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ZONAL AND ASSOCIATED FUNCTIONS ON SO0(p, q) GROUPS

B.A. RAJABOV1, §

Abstract. Explicit expressions for associated spherical functions of SO(p, q) matrix
groups are obtained using a generalized hypergeometric series of two variables. In this
paper we present explicit expressions for zonal functions of de Sitter groups and the
group of conformal invariance. Moreover, we present a theorem on the transformation
of derivative of distributions, concentrated on smooth surfaces, with respect to infinite-
dimensional Lie group C∞ (Rn , GL(n)).
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1. Introduction

The SO(p, q) groups of pseudo-orthogonal matrices and their representations are broadly
used in different fields of physics, particularly in quantum field theory, high- energy physics,
cosmology and solid-state physics [1-2].

Matrix elements of irreducible unitary representations (IUR) of these groups, particu-
larly spherical functions, play an essential role in the theory of representations of SO(p, q)
groups. The detailed study of these functions in the case of SO(p, 1) groups can be found
in [3,4]. Unlike them, the construction of spherical functions of SO(p, q), p ≥ q ≥ 2 groups
has not yet been completed. The paper [2] by N. Ya. Vilenkin and A.P. Pavluk, where
the relationship between the spherical functions of matrix groups and Herz’s functions of
matrix arguments [5] was established, has attracted a remarkable attention.

The purpose of this paper is to find the spherical functions of SO(p, q), p ≥ q ≥ 2,
groups. The main result consists of the fact that associated spherical functions of the
groups SO(p, q), p ≥ q ≥ 2, are expressed as generalized hypergeometric Horn’s functions
of two variables by a unique formula, in spite of essentially different forms of the integral
representations of spherical functions at p ≥ q ≥ 3 and p ≥ 2, q = 2. The preliminary
statements about the obtained results were made in the Proceedings of the Azerbaijan
National Academy of Sciences [6-7].

Furthermore, the obtained formula has been proved to be valid for q = 1, i.e., for
SO(p, 1), p ≥ 2 groups. This work is continuation of the publication [8]. Main results
from this paper are available on website arXiv.org, [9-10]. In this publication we reduce
rectified expressions for some formulas [8-10], and also new expressions for zonal functions.
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2. Most degenerate irreducible unitary representations of SO0(p, q) groups

The most degenerate representations of groups SO0(p, q), i.e., connected components of
units of groups of motions of (p+ q) -dimensional vector space holding invariant quadratic
form:

[k, k] = k21 + . . .+ k2q − k2q − . . . k2p+q,
are given by a complex number σ and a number ε, which take the values 0 and 1, and are
constructed in the space of homogeneous functions, F (·), of given parity and defined on
the cone [k, k] = 0, [1–6].

Let us denote by D(σ,ε) the space of infinitely differentiable functions, F (·), defined on
the cone [k, k] = 0 without the point k = 0 and satisfying the following condition:

F (ak) = |a|σ F (k)signεa, a 6= 0, ε = 0, 1. (1)

The action of the operatorT (σ,ε)(g) of SO0(p, q) in the space D(σ,ε) is determined as follows:

T (σ,ε)(g)F (k) = F
(
g−1k

)
, g ∈ SO0(p, q). (2)

The space of the representation and the representation itself may have different realiza-
tions. Let us consider one of them.

Let us introduce the spherical system of coordinates on the cone [k, k] = 0:

k = ω(cosφ,η sinφ, cosχ, ξ sinχ), (3)

where 0 < ω < ∞, and η and ξ are (q − 1)-dimensional and (p − 1)-dimensional unit
vectors, respectively.

Spherical angles φ and χ change within the following limits:
0 ≤ φ ≤ π, 0 ≤ χ ≤ π, if p ≥ q ≥ 3;
0 ≤ φ < 2π, 0 ≤ χ ≤ π, if p = 3, q = 2 (in this case η is reduced to a constant value

which we take as η = 1);
0 ≤ φ < 2π, 0 ≤ χ < 2π, if p = q = 2 (in this case ξ and η are reduced to a constant

values which we take as η = ξ = 1).

Let us consider the restriction of functions from D(σ,ε) on the cross-section, ω = 1 of
the cone [k, k] = 0:

f(φ,η;χ, ξ ) = F (k)|ω=1. (4)

Then, in virtue of homogeneity of SO0(p, q) we obtain:

F (k) = ωσf(φ,η;χ, ξ ). (5)

From equations (1)-(4) it is evident that function f (·) also has the given parity ε:

f(φ,η;χ, ξ ) = (−1)εf(π − φ,−η;π − χ,−ξ ).

The mappings (4)-(5) establish a one-to-one correspondence between D(σ,ε) and the space
of infinitely differentiable functions defined on Sq⊗Sp. From (2)-(5), using the same nota-

tion for the space and the operator (D(σ,ε) and T (σ,ε), respectively) of the representations,
we obtain the following expression:

T (σ,ε)(g)f(φ,η;χ, ξ ) = (ωg/ω)σ f(φg,ηg;χg, ξg), (6)

where ωg, φg,ηg;χg, ξg are found from the relation of: g−1k = kg. In the space D(σ,ε), let

us introduce the scalar product:1

(f1, f2) =

∫
f1(φ,η;χ, ξ )f2(φ,η;χ, ξ )(sinφ)q−2dφ(sinχ)p−2dχ(dη)(dξ ), (7)

1The bar denotes complex conjugation.
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where (dη) and (dξ ) are normalized measures on Sq−1 and Sp−1, respectively, [3].
In the case q = 2 or p = q = 2, the differentials (dη) or (dη)(dξ ) are omitted because

they are constants, and the other variables are integrated over the whole region.
It follows directly form (6) that the scalar product (7) is invariant for Reσ = −p+q−2

2 , ε =

0, 1. By filling the space D(σ,ε) with the scalar product (7), we obtain the Hilbert space

H(σ,ε), and the most degenerated IUR’s of the continuous principal series of the group
SO(p, q). It is easy to show that (σ, ε) and (2− p− q − σ, ε) representations are unitary
equivalent [6].

Formulas (6)–(7) allow the integral representations for matrix elements of the operator of
hyperbolic rotations on the surface (k1, kp+q) in canonical basis to be determined [3]. With
respect to the canonical basis vector (which is invariant under the subgroup SO(p)⊗SO(q))
the matrix elements which are the zonal spherical functions of the group SO(p, q) as

determined in [3] are of interest. Denoting these functions by Z
[p,q]
σ (α) we obtain from

(6)–(7) the following integral representations:

(1) In the case of p ≥ q ≥ 3;

Z [p,q]
σ (α) =

Γ
(p
2

)
Γ
( q
2

)
πΓ
(
p−1
2

)
Γ
(
q−1
2

) +1∫
−1

+1∫
−1

Λσ/2
(
1− x2

) p−3
2
(
1− y2

) q−3
2 dxdy; (8)

(2) In the case of p ≥ 3, q = 2;

Z [p,2]
σ (α) =

Γ
(p
2

)
π3/2Γ

(
p−1
2

) 2π∫
0

+1∫
−1

Λσ/2
(
1− x2

) p−3
2 dφdx; (9)

(3) In the case of p = q = 2;

Z [2,2]
σ (α) =

1

4π2

2π∫
0

2π∫
0

Λσ/2dφdχ. (10)

In (8)–(10) we used the following notation:

Λ (α;x, y) = (cosφ coshα− cosχ sinhα)2 + sin2 φ =

= 1 +
(
x2 + y2

)
sinh2 α− 2xy sinhα coshα,

x = cosχ, y = cosφ. (11)

It is to be noted that zonal function exists only for even representations (ε = 0).

3. Zonal functions and Horn’s series

The main formulas used for the calculation of zonal functions of SO0(p, q) groups are

the integral representations (8)–(10) and the Taylor expansions for the function Λσ/2 given
as:

Λσ/2 =
1∑

ν=0

(−σxy tanhα)ν

coshα

∞∑
l=0

(
ν + 1

2

)
l

l!
(tanhα)2×

×F2

(
ν − σ

2
,−l,−l; ν +

1

2
, ν +

1

2
;x2, y2

)
. (12)
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Here we use the following notation for Pochhammer’s symbols, (a)n, and Appell’s functions
of a second kind [11] :

F2

(
ν − σ

2
,−l,−l; ν +

1

2
, ν +

1

2
;x2, y2

)
=

l∑
m,n=0

(ν − σ/2)m+n (−l)m(−l)n
(ν + 1/2)m (ν + 1/2)nm!n!

x2my2n.

Series (12) converges uniformly and absolutely for sufficiently small values of α, namely
at (cosh(2α) < 3) (the sufficient condition!).

Substituting the expansion (12) alternately in (8)–(10), and performing the integration,
for zonal function of SO0(p, q), p ≥ q ≥ 2, groups, we obtain the following expression:

Z [p,q]
σ (α) =

∞∑
m=0

(1/2)m(−σ/2)m
(
1− σ+q

2

)
m

(p/2)m (q/2)mm!

(tanhα)2m

coshα
×

× 3F2

 −m, 1−m− p
2 ,

σ+q
2 ;

1
1−m+ σ

2 ,
σ+q
2 −m;

 . (13)

From the results of Horn’s theory for hypergeometric series of two variables, it follows
that the series (13) converges for all finite α.

Furthermore, assuming q = 1 in (13), after necessary simplifications, we obtain the
following formula:

Z [p,1]
σ (α) = 2F1

(
−σ

2
,

1− σ
2

;
p

2
; tanh2 α

)
(coshα)σ, (14)

which exactly coincides with the expression for zonal functions of SO0(p, 1) groups. Thus,
formula (13) is valid for all SO0(p, q), p ≥ 2, q ≥ 1 groups.

Expression (13) for zonal functions of SO0(p, q) groups can be rewritten more compactly
with generalized hypergeometric functions of two variables, /See Appendix, Eq.(51)/:

Z [p,q]
σ (α) =

1

coshα
4F2


10 −σ/2, 1− σ+q

2 ;
01 (σ+q)/2,
11 1/2, tanh2α, tanh2α
11 q/2,
10 p/2,

 (15)

Changing the order of the summation indices for zonal functions one can obtain an
alternative expression:

Z [p,q]
σ (α) =

1

coshα
4F2


10 −σ/2, 1− σ+p

2 ;
01 (σ+p)/2,
11 1/2, tanh2α, tanh2α
11 p/2,
10 q/2,

 (16)

The formulas (15)–(16) express properties of a symmetry of zonal functions concerning
permutation p and q.

The above-presented results can be summarized in terms of the following theorem:

Theorem 3.1. Zonal spherical functions for all SO(p, q), p ≥ 2, q ≥ 1 groups in general
are expressed by hypergeometric functions of two variables according to the formulas (15)-
(16).
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Proof. In order to complete the proof of the theorem it is sufficient to note that the
zonal functions (8)-(10) are analytic functions of α and sufficient to use the principle of
monodromy. �

4. The canonical basis of IUR’s of group SO0(p, q)

The canonical basis of most degenerate IUR’s of SO0(p, q) groups is constructed using
the results of [3]. It follows that the elements of canonical basis can be represented in the
following form:

(1) In the case of p ≥ q ≥ 3:

Ξ
(σ,ε)
λlL,µmM (φ,η;χ, ξ ) = apqλlµmC

l+ q−2
2

λ−l (cosφ) sinl φΞlL(η)×

× C
m+ p−2

2
µ−m (cosχ) sinm χΞmM (ξ ),

λ ≥ l ≥ 0, µ ≥ m ≥ 0; (17)

(2) In the case of p ≥ 3, q = 2:

Ξ
(σ,ε)
λµmM (φ;χ, ξ ) = apµmC

m+ p−2
2

µ−m (cosχ) sinm χΞmM (ξ )eiλφ,

µ ≥ m ≥ 0; (18)

(3) In the case of p = q = 2:

Ξ
(σ,ε)
λµ (φ;χ) =

1

2π
ei(λφ+µχ). (19)

In formulas (17)-(18) the following notations are adopted:
λ, µ, l,m – are integers;
L,M–multi- indices which are non-negative integers;
ΞlL(η), ΞmM (ξ ) – are the elements of canonical basis of SO(p−1) and SO(q−1) groups,

respectively, [3];
apqλlµm, apµm – are normalization multipliers which are selected in such a way that the

elements of canonical basis (17)-(19) form an orthonormalized system with respect fo the
scalar product (7):

apqλlµm =
Γ
(
l + q−2

2

)
Γ
(
m+ p−2

2

)
π24−l−m−(p+q)/2

×

×

√
(λ− l)!(µ−m)!(2λ+ q − 2)(2µ+ p− 2)

Γ(λ+ l + q − 2)Γ(µ+m+ p− 2)
, (20)

apµm =
Γ
(
m+ p−2

2

)
π

√
2p+2m−5 (µ−m)!(2µ+ p− 2)

Γ(µ+m+ p− 2)
. (21)

Furthermore, there is a restriction by the parity of the representation ε:

λ+ µ = ε (mod 2) (22)

The integral representations for matrix elements of the operator of hyperbolic rotations
on the plane (k1, kp+q) in canonical basis, particularly for associated functions, can be

written using formulas (5)-(6) and (11)-(13). Assuming the notations P
[p,q]
σλµ (α) for asso-

ciated functions, we obtain the following integral representations using group-theoretical
methods:
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1. In the case of p ≥ q ≥ 3:

P
[p,q]
σλµ (α) = apqλµ

+1∫
−1

+1∫
−1

Λσ/2C
p−2
2

µ (x)C
q−2
2

λ (y)×

×
(
1− x2

) p−3
2
(
1− y2

) q−3
2 dxdy; (23)

2. In the case of p ≥ 3, q = 2:

P
[p,2]
σλµ (α) = apµ

2π∫
0

+1∫
−1

Λσ/2C
p−2
2

µ (x)e−iλφ
(
1− x2

) p−3
2 dφdx; (24)

3. In the case of p = q = 2:

P
[2,2]
σλµ (α) =

1

4π2

2π∫
0

2π∫
0

Λσ/2e−i(λφ+µχ)dφdχ. (25)

Here we used the following notations:

apµ = Γ

(
p− 2

2

)√√√√ 2p−6µ!(2µ+ p− 2)Γ
(p
2

)
π7/2Γ(µ+ p− 2)Γ

(
p−1
2

) ,

apqλµ = Γ

(
p− 2

2

)
Γ

(
q − 2

2

)√√√√ 2p+q−8Γ
(p
2

)
Γ
( q
2

)
π3Γ

(
p−1
2

)
Γ
(
q−1
2

) ×
×

√
λ!µ!(2µ+ p− 2)(2λ+ q − 2)

Γ(λ+ q − 2)Γ(µ+ p− 2)
. (26)

Remember that Λσ/2–function is defined by (11).
It is to be noted that the associated functions exist only for even (ε = 0) representation

as in the case of zonal functions. This follows directly from their definition. Particularly,
in order to account for the condition (22), we must assume that:

λ = ν + 2r, µ = ν + 2s, ν = 0, 1, (27)

where r, s – are positive integers and introduce the following function:

Ppqνσrs(α) = P
[p,q]
σλµ (α). (28)

The restrictions on the possible values of r, s are the same as the restrictions for λ, µ.

5. Associated functions and Horn’s series

The main formulas used for the calculation of zonal functions of SO0(p, q) groups are

the integral representations (8)-(10) and the Taylor expansions for the Λσ/2-function given
as:

Ppqνσrs(α) =
(−1)s+r+ν

coshα
Apq1 A

pq
2

∞∑
l=max(s,r)

l!
(
ν + 1

2

)
l

(l − s)!(l − r)!
(tanhα)2l+ν×

×F2

(
s+ r + ν − σ

2
, s− l, r − l; 2s+ ν +

p

2
, 2r + ν +

q

2
; 1, 1

)
, (29)
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where

Apq1 =
2
p+q
2

+ν−3(−σ/2)s+r+ν

Γ
(
2s+ ν + p

2

)
Γ
(
2r + ν + q

2

)√√√√ πΓ(p/2)Γ(q/2)

Γ
(
p−1
2

)
Γ
(
q−1
2

) ×
×

√
Γ(2s+ ν + p− 1)Γ(2r + ν + q − 1)

(2s+ ν)!(2r + ν)!
,

Apq2 =

√√√√(
2s+ ν + p−2

2

)(
2r + ν + q−2

2

)
(2s+ ν + p− 2)(2r + ν + q − 2)

.

Eq.(29) for associated functions of SO(p, q) groups can be rewritten more compactly using
generalized hypergeometric functions of the two variables, (Appendix, Eq.51):

Ppqνσrs(α) =
(2s+ ν)!

(
2−σ−q

2

)
s−r

(s− r)!4s coshα
Apq1 A

pq
2 (tanhα)2s+ν×

× 5F3


11 s+ 1, s+ ν + 1

2
10 s+ r + ν − σ

2
01 q+σ

2 , s− r + p+σ
2 tanh2 α, tanh2 α

11 2s+ ν + p/2, s+ r + ν + q/2
01 1 + s− r

 (30)

Formula (30) is valid for s ≥ r. For s ≤ r the expression for associated function is derived
from (29) using the rearrangement: [

p q r s
q p s r

]
From this, one can attain the symmetry property of the associated function for the

groups SO(p, q):

Ppqνσrs(α) = Pqpνσsr(α). (31)

It is also important to note that formulas (30)-(32) are true for all SO0(p, q), p ≥ 2, q ≥ 2
groups.

Assuming s = r = ν = 0 in (29)-(30), the expressions for zonal functions of SO0(p, q), p ≥
2, q ≥ 1 groups can be derived as:

Z [p,q]
σ (α) =

1

coshα

∞∑
l=0

(
1
2

)
l

l!
F2

(
−σ

2
,−l,−l; p

2
,
q

2
; 1, 1

)
(tanhα)l/2 ; (32)

Z [p,q]
σ (α) =

1

coshα
5F3


11 1, 1/2
10 −σ/2
01 q+σ

2 , p+σ
2 tanh2 α, tanh2 α

11 p/2, q/2
01 1

 (33)

Notice that the expressions (15)-(16) and (33) for zonal functions are equivalent as they
are both derived from (32) depending on the selection of representation of the Appell’s
function a second kind, which is used for the summation. The advantages of (32)-(33)
involve the fact that symmetry between p and q is evident.
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The following expansions are obtained from (23) - (25) for the function Λσ/2:

Λσ/2 =
πΓ
(
p−1
2

)
Γ
(
q−1
2

)
Γ(p/2)Γ(q/2)

∑
λµ

apqλµP
[p,q]
σλµ (α)C

p−2
2

µ (x)C
q−2
2

λ (y), (34)

Λσ/2 =
2π3/2Γ

(
p−1
2

)
Γ(p/2)

∑
λµ

apµP
[p,2]
σλµ (α)C

p−2
2

µ (x)eiλφ, (35)

Λσ/2 =
∑
λµ

P
[2,2]
σλµ (α)ei(λφ+µχ), (36)

where summations are performed over all admissible values λ, µ, which satisfy the restric-
tion λ+ µ = 0 (mod 2).

Expansions (34)-(36) allow supplementary functional relationships to be obtained for
the spherical functions for SO0(p, q) groups, and these may be useful in the solutions of
many problems. It should be noted that the convergence of the series in (34)-(36) must
be understood in the sense of convergence of distributions over Frèchet spaces [12]:

C∞ ([−1, 1]× [−1, 1]) , C∞ ([−1, 1]× [0, 2π]) , C∞ ([0, 2π]× [0, 2π]),

respectively2.
To conclude, it is to be noted that we have studied the functions of SO0(p, q) groups

for the representations of the continuous principal series. The study of representations of
a complementary series is reduced to the analytic continuation in the σ.

The theorem on the transformation of derivative distributions, concentrated on smooth
surfaces with respect to infinite-dimensional Lie groups C∞ (Rn , GL(n)) plays an impor-
tant role in the study of representations of discrete and exceptional series. This theorem
is of independent significance, so we give the proof in the next section.

6. Transformation of derivatives of distributions
concentrated on smooth surfaces

The problem of transformation of generalized functions, concentrated on smooth sur-
faces [13], and their derivatives arise in many problems of theoretical and mathematical
physics and in particular, in the theory of representations of Lie groups. In this section
the problem is solved for the infinite-dimensional Lie group C∞ (Rn , GL(n)).

Suppose that (n− k) – dimensional surface S in Rn is given by two different system of
equations:

Pi(x) = 0, Pi(·) ∈ C∞ (Rn) ,

Qi(x) = 0, Qi(·) ∈ C∞ (Rn) ; i = 1, 2, . . . , k. (37)

Here functions Pi(·) and Qi(·) are interconnected:

Qi(x) =
∑
j

Pj(x)αji(x); Pi(x) =
∑
j

Qj(x)βji(x), (38)

where ∑
i

αji(x)βik(x) = δjk;
∑
i

βji(x)αik(x) = δjk,

αij(·) ∈ C∞ (Rn) , βij ∈ C∞ (Rn) . (39)

2In this case the ends of interval [0, 2π] must be identified.
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The last conditions imply, in particular, non-singularity of matrices α ≡ ‖αij‖ and β ≡
‖βij‖, that is the following conditions hold true:

detα · detβ = 1, detα 6= 0, detβ 6= 0. (40)

Obviously matrices ‖α‖ and ‖β‖ are elements of the infinite group Lie C∞ (Rn , GL(n)).
In addition, assume that the family of surfaces Pi(x) = const and Qi(x) = const form a

correct grid, [13]. Under these assumptions there exists the following relationship between
δ-functions, concentrated on the surface S and corresponding equations (37)-(38), [13]:

δ (Q1, . . . ,Qk) =
1

detα
δ (P1, . . . ,Pk) . (41)

Using (41) this equality can be rewritten as:

δ (Q1, . . . ,Qk) = detβ · δ (P1, . . . ,Pk) . (42)

Our aim is to obtain an analogous relation for derivatives of δ-functions.
In the rest of this section double repeated indexes will mean summation over all possible

values of indexes (from 1 to n for indexes of coordinates of x, from 1 to k for indexes of
variables P, and Q). We also use the following notations:

δijl···(Q) =
∂

∂Qi∂Qj∂Ql · · ·
δ (Q) ,

δijl···(P ) =
∂

∂Pi∂Pj∂Pl · · ·
δ (P) .

Theorem 6.1. The following holds true:

δi1···is(Q) = (detβ) ·
∑
j1···js

βi1j1 · · ·βisjsδj1···js(P ). (43)

Proof. We prove this formula using the mathematical induction method. Assume that
(43) is true. Apply differentiation to it with respect to xµ:

∂

∂xµ
δi1···is(Q) =

∂ detβ

∂xµ
βi1j1 · · ·βisjsδj1···js(P ) + (detβ) βi1j1,µ · · ·βisjsδj1···js(P )+

· · ·+ (detβ) βi1j1 · · ·βisjs,µδj1···js(P ) + (detβ) βi1j1 · · ·βisjsδj1···js(P )Pj,µ, (44)

where

βij,µ ≡
∂βij
∂xµ

, Pj,µ ≡
∂Pj
∂xµ

.

The derivative ∂ detβ
∂xµ

is easily calculated:

∂ detβ

∂xµ
= βij,µ

∂ detβ

∂βij
= βij,µαji · detβ. (45)

Further, applying differentiation to Qlδ(Q) = 0 sequentially with respect to Qi1 · · · Qis+1

we get: ∑
CP (i1···isi)

δliδi1···is(Q) +Qlδi1···isi(Q) (46)

Here summation is done over all (s+ 1) – cyclic interchanging of indexes i1 · · · isi.



B.A.RAJABOV: ZONAL AND ASSOCIATED FUNCTIONS ON SO0(P,Q) GROUPS 41

On the other side it follows from (38)-(42) that:

∂

∂xµ
δi1···is(Q) = Qi,µδi1···isi(Q) =

= αji,µPjδi1···isi(Q) + αjiPj,µδi1···isi(Q) =

= αji,µβljQlδi1···isi(Q) + αjiPj,µδi1···isi(Q) =

= −αji,µβlj
∑

CP (ii1···is)

δliδi1···is(Q) + αjiPj,µδi1···isi(Q) =

= αji,µ detβ
∑

CP (ii1···is)

βijβi1j1 · · ·βisjsδj1···js(P ) + αjiPj,µδi1···isi(Q) =

= αji detβ
∑

CP (i1···isi)

βij,µβi1j1 · · ·βisjsδj1···js(P ) + αjiPj,µδi1···isi(Q),

where functions P and Q are interconnected.
Comparing the last expression with (44) and taking into account (45) we obtain:

(detβ) Pj,µβi1j1 · · ·βisjsδj1···jsj(P ) = αjiPj,µδi1···isi(Q).

From here using (38) we have:

δi1···isi(Q) = (detβ) βi1j1 · · ·βisjsδj1···jsj(P ).

It is easy to see that the last equality coincides with the formula (42) for s+ 1.
On the other side the formula (43) is true for s = 0 as this case coincides with (42).

Thus, the proof of the formula (43) is completed. �

We transform the main result (44) to the form suitable for applications.
Introduce new notations:

δ(p1···pk)(P ) =
∂

∂P p11 · · · ∂P
pk
k

δ(P ),

|p| = p1 + · · ·+ pk.

Apply the formula (43) to the derivative of the δ-function:

δ(q1···qk)(Q) = (detβ) β1 j1,1 · · ·β1j1,q1β2 j2,1 · · ·β2j2,q2 ×
× βkjk,1 · · ·βkjk,qkδj11···j1q1,··· ,jk1···jkqk(P ).

Next it is necessary to group similar terms on the right hand side of this equality that is
to count the number of terms of the form:

(detβ)

 k∏
i,j=1

(βij)
rij

 δ(p1···pk)(P ).

It is easy to see that for fixed i, the number of such terms coincides with the num-
ber of packing of ri1 + · · · + rik objects of k different types into qi boxes [14] that is
qi/ (ri1!ri2! · · · rik!). Then applying the rule of differentiation k times [14] we get the final
result:

δ(q1···qk)(Q) = (detβ)
∑
rij

k∏
i=1

qi!
k∏
j=1

(βij)
rij

rij !
δ(p1···pk)(P ), (47)

where
k∑
j=1

rij = qi,

k∑
i=1

rij = pj .
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Note that it follows from these formulas that:
k∑
i=1

qi =

k∑
j=1

pj .

7. Zonal functions of groups SO(4, 1), SO(3, 2) and SO(4, 2)

Since de Sitter groups and the group of conformal invariance play an important role
in cosmology and the theory of elementary particles, in this section we present explicit
expressions for zonal spherical functions of these groups.

Directly from the formula (14) we get the explicit expression for the zonal spherical
function of the group SO(4, 1):

Z [4,1]
σ (α) = 2F1

(
−σ

2
,

1− σ
2

; 2; tanh2 α

)
(coshα)σ. (48)

Directly from the formula (32) we obtain the explicit expressions for the zonal spherical
functions of groups SO(3, 2) and SO(4, 2):

Z [3,2]
σ (α) =

1

coshα

∞∑
l=0

(
1
2

)
l

l!
F2

(
−σ

2
,−l,−l; 3

2
, 1; 1, 1

)
(tanhα)l/2 =

=
1

coshα

∞∑
l=0

(
1
2

)
l

(
3
2

)
l

(
3+σ
2

)
l

(
σ
2 + 1

)
l

(l!)2
×

× 3F2

 −σ
2 , −l, −l;

1
−σ+1

2 − l, −
σ
2 − l;

 (tanhα)l/2 (49)

Z [4,2]
σ (α) =

1

coshα

∞∑
l=0

(
1
2

)
l

l!
F2

(
−σ

2
,−l,−l; 2, 1; 1, 1

)
(tanhα)l/2 =

=
1

coshα

∞∑
l=0

(
1
2

)
l

(
σ
2 + 2

)
l

(
σ
2 + 1

)
l

(l!)2 Γ (l + 2)
×

× 3F2

 −σ
2 , −l, −l;

1
−σ

2 − l − 1, −σ
2 − l;

 (tanhα)l/2 (50)

In conclusion, I would like to thank Prof. E.Veliev and Prof. A.Bagirov for their
attention to this work and for discussion of results.

Appendix. The generalized hypergeometric Horn’s series

The generalized hypergeometric Horn’s series with r variables is defined as follows,
[15]-[16]:

pFq



uα11, . . . , uα1r {aα1}
. . .

...
uαs1, . . . , uαsr {aαs} x1, . . . xr
vβ11, . . . , vβ1r {bβ1}

. . .
...

vβt1, . . . , vβtr {bβ1}


=



B.A.RAJABOV: ZONAL AND ASSOCIATED FUNCTIONS ON SO0(P,Q) GROUPS 43

=
∞∑

n1...nr=0

p∏
α=1

(aα,
r∑
j=1

uαjnj)

q∏
β=1

(bβ,
r∑
j=1

vβjnj)

·
r∏
i=1

xnii
ni!

. (51)

Below we present notations used in (51) and satisfying conditions:

p∑
α=1

uαj =

q∑
β=1

vβj + 1,

(λ, n) =
Γ(λ+ n)

Γ(λ)
= (λ)n, (λ, 0) = 1.

where the multiples in the numerator (denominator) of (51), corresponding to the same
values of uαj (respectively, vβj), 1 ≤ j ≤ r, are unified in the same row of (51), i.e., the
set of the same values of α, 1 ≤ α ≤ p, (respectively, β, 1 ≤ β ≤ q) are decomposed
to the subsets α1, . . . , αs (respectively, β1, . . . , βt) with the same values uαj (respectively,
vβj), 1 ≤ j ≤ r.
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