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COMPUTATION OF CONNECTIVITY INDICES OF KULLI PATH

WINDMILL GRAPH

V. R. KULLI1, B. CHALUVARAJU2, H. S. BOREGOWDA3, §

Abstract. The Kulli path windmill graph P
(m)
n+1 is the graph obtained by taking m ≥ 2

copies of the graph K1 + Pn for n ≥ 4 with a vertex K1 in common. In this paper,
we determine Zagreb, hyper-Zagreb, sum connectivity, general sum connectivity, Randic
connectivity, General Randic connectivity, atom-bond connectivity, geometric-arithmetic,
harmonic and symmetric division deg indices of Kulli path windmill graph.
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1. Introduction

Throughout this paper, we consider simple graphs which are finite, undirected without
loops and multiple edges. Let G = (V,E) be a connected graph with vertex set V = V (G)
and edge set E = E(G). The degree dG(v) of a vertex v is the number of vertices adjacent
to v. The edge connecting the vertices u and v will be denoted by uv. For other undefined
notations and terminologies from graph theory, the reader are referred to [7].

A molecular graph is a graph such that its vertices correspond to the atoms and the edges
to the bonds. Chemical graph theory is a branch of Mathematical chemistry which has an
important effect on the development of the chemical sciences. A single number that can
be used to characterize some property of the graph of a molecular is called a topological
index for that graph. There are numerous topological descriptors that have found some
applications in theoretical chemistry, especially in QSPR/QSAR research.

In [6], the first and second Zagreb indices were introduced to take account of the con-
tributions of pairs of adjacent vertices. The first and second Zagreb indices of a graph
G are defined as M1(G) =

∑
v∈V (G) dG(v)2 or M1(G) =

∑
uv∈E(G)[dG(u) + dG(v)] and

M2(G) =
∑

uv∈E(G)[dG(u)dG(v)].

In [11], Shirdel et al., introduced the first hyper Zagreb index HM1(G) of a graph G.
This index is defined as HM1(G) =

∑
uv∈E(G)[dG(u) + dG(v)]2. In [4], the second hyper

Zagreb index HM2(G) of a graph G is defined as HM2(G) =
∑

uv∈E(G)[dG(u)dG(v)]2.
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The Randic index or product connectivity index of a graph G is defined as χ(G) =∑
uv∈E(G)

1√
dG(u)dG(v)

. This topological index was proposed by Randic in [10].

The sum connectivity index of a graph G is defined as X(G) =
∑

uv∈E(G)
1√

dG(u)+dG(v)
.

This topological index was proposed by Zhou and Trinajstic in [14].
The general Randic connectivity index or second Ka index of a graph G is defined as

χa(G) =
∑

uv∈E(G)[dG(u)dG(v)]a. The general sum connectivity index or first Ka index of

a graph G is defined as Xa(G) =
∑

uv∈E(G)[dG(u) + dG(v)]a. The above two topological

indices were proposed in [1], [6] and [8].
In [2], Estrada et al. introduced the atom-bond connectivity index, which is defined as

ABC(G) =
∑

uv∈E(G)

√
dG(u)+dG(v)−2

dG(u)dG(v) .

The geometric-arithmetic index of a graphG is defined asGA(G) =
∑

uv∈E(G)
2
√

dG(u)dG(v)

dG(u)+dG(v) .

This index was proposed by Vukicevic and Furtula in [12].
The harmonic index of a graphG is defined on the arithmetic mean asH(G) =

∑
uv∈E(G)

2
dG(u)+dG(v) .

This index was first appeared in [3].
In [13], Vukicevic and Gasperov posed the symmetric division deg index of a graph G,

which is defined as

SDD(G) =
∑

uv∈E(G)

max (dG(u), dG(v))

min(dG(u), dG(v))
+
min (dG(u), dG(v))

max(dG(u), dG(v))
=

∑
uv∈E(G)

dG(u)2 + dG(v)2

dG(u)dG(v)
.

The Kulli path windmill graph P
(m)
n+1 is the graph obtained by taking m ≥ 2 copies of the

graph K1 + Pn for n ≥ 4 with a vertex K1 in common. This graph is shown in Figure-1.

The Kulli path windmill graph P
(m)
2+1 is a friendship graph and it is denoted by F

(m)
3 . The

Kulli path windmill graph P
(m)
3+1 is the first Kulli path windmill graph. For more details

on french windmill graph F
(m)
n and Kulli cycle windmill graph C

(m)
n+1, refer to [5] and [9],

respectively. In this paper, we consider only the Kulli path windmill graphs P
(m)
n+1 for m ≥ 2

and n ≥ 4.

Figure 1. Kulli path windmill graph P
(m)
n+1.
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2. Results

Theorem 2.1. The sum connectivity index of Kulli path windmill graph is

X(P
(m)
n+1) =

[
2√
5
− 3√

6
+

2√
mn+ 2

− 2√
mn+ 3

]
m

+

[
1√
6

+
1√

mn+ 3

]
mn.

Proof. Let G = P
(m)
n+1, where P

(m)
n+1 is a Kulli path windmill graph. By algebraic method,

we have |V (G)| = mn+ 1 and |E(G)| = 2mn−m. We have three partitions of the vertex
set V (G) as follows:
V2 = {v ∈ V (G) : dG(v) = 2}; |V2| = 2m,
V3 = {v ∈ V (G) : dG(v) = 3}; |V3| = mn− 2m, and
Vmn = {v ∈ V (G) : dG(v) = mn}, |Vmn| = 1.
Also we have four partitions of the edge set E(G) as follows:
E5 = {uv ∈ E(G) : dG(u) = 2, dG(v) = 3}; |E5| = 2m,
E6 = {uv ∈ E(G) : dG(u) = 3, dG(v) = 3}; |E6| = mn− 3m,
Emn+2 = {uv ∈ E(G) : dG(u) = mn, dG(v) = 2}; |Emn+2| = 2m, and
Emn+3 = {uv ∈ E(G) : dG(u) = mn, dG(v) = 3}; |Emn+3| = mn− 2m. Now

X(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

=
∑

uv∈E5

1√
2 + 3

+
∑

uv∈E6

1√
3 + 3

+
∑

uv∈Emn+2

1√
mn+ 2

+
∑

uv∈Emn+3

1√
mn+ 3

=
1√
5
× 2m+

1√
6
× (mn− 3m) +

1√
mn+ 2

× 2m

+
1√

mn+ 3
× (mn− 2m)

=

[
2√
5
− 3√

6
+

2√
mn+ 2

− 2√
mn+ 3

]
m

+

[
1√
6

+
1√

mn+ 3

]
mn.

�

Theorem 2.2. The general sum connectivity index of Kulli path windmill graph is

Xa(P
(m)
n+1) = [2(5a)− 3(6a) + 2(mn+ 2)a − 2(mn+ 3)a]m

+ [6a + (mn+ 3)a]mn.
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Proof. Let G = P
(m)
n+1 be a Kulli path windmill graph. Now

Xa(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]a

=
∑

uv∈E5

[2 + 3]a +
∑

uv∈E6

[3 + 3]a

+
∑

uv∈Emn+2

[mn+ 2]a +
∑

uv∈Emn+3

[mn+ 3]a

= 5a × 2m+ 6a × (mn− 3m) + (mn+ 2)a × 2m

+ (mn+ 3)a × (mn− 2m)

= [2(5a)− 3(6a) + 2(mn+ 2)a − 2(mn+ 3)a]m

+ [6a + (mn+ 3)a]mn.

�

From the above Theorem, the following results are immediate

Corollary 2.1. The first Zagreb index of P
(m)
n+1 is

M1(P
m
n+1) = (mn)2 + 9mn− 10m.

Corollary 2.2. The first hyper Zagreb index of P
(m)
n+1 is

HM1(P
m
n+1) = (mn)3 + 6(mn)2 + 41mn− 68.

Theorem 2.3. The Randic index of Kulli path windmill graph is

χ(P
(m)
n+1) =

[√
2√
3
− 1 +

√
2√
mn
− 2√

3mn

]
m+

[
1

3
+

1√
3mn

]
mn.

Proof. Let G = P
(m)
n+1, where P

(m)
n+1 is a Kulli path windmill graph. Now

χ(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

=
∑

uv∈E5

1√
2× 3

+
∑

uv∈E6

1√
3× 3

+
∑

uv∈Emn+2

1√
mn× 2

+
∑

uv∈Emn+3

1√
mn× 3

=
1√
6
× 2m+

1√
9
× (mn− 3m) +

1√
2mn

× 2m

+
1√

3mn
× (mn− 2m)

=

[√
2√
3
− 1 +

√
2√
mn
− 2√

3mn

]
m+

[
1

3
+

1√
3mn

]
mn.

�

Theorem 2.4. The general Randic index of Kulli path windmill graph is

χa(P
(m)
n+1) = [2× 6a − 32a+1 + 2a+1(mn)a − 2(3mn)a]m+ [9a + (3mn)a]mn.
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Proof. Let G = P
(m)
n+1 be a Kulli path windmill graph. Now

χa(G) =
∑

uv∈E(G)

[dG(u)dG(v)]a

=
∑

uv∈E5

[2× 3]a +
∑

uv∈E6

[3× 3]a +
∑

uv∈Emn+2

[mn× 2]a

+
∑

uv∈Emn+3

[mn× 3]a

= 6a × (2m) + 9a × (mn− 3m) + (2mn)a × (2m)

+ (3mn)a(mn− 2m)

= [2× 6a − 32a+1 + 2a+1(mn)a − 2(3mn)a]m

+ [9a + (3mn)a]mn.

�

From Theorem 2.4, we have the following results.

Corollary 2.3. The second Zagreb index of P
(m)
n+1 is

M2(P
m
n+1) = 3(mn)2 + 9mn− 2m2n− 15m.

Corollary 2.4. The second hyper Zagreb index of P
(m)
n+1 is

HM2(P
m
n+1) = 9(mn)3 − 10m3n+ 81mn− 171m.

Theorem 2.5. The atom-bond connectivity index of Kulli path windmill graph is

ABC(P
(m)
n+1) = (

√
2− 2)m+

2

3
mn+

√
2m

n
+

√
mn(mn+ 1)

3
− 2

√
m2n+m

3n
.

Proof. Let G = P
(m)
n+1, where P

(m)
n+1 is a Kulli path windmill graph. Now

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)dG(v)

=
∑

uv∈E5

√
2 + 3− 2

2× 3
+
∑

uv∈E6

√
3 + 3− 2

3× 3

+
∑

uv∈Emn+2

√
mn+ 2− 2

mn× 2
+

∑
uv∈Emn+3

√
mn+ 3− 2

mn× 3

=
1√
2

2m+
2

3
(mn− 3m) +

1√
mn

2m+

(
mn+ 1

3mn

)
(mn− 2m)

= (
√

2− 2)m+
2

3
mn+

√
2m

n
+

√
mn(mn+ 1)

3
− 2

√
m2n+m

3n
.

�
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Theorem 2.6. The geometric-arithmetic index of Kulli path windmill graph is

GA(P
(m)
n+1) =

(
4
√

6

5
− 3

)
m+mn+

4
√

2m
√
mn

mn+ 2

+

(
2
√

3
√
mn

mn+ 3

)
(mn− 2m).

Proof. Let G = P
(m)
n+1, where P

(m)
n+1 is a Kulli path windmill graph. Now

GA(G) =
∑

uv∈E(G)

2
√
dG(u)dG(v)

dG(u) + dG(v)
=
∑

uv∈E5

2
√

2× 3

2 + 3
+
∑

uv∈E6

2
√

3× 3

3 + 3

+
∑

uv∈Emn+2

2
√
mn× 2

mn+ 2
+

∑
uv∈Emn+3

2
√
mn× 3

mn+ 3

=
2
√

6

5
× 2m+ (1)× (mn− 3m) +

(
2
√

2
√
mn

mn+ 2

)
2m

+

(
2
√

3
√
mn

mn+ 3

)
(mn− 2m)

=

(
4
√

6

5
− 3

)
m+mn+

4
√

2m
√
mn

mn+ 2

+

(
2
√

3
√
mn

mn+ 3

)
(mn− 2m).

�

Theorem 2.7. The harmonic index of Kulli path windmill graph is

H(P
(m)
n+1) =

(
1

3
+

2

mn+ 3

)
mn+

(
1

mn+ 2
− 1

mn+ 3
− 1

20

)
4m.

Proof. Let G = P
(m)
n+1, where P

(m)
n+1 is a Kulli path windmill graph. Now

H(G) =
∑

uv∈E(G)

2

dG(u) + dG(v)

=
∑

uv∈E5

2

2 + 3
+
∑

uv∈E6

2

3 + 3
+

∑
uv∈Emn+2

2

mn+ 2

+
∑

uv∈Emn+3

2

mn+ 3

=
2

5
× 2m+

1

3
× (mn− 3m) +

(
2

mn+ 2

)
× 2m

+

(
2

mn+ 3

)
× (mn− 2m)

=

(
1

3
+

2

mn+ 3

)
mn+

(
1

mn+ 2
− 1

mn+ 3
− 1

20

)
4m.

�
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Corollary 2.5. Let P
(m)
n+1 be a Kulli path windmill graph with n ≥ 2. Then

(i) H(P
(m)
n+1) = 2X(−1)(P

(m)
n+1),

(ii) H(P
(m)
n+1) < χ(P

(m)
n+1).

Theorem 2.8. The symmetric division deg index of Kulli path windmill graph is

SDD(P
(m)
n+1) =

(mn
3

+
m

3
+ 2
)
mn− 5

3
m− 2

n
+ 3.

Proof. Let G = P
(m)
n+1 be a Kulli path windmill graph. Now

SDD(P
(m)
n+1) =

∑
uv∈E(G)

dG(u)2 + dG(v)2

dG(u)dG(v)

=
∑

uv∈E5

22 + 32

2× 3
+
∑

uv∈E6

32 + 32

3× 3
+

∑
uv∈Emn+2

(mn)2 + 22

mn× 2

+
∑

uv∈Emn+3

(mn)2 + 32

mn× 3

=
13

6
× 2m+ 2× (mn− 3m) +

(
(mn)2 + 4

2mn

)
× 2m

+

(
(mn)2 + 9

3mn

)
× (mn− 2m)

=
(mn

3
+
m

3
+ 2
)
mn− 5

3
m− 2

n
+ 3.

�
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