exponential term are tackled first, where T (l) is specified
and E can take any positive value.

DExp = exp

[
−
∫ t

0

A

θ
exp

(
− E

Rel

)
dl

]
(4)

To demonstrate the systematic simplification of this integrand, it is important to assume
the typical values of some parameters and the functions upon which it depends. The value
of frequency factor, A is the range of 1010−1013 s−1, while activation energies are in range
of 100− 300 kJmol−1. Taking E

RT0
∼ 10 kJ/mol and tA ∼ 1010.

In order to simplify further, the isothermal regime is adopted. In addition to that the
constant value of frequency factor for every decomposition reaction.

Let,
T (l) = T0

Taking E
RT0
∼ 10 kJ/mol and tA ∼ 1010. The large size of both these parameters makes

the function vary rapidly with E, therefore equation (4) can be rewritten as:

∼ exp
(
−tAe−

E
RT0

)
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After further simplification, we get

∼ exp

(
− exp

(
Es − E
Ew

))
where

Es ≡ RT0 ln(tA) and Ew ≡ RT0

Double exponential term (DExp) in equation (4) term observe as a smooth step-function
which arise rapidly from zero to one in a range of activation energies of step size Ew
about the value E = Es, where both Es and Ew vary with time. Another important
thing to be noted that the shape of the total integrand significantly depends on the type
of distribution we have chosen for the biomass pyrolysis problem. When f(E) initial
distribution goes wide as compared to step size of Ew, the total integrand approaches
similar to distribution function. The initial distribution is progressively chopped off from
the left as time proceeds. Whereas, in narrow distribution the whole integrand remains
the same as the initial distribution, with amplitude progressively dominate by DExp.
More symmetrical distribution than that of wide distribution is obtained with the help of
Narrow distribution. Although the location of its maximum does not remain fixed, as it
changes with time. Only wide distribution is covered under purview of this paper.

To carry out the approach, the Weibull distribution is taken as the initial distribution
f(E), centred at E0 with variance σ2.

1−X =

∫ ∞
γ

β

η

(
E − γ
η

)(β−1)
exp(h(E))dE (5)

where

h(E) =

{
− exp

(
Es = E

Ew

)
−
(
E − γ
η

)β}

Energy is rescaled into non-dimensional factor by y.

ys =
Es
γ
, y =

E

γ
and yw =

Ew
γ

where, α = γ
η .

After introducing the non-dimensional factor in the given problem, we obtained

1−X =

∫ ∞
1

βαβ(y − 1)β−1 exp(h(y))dy (6)

where

h(y) =

{
− exp

(
ys − y
yw

)
− (α(y − 1))β

}
Put k = y − 1 in equation (6), we have

X = βαβ
∫ ∞
0

k(β−1) exp(h(k + 1))dk
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2.3. Wide distribution. In case of wide distribution the initial distribution is much
wider than DExp. To solve the given problem, the limit kw β

√
α � 1 is adopted. The

function DExp leaps from zero to one at vicinity of k = ks in such a way that has
previously been approximated with the help of step-function [19, 20, 21, 22].

U(k − ks) =

{
0, k < ks
1, k ≥ ks

1−X = βαβ
∫ ∞
0

[
exp

(
− exp

(
ks − k
kw + 1

))
− U(k − ks)

]
k(β−1) exp(−(αk)β)dk (7)

Assume f(k) = kβ−1 exp(−(αk)β).
For k = ks, expand f(k) with the help of Taylor expansion

f(x) =

[
k(β−1)s exp(−(αks)

β)− (k − ks)kβ−1s exp(−(αks)
β)(β − β(αks)

β − 1)

+
(k − ks)2

2!
kβ−3s exp(−(αks)

β)

{β2(−3(αks)
β + (αks)

2β + 1) + 3β((αks)
β − 1) + 2} − (k − ks)3

3!
kβ−4s exp(−(αks)

β)

{α2β4(−k2s)((αks)β − 1) + β3(−(αks)
2 − 7(αks)

β + 3(αks)
2β + 1)

−3β2(−6(αks)
β + (αks)

2β + 2)− 11β((αks)
β − 1)− 6}+ · · ·

]
(8)

From equations (7) and (8)

1−X = βαβ
∫ ∞
0

[
exp

(
− exp

(
ks − k
kw + 1

))
− U(k − ks)

]
f(k)dk + βαβerfc((αk)

β
2 ) (9)

Put x = k−ks
kw+1

1−X = βαβ(k(β−4)s exp(−(αks)
β)(kw + 1)

∫ ∞
0

[exp(− exp(−x))− U(k − ks)][
k3s − (kw + 1)k2s(β − β(αks)

β − 1)

+
(kw + 1)2

2!
ks{β2(−3(αks)

β + (αks)
2β + 1) + 3β((αks)

β − 1) + 2}

− (kw + 1)3

3!

{
α2β4(−k2s)((αks)β − 1) + β3(−(αks)

2 − 7(αks)
β + 3(αks)

2β + 1)

− 3β2(−6(αks)
β + (αks)

2β + 2)− 11β((αks)
β − 1)− 6

}
+ · · ·

]
dx

After simplification, we have

1−X = βαβ(k(β−4)s exp(−k(αks)
β))(kw + 1)

[
k3sA0 − (kw + 1)k2sA1(β − β(αks)

β − 1)

+
(kw + 1)2

2!
A2ks{β2(−3(αks)

β + (αks)
2β + 1) + 3β((αks)

β − 1) + 2}

−(kw + 1)3

3!
A3{α2β4(−k2s)((αks)β − 1) + β3(−(αks)

2 − 7(αks)
β

+3(αks)
2β + 1)− 3β2(−6(αks)

β + (αks)
2β + 2)− 11β((αks)

β − 1)

−6}+ · · ·
]

+ βαβerfc((αks)
β
2 )

(10)
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The remaining integrals can be shown as:

Ai =

∫ ∞
−∞

xi(exp(−x)− U(x))dx, i = 0, 1, 2, 3 . . .

The values of Ai are evaluated once, as they are independent of other parameters and the
first few values are

A0 ≈ −0.5722A1 ≈ −0.98906A2 ≈ −1.81496A3 ≈ −5.89037

Equation (10) is the required expression for the first order reactions (n = 1).
In the similar manner for nth order reactions (n 6= 1)

(1−X)nth =

∫ ∞
1

βαβ(y − 1)(β−1) exp
[
− (α(y − 1))β

]
dy −

∞
inf
1
βαβ

(y − 1)(β−1) exp

[(
ys − y
yw

)]
exp

[
−{(α(y − 1))β}

]
dy

+
n

2

∫ ∞
1

βαβ(y − 1)(β−1) exp

[(
ys − y
yw

)](
exp

(
ys − y
yw

))2

+ · · · dy (11)

Equation (11) can be rewritten as

(1−X)nth =

(∫ ∞
0

βαβ(k)(β−1) exp
[
− (α(k))β

]
dk −

∫ ∞
0

βαβ
(

exp

(
ks − k
kw + 1

)
− U(k − ks)

k(β−1) exp(−(αk)β)dk +
n

2
βαβ

∫ ∞
0

[
(k)(β−1)

(
exp

(
2

(
ks − k
kw + 1

))
− U(k − ks)

)]
exp(−(αk)β)dk −

(
2n− 1

6

)
βαβ

∫ ∞
0

[
(k)(β−1)

(
exp

(
3

(
ks − k
kw + 1

))
− U(k − ks)

)]
exp(−(αk)β)dk +

n

2
βαβ

∫ ∞
ks

kβ−1 exp(−(αk)β)dk − βαβ
∫ ∞
ks

kβ−1 exp(−(αk)β)dk

−(2n− 1)

6
βαβ

∫ ∞
ks

kβ−1 exp(−(αk)β)dk + · · ·

For β = 2,

(1−X)nth =
(n− 1)

6
α(1− CDF )+

[
1− 2α2(kw + 1)(ks)(∫ ∞

0
(exp(−x)− U(x))dx− n

2

∫ ∞
0

(exp(−x2)− U(x))dx

+

(
2n− 1

6

)
βαβ

∫ ∞
0

[
(k)(β−1)

(
exp

(
3

(
ks − k
kw + 1

))
− U(k − ks)

)]
dk + · · ·

)
(

1− x(kw + 1)

ks
(1− β(αks)

β)+

(
k(kw + 1)

ks

)2

(4(−3(αks)
2) + (αks)

4 + 1) + 6((αks)
2 − 1) + 2)− 22

(
(αks)

2 − 1)− 6)

)]
(12)
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After further simplification of equation (12), we obtained

Xnth =
α(n− 1)

6
(1− CDF ) +

[
1− 2α2(kw + 1)(ks) exp(−(αks)

2)(
(L0 −

n

2
B0 +

(2n− 1)C0

6
)−

(
kw + 1

ks

)
(1− 2(αks)

2)(
L1 −

n

2
− n

2
B1 +

(2n− 1)C1

6

)
+

(
kw + 1

ks

)2

(4(−3(αks)
2) + (αks)

4 + 1) + 6((αks)
2 − 1) + 2

)(
L2 −

n

2
B2 +

(2n− 1)C2

6

)
−
(
kw + 1

ks

)3

(−16α2k2s((αks)
2 − 1) + 8(−(αks)

2 − 7(αks)
2

+ 3(αks)
4 + 1) + 12(−6(αks)

2) + (αks)
4 + 2)

− 22((αks)
2 − 1)− 6)

(
L3 −

n

2
B3 +

(2n− 1)C3

6

))]
(13)

where, CDF = 1− e−(αks)β .
The generalized form of Xnth for arbitrary value of shape parameter β is given by the

expression

Xnth =
(n− 1)

12
αβ(1− CDF ) +

[
1− βαβyw(ks)

(β−1) exp(−(αks)
β)((

A0 −
n

2
B0 +

(2n− 1)C0

6

)
− yw
ks

(β − β(αks)
β)− 1

)
(
A1 −

n

2
B1 +

(2n− 1)C1

6

)
+

(
yw
ks

)2

(β2(−3(αks)
β) + (αks)

2β + 1) + 3β((αks)
β − 1) + 2)

(
A2 −

n

2
B2 +

(2n− 1)C2

6

)
−
(yw
ks

)3(
α2β4

(
− k2s

)(
(αks)

β − 1
)

+ β3(−(αks)
2)− 7(αks)

β + 3(αks)
2α + 1

)
− 3β2(−6(αks)

β + (αks)
2β + 2)− 11β

(
(αks)

β − 1)
)
− 6
)(
A3 −

n

2
B3 +

(2n− 1)C3

6

)]

L0 ≈ −0.36788, L1 ≈ −0.23576, L2 ≈ −0.17273, L3 ≈ −0.13607

B0 ≈ −0.56767, C1 ≈ −0.41102, C2 ≈ −0.29061, C3 ≈ −0.22387

The remaining integrals are evaluated by

Li =

∫ ∞
−∞

xi(exp(−x)− U(x))dx, i = 0, 1, 2, 3 . . .

Bi =

∫ ∞
−∞

xi(exp(−2x)− U(x))dx, i = 0, 1, 2, 3 . . .

Ci =

∫ ∞
−∞

xi(exp(−3x)− U(x))dx, i = 0, 1, 2, 3, . . .

Equation (13) is derived expression for nth order reaction.
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2.4. Application of loose biomass. Dried leaves of Cedrus deodara underwent thermo
gravimetric analysis. Chemical composition of the sample was measured with the help
of CHNS (O) (Flash EA 1112 series). Calorific value of the sample was estimated with
the help of Dulong’s formula. Pyrolysis of sample has been performed by using thermo-
gavimetric equipment, Exstar TG/DTA 6300. Nitrogen has been as an inert atmosphere.
Thermocouple type ‘R’ was used to measure the sample and the furnace temperature. It
is to be noted that the results of this paper is used in the simulation process to obtain the
nth order Weibull DAEM prediction. Figure 7 demonstrates that the n

Table 1. Chemical composition of dried leaves sample of Cedrus deodara

C% H% O% N% S% ∗H.H.V(MJ/kg)
47.68 7.6765 32.511 2.0285 0.000 21.318

∗Higher heating value

(a) (b)

Figure 1. The effect of upper limit (E∞) of ‘dE’ integral on the nu-
merical solution (T0 = 564 K, A = 1.4 s−1, η = 785.85 kJ/mol, Y =
4.4 kJ/mol, β = 2 and n = 2.2 (a- first order reaction, b- nth order re-
action)

(a) (b)

Figure 2. The effect of frequency factors (A) on the numerical solution
(T0 = 564 K, E∞ = 8.42 kJ/mol, η = 785.85 kJ/mol, Y = 4.4 kJ/mol, β =
2 and n = 2.2 (a- first order reaction, b- nth order reaction)

3. Result and discussions

For numerical solution, the upper limit of ¿dE’ integral must be known. The influence
of parameters, which are relevant to loose biomass pyrolysis is analysed with the help of
asymptotic expansion of nth order DAEM equation. The effect of upper limit (E∞) on the
numerical solution is depicted in the figure 1. At the intitial stage of pyrolytical reaction,
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(a) (b)

Figure 3. The effect of location parameter (Y) of the Weibull distribu-
tion on the numerical solution (T0 = 564 K, E∞ = 8.42 kJ/mol, η =
785.85 kJ/mol, A = 1.4 s−1 β = 2 and n = 2.2 (a- first order reaction, b-
nth order reaction)

(a) (b)

Figure 4. The effect of width parameter (η) of the Weibull distribu-
tion on the numerical solution (T0 = 564 K, E∞ = 8.42 kJ/mol, Y =
4.4 kJ/mol, A = 1.4s−1, β = 2 and n = 2.2 (a- first order reaction, b- nth

order reaction)

(a) (b)

Figure 5. The effect of shape parameter (β) of the Weibull distribu-
tion on the numerical solution (T0 = 564 K, E∞ = 8.42 kJ/mol, Y =
4.4 kJ/mol, A = 1.4 s−1 η = 785.85 kJ/mol and n = 2.2 (a- first order
reaction, b- nth order reaction)

the remaining mass proportion (1 − X) must be at vicinity of one. While it has been
observed, with the increase in the upper limit, the remaining fraction is less than 1 for
19.26 kJmol−1 ≤ E∞. With the increase in the upper limit, the location of the inflexion
point and toe of curves has shifted to the right side. The conversion rate gets catalyzed
as the upper limit increases, thus the temperature of sample reaches the given isothermal
temperature at the reduced time scale. When less than 9.261 kJmol−1 are used for E∞,
the result is more accurate and closely proximate to each other. Therefore, 8.42 kJmol−1

can be used as the upper limit of the dE integral. The behaviour of (1−X) curves with
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Figure 6. The effect of frequency factors (n) on the numerical solution is
illustrated (T0 = 564 K, E∞ = 8.42 kJ/mol, Y = 4.4 kJ/mol, A = 1.4 s−1

and η = 785.85 kJ/mol)

Figure 7. Comparison between experimental and predicted nth order
DAEM (Weibull)

frequency factor (A) is illustrated in figure 2. According to these curves, increase in A
values deviates (1 − X) curves to the right direction and becomes constant for n = 2.2
(Figure 2(b)). The effect of location parameter (Y ) is shown in figure 3, where it is observe
that the remaining mass proportion curves shifted up the time scale as the value of location
parameter decreases.

The effect of the width parameter (η) and shape parameters values on the numerical
results is depicted in figures 4 and 5, from which it is seen that increase in value of ¿η’
and ¿β’ reduces the slope of the remaining mass fraction and therefore the conversion rate
(X) decreases progressively with time. The effect of the reaction order (n) values on the
numerical results is illustrated in figure 6. As it is clearly visible that the reaction order
changes the shape of the remaining mass fraction curves, the toe of the curves shifted to
the right direction for 2 ≤ n. The behaviour of experimentally found data (in case of
isothermal pyrolysis) exhibit logarithm nature as time proceeds, therefore the first order
reaction provides the good agreement with thermo analytical data. Moreover, the shoulder
of the remaining mass fraction curves get shifted down with the increase in the reaction
order increase till n = 2. Thereafter, it again approaches to one as reaction order increases.
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4. Conclusion

The numerical solutions of the isothermal nth- order DAEM using Weibull distribution
is approximated with the help of asymptotic expansion. The parametric values as the
attribute of pyrolysis of loose biomass, 8.42 kJ/mol can be used for the upper limit of the
outer dE integral. With increase in the activation energies, the time scale decreases, thus
the temperature of sample reaches the isothermal temperature of furnace at the beginning
of pyroylsis. Variation of the frequency factor, the reaction order, and the shape, scale
and location parameters merely affect the contour of remaining mass fraction curves. The
results are found to be very promising in order to compute the kinetic parameters of
the isothermal nth- order Weibull DAEM from TGA/DTG data of biomass pyrolysis.
Dhaundiyal and Singh [23] reported that the behaviour of another coniferous species, pine
needles convergence for all the value of n (reaction order) greater than one. Therefore,
it can be concluded that the experimental condition sets boundary conditions for the
numerical solution of DAEM, which provides different values to kinetic parameters for
every changed boundary conditions.
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