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ON GENERALIZATION OF PACHPATTE TYPE INEQUALITIES FOR

CONFORMABLE FRACTIONAL INTEGRAL

F. USTA1, M. Z. SARIKAYA2, §

Abstract. The main target addressed in this article is presenting Pachpatte type in-
equalities for Katugampola conformable fractional integral. In accordance with this
purpose we try to use more general type of function in order to make a generalization.
Thus our results cover the previous published studies for Pachpatte type inequalities.
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1. Introduction & Preliminaries

In light of recent developments in mathematics, fractional calculus is becoming ex-
tremely popular in a number of application areas such as control theory, computational
analysis and engineering [10], see also [14]. Together with these developments a number
of new definitions have been introduced to provide the best method for fractional calcu-
lus. For instance a new local, limit-based definition of a conformable derivative has been
introduced in [1], [11], [9], with several follow-up papers [2], [3], [6]-[9], [17] in more re-
cent times. In this study, we use the Katugampola derivative formulation of conformable
derivative of order for α ∈ (0, 1] and t ∈ [0,∞) given by

Dα (f) (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, Dα (f) (0) = lim

t→0
Dα (f) (t) , (1)

provided the limits exist (for detail see, [9]). If f is fully differentiable at t, then

Dα (f) (t) = t1−α
df

dt
(t) . (2)

A function f is α−differentiable at a point t ≥ 0 if the limit in (1) exists and is finite.
This definition yields the following results;

Theorem 1.1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then
i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,
ii. Dα (λ) = 0, for all constant functions f (t) = λ,
iii. Dα (fg) = fDα (g) + gDα (f) ,
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iv. Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2

v. Dα (tn) = ntn−α for all n ∈ R
vi. Dα (f ◦ g) (t) = f ′ (g (t))Dα (g) (t) for f is differentiable at g(t).

Definition 1.1 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A function
f : [a, b]→ R is α-fractional integrable on [a, b] if the integral∫ b

a
f (x) dαx :=

∫ b

a
f (x)xα−1dx

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
α ([a, b])

Remark 1.1.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

When we are presenting the main findings in this paper we will also use the following
important results, which can be derived from the results above.

Lemma 1.1. Let the conformable differential operator Dα be given as in (1), where α ∈
(0, 1] and t ≥ 0, and assume the functions f and g are α-differentiable as needed. Then

i. Dα (ln t) = t−α for t > 0

ii. Dα
[∫ t
a f (t, s) dαs

]
= f(t, t) +

∫ t
a D

α [f (t, s)] dαs

iii.
∫ b
a f (x)Dα (g) (x) dαx = fg|ba −

∫ b
a g (x)Dα (f) (x) dαx.

The definition given in below is a generalization of the limit definition of the derivative
for the case of a function with many variables.

Definition 1.2. Let f be a function with n variables t1, ..., tn and the conformable partial
derivative of f of order α ∈ (0, 1] in xi is defined as follows

∂α

∂tαi
f(t1, ..., tn) = lim

ε→0

f(t1, ..., ti−1, tie
εt−αi , ..., tn)− f (t1, ..., tn)

ε
. (3)

The below theorem is the generalization of Theorem 2.10 of [3], where the proof can be
found in [15].

Theorem 1.2. Assume that f(t, s) is function for which ∂αt

[
∂βs f(t, s)

]
and ∂βs [∂αt f(t, s)]

exist and are continuous over the domain D ⊂ R2, then

∂αt

[
∂βs f(t, s)

]
= ∂βs [∂αt f(t, s)] . (4)

Theorem 1.3. Let f, g ∈ C (R+,R+) , r ∈ C1 (R+,R+) and assume that r is non-
decreasing with r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

u(t) ≤ u0 +

∫ r(t)

0
f(s)u(s)dαs+

∫ r(t)

0
f(s)

[∫ s

0
g(n)u(n)dαn

]
dαs, t ≥ 0, (5)

then

u(t) ≤ u0 + u0

∫ t

0
f(s)e

∫ s
0 [f(n)+g(n)]dαndαs, t ≥ 0. (6)

Proof. The proof can be found in [16]. �
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In addition to these, integral inequalities play a significant role in the theory of dif-
ferential equations. During the past few years, many such new inequalities have been
discovered, which are motivated by certain application. One can refer to [4], [5], [12], [13],
[16] and the references therein.

This prospective study was designed to investigate the Pachpatte type inequalities for
conformable fractional integral. The established results are extensions of some existing
the Pachpatte type inequalities in the literature.

2. Main Findings & Cumulative Results

Throughout this paper, all the functions which appear in the inequalities are assumed
to be real-valued and all the integrals involved exist on the respective domains of their
definitions, and C (M,S) and C1 (M,S) denote the class of all continuous functions and
the first order conformable derivative, respectively, defined on set M with range in the set
S.

Theorem 2.1. Let f, g ∈ C (R+,R+) , r ∈ C1 (R+,R+), assume that r is non-decreasing
with r(t) ≤ t for t ≥ 0 and k(t) be a positive and non-decreasing function over R. If
u ∈ C (R+,R+) satisfies

u(t) ≤ k(t) +

∫ r(t)

0
f(s)u(s)dαs+

∫ r(t)

0
f(s)

[∫ s

0
g(n)u(n)dαn

]
dαs, t ≥ 0, (7)

then

u(t) ≤ k(t) + k(t)

∫ t

0
f(s)e

∫ s
0 [f(n)+g(n)]dαndαs, t ≥ 0. (8)

Proof. The proof is quite similar to Theorem 1.3. Because k(t) is a positive and non-
decreasing function over R, we deduce from (7) that

u(t)

k(t)
≤ 1 +

∫ r(t)

0

f(s)u(s)

k(s)
dαs+

∫ r(t)

0
f(s)

[∫ s

0

g(n)u(n)

k(n)
dαn

]
dαs, t ≥ 0. (9)

By applying the Theorem 1.3, we obtain the desired result. �

Theorem 2.2. Let f, g, q, h ∈ C (R+,R+) , r ∈ C1 (R+,R+) and assume that r is non-
decreasing with r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

u(t) ≤ u0 +

∫ r(t)

0
[f(s)u(s) + q(s)]dαs+

∫ r(t)

0
f(s)

[∫ s

0
[g(n)u(n) + h(n)]dαn

]
dαs, t ≥ 0,

(10)
then

u(t) ≤ u0 +

∫ t

0
(q(s) + f(s)Λ(s)) dαs

where

Λ(s) =

[
u0e

∫ s
0 [f(η)+g(η)]dαη +

∫ s

0
[m(n) + h(n)]e

∫ s
n [f(η)+g(η)]dαηdαn

]
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Proof. Let denote z(t) the right hand side of inequality (10). Then u(t) ≤ z(t) and
z(0) = u0 and

Dαz(t) = [f(r(t))u(r(t)) + q(r(t))]Dαr(t)

+ f(r(t))Dαr(t)

∫ r(t)

0
[g(n)u(n) + h(n)]dαn

≤ q(r(t))Dαr(t) + f(r(t))Dαr(t)

[
z(t) +

∫ r(t)

0
[g(n)z(n) + h(n)]dαn

]
. (11)

Define a function m(t) by

m(t) = z(t) +

∫ r(t)

0
[g(n)z(n) + h(n)]dαn, (12)

then m(0) = z(0) = u0, D
αz(t) ≤ q(r(t))Dαr(t) + f(r(t))Dαr(t)m(t), from (11) and

z(t) ≤ m(t) from (12) and

Dαm(t) = Dαz(t) + [g(r(t))z(r(t)) + h(r(t))]Dαr(t).

So we get

Dαm(t) ≤ [q(r(t)) + h(r(t))]Dαr(t) + [f(r(t)) + g(r(t))]Dαr(t)m(t). (13)

The inequality (13) implies the estimation of m(t) such that

m(t) ≤ u0e
∫ r(t)
0 [f(η)+g(η)]dαη +

∫ r(t)

0
[q(n) + h(n)]e

∫ r(t)
n [f(η)+g(η)]dαηdαn. (14)

Then using (14) and (11) we get

Dαz(t) ≤ q(r(t))Dαr(t)

+ f(r(t))Dαr(t)

[
u0e

∫ r(t)
0 [f(η)+g(η)]dαη +

∫ r(t)

0
[m(n) + h(n)]e

∫ r(t)
n [f(η)+g(η)]dαηdαn

]
.

Now by setting r(t) = s in the above inequalities and integrating from 0 to t and substi-
tuting the bound z(t) in u(t) ≤ z(t) we get

u(t) ≤ u0 +

∫ t

0
(q(s) + f(s)Λ(s)) dαs

where

Λ(s) =

[
u0e

∫ s
0 [f(η)+g(η)]dαη +

∫ s

0
[m(n) + h(n)]e

∫ s
n [f(η)+g(η)]dαηdαn

]
which this proves our claim. �

Theorem 2.3. Let f, g, q, h ∈ C (R+,R+) , r ∈ C1 (R+,R+) and assume that r is non-
decreasing with r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

u(t) ≤ k(t) + q(t)

(∫ r(t)

0
f(s)u(s)dαs+

∫ r(t)

0
f(s)q(s)

[∫ s

0
g(n)u(n)dαn

]
dαs

)
, t ≥ 0,

(15)
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then

u(t) ≤ k(t)+q(t)

[∫ t

0
f(s)

(
k(s) + q(s)

∫ s

0
k(n)[f(n) + g(n)]e

∫ s
n q(η)[f(η)+g(η)]dαηdαn

)
dαs

]
.

Proof. If we set

z(t) =

∫ r(t)

0
f(s)u(s)dαs+

∫ r(t)

0
f(s)q(s)

[∫ s

0
g(n)u(n)dαn

]
dαs,

then z(0) = 0 and u(t) ≤ k(t) + q(t)z(t) and

Dαz(t) = f(r(t))u(r(t))Dαr(t) + f(r(t))q(r(t))Dαr(t)

∫ r(t)

0
g(n)u(n)dαn

≤ f(r(t))Dαr(t)

(
k(r(t)) + q(r(t))

[
z(t) +

∫ r(t)

0
g(n){k(n) + q(n)z(n)}dαn

])
.

Let define a function m(t) by

m(t) = z(t) +

∫ r(t)

0
g(n){k(n) + q(n)z(n)}dαn, (16)

then m(0) = z(0) = 0, Dαz(t) ≤ f(r(t))[k(r(t)) + q(r(t))m(t)] from (16) and z(t) ≤ m(t).

Dαm(t) = Dαz(t) + g(r(t))[k(r(t)) + q(r(t))z(r(t))]Dαr(t).

Thus we have

Dαm(t) ≤ k(r(t))[f(r(t)) + g(r(t))]Dαr(t) + q(r(t))m(r(t))[f(r(t)) + g(r(t))]Dαr(t).

So the last inequality above implies that

m(t) ≤
∫ r(t)

0
k(n)[f(n) + g(n)]e

∫ r(t)
n q(η)[f(η)+g(η)]dαηdαn. (17)

Then using (17) we get

Dαz(t) ≤ f(r(t))Dαr(t)

(
k(r(t)) + q(r(t))

∫ r(t)

0
k(n)[f(n) + g(n)]e

∫ r(t)
n q(η)[f(η)+g(η)]dαηdαn

)
.

Now by setting r(t) = s in the above inequalities and integrating from 0 to t and substi-
tuting the bound z(t) in u(t) ≤ k(t) + q(t)z(t) we get the desired inequality. �

Theorem 2.4. Let f, k, g, q ∈ C (R+,R+) , r ∈ C1 (R+,R+) and assume that r is non-
decreasing with r(t) ≤ t for t ≥ 0. If u ∈ C (R+,R+) satisfies

u(t) ≤ u0 +

∫ r(t)

0
f(s)k(s)dαs+

∫ r(t)

0
f(s)

(∫ s

0
g(η)

[∫ η

0
q(n)u(n)dαn

]
dαη

)
dαs, t ≥ 0,

(18)
then

u(t) ≤

[
u0 +

∫ r(t)

0
f(s)k(s)dαs

]
e
∫ r(t)
0 f(s)

∫ s
0 g(η)(

∫ η
0 q(n)dαn)dαηdαs.
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Proof. Let assume u0 > 0. Then let define a function z(t) by

z(t) = u0 +

∫ r(t)

0
f(s)k(s)dαs. (19)

Unambiguously z(t) is a positive and non-decreasing function. Then by using (18) and
(19), we get

u(t)

z(t)
≤ 1 +

∫ r(t)

0
f(s)

(∫ s

0
g(η)

[∫ η

0

q(n)u(n)

z(n)
dαn

]
dαη

)
dαs. (20)

Now define another function v(t) by the right hand side of inequality (20). Here v(0) = 1.
Then we get,

Dαv(t) ≤ f(r(t))

[∫ r(t)

0
g(η)

(∫ η

0

q(n)u(n)

z(n)
dαn

)
dαη

]
.

From the last inequality above, one can easily obtain that

Dα

[
1

g(r(t))
Dα

(
Dαv(r(t))

f(r(t))

)]
=
q(r(t))u(r(t))

z(r(t))
.

Now using the fact that u(t)
z(t) ≤ v(t), we get

1

v(r(t))
Dα

[
1

g(r(t))
Dα

(
Dαv(r(t))

f(r(t))

)]
≤ q(r(t)).

Because of 1
g(r(t))D

α
(
Dαv(r(t))
f(r(t))

)
≥ 0, Dαv(t) ≥ 0 and v(t) > 0, we get that

1

v(r(t))
Dα

[
1

g(r(t))
Dα

(
Dαv(r(t))

f(r(t))

)]
≤ q(r(t))

+
1

v2(r(t))

[
1

g(r(t))
Dα

(
Dαv(r(t))

f(r(t))

)
Dαv(r(t))

]
i.e.,

Dα

 1
g(r(t))D

α
(
Dαv(r(t))
f(r(t))

)
v(r(t))

 ≤ q(r(t)).
By setting r(t) = n and integrating from 0 to r(t) with respect to n, we get

Dα
(
Dαv(r(t))
f(r(t))

)
v(r(t))

≤ g(r(t))

∫ r(t)

0
q(n)dαn.

Similarly, since Dαv(r(t))
f(r(t)) ≥ 0, Dαv(t) ≥ 0 and v(t) > 0, we observe that

Dα

 Dαv(r(t))
f(r(t))

v(r(t))

 ≤ g(r(t))

∫ r(t)

0
q(n)dαn.
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By taking r(t) = η and integrating from 0 to r(t) with respect to η, we get

Dαv(r(t))

v(r(t))
≤ f(r(t))

∫ r(t)

0
g(η)

(∫ η

0
q(n)dαn

)
dαη

Finally the last inequality above implies the estimation that

v(t) ≤ e
∫ r(t)
0 f(s)

∫ s
0 g(η)(

∫ η
0 q(n)dαn)dαηdαs.

Now using the fact that u(t)
z(t) ≤ v(t), we get

u(t) ≤

[
u0 +

∫ r(t)

0
f(s)k(s)dαs

]
e
∫ r(t)
0 f(s)

∫ s
0 g(η)(

∫ η
0 q(n)dαn)dαηdαs

which this proves our claim �

3. Concluding Remark

The present study was designed to make the generalization of some inequalities for
conformable differential equations. For this purpose we use the Katugampola derivative
formulation of conformable derivative of order for α ∈ (0, 1]. The findings of this inves-
tigation complement those of earlier studies. In other words the present study confirms
previous findings and contributes additional evidence by making generalization.
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Düzce University. He is interested in Approximation Theory, Multivariate approxi-
mation using Quasi Interpolation, Radial Basis Functions and Hierarchical/Wavelet
Bases, High-Dimensional Approximation using Sparse Grids, Financial Mathemat-
ics, Integral Equations, Fractional Calculus, Partial Differantial Equations.

Mehmet Zeki Sarıkaya received his BSc (Maths), MSc (Maths) and PhD (Maths)
degree from Afyon Kocatepe University, Afyonkarahisar, Turkey in 2000, 2002 and
2007 respectively. At present, he is working as a Professor in the Department of
Mathematics at Duzce University (Turkey) and as a Head of Department. More-
over, he is founder and Editor-in-Chief of Konuralp Journal of Mathematics (KJM).
He is the author or coauthor of more than 200 papers in the field of Theory of In-
equalities, Potential Theory, Integral Equations and Transforms, Special Functions,
Time-Scales.


