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q-STARLIKE FUNCTIONS OF ORDER ALPHA

Y. POLATOĞLU1, F. UÇAR2, B. YILMAZ2, §

Abstract. For all q ∈ (0, 1) and 0 ≤ α < 1 we define a class of analytic functions,
so-called q-starlike functions of order α on the open unit disc D = {z : |z| < 1} . We will
study this class of functions and explore some inclusion properties with the well-known
class Starlike functions of order α.
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1. Introduction

In the field of geometric functions theory, the concept of q-calculus (including fractional
q-calculus) has been used by several authors. One may refer to the recent papers [6], [7],
[8] and [9] on the subject. Let Ω be the family of functions φ(z) which are regular in D
and satisfying the conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D. We denote by P (q) the
family of functions of the form p(z) = 1 + p1(z) + p2z

2 + · · · regular in the open unit disc
D and satisfying ∣∣∣∣p(z)− 1

1− q

∣∣∣∣ < 1

1− q
, (z ∈ D, q ∈ (0, 1)) (1)

and let us denote by A the class of functions f(z) normalized by f(0) = 0, f ′(0) = 1 that
are analytic in the open unit disc D. In other words, the function f(z) in A have the
power series representation

f(z) = z +
∞∑
n=2

anz
n.

Let f1(z) and f2(z) be two elements of A, if there exists a function φ(z) ∈ Ω such that
f1(z) = f2(φ(z)) for all z ∈ D, then we say that f1(z) is subordinate to f2(z) and we
write f1(z) ≺ f2(z). If f2(z) is univalent, then f1(z) ≺ f2(z) if and only if f1(0) = f2(0),
f1(D) ⊂ f2(D) which implies f1(Dr) ⊂ f2(Dr), Dr = {z : |z| < r < 1} . (Subordination
principle [1]).

Let |q| < 1 be a fixed real number and we recall here q-fractional calculus for the analytic
functions f(z) ∈ A.
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(i) A subset B of C is called q-geometric, if zq ∈ B whenever z ∈ B. If B is q-geometric,
then it contains all geometric sequences {zqn}∞0 , zq ∈ B.

(ii) Let f be a function (real or complex valued) defined on q-geometric set B, |q| 6= 1,
the q-difference operator, which was introduced by Jackson [5] and may go back to E.
Heine or Euler is defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z
, (z ∈ B− {0}) (2)

The q-difference operator (2) sometimes called Jackson q-difference operator. If 0 ∈ B,
the q-derivative at zero is defined for |q| < 1, by

Dqf(0) = lim
n→∞

f(qnz)− f(0)

zqn
, (3)

provided the limit exists and does not depend on z. In addition, q-derivative at zero is
defined for |q| > 1, by

Dqf(0) = Dq−1f(0).

Under the hypothesis of the definition of q-difference operator, we have the following rules
[3]

Dqz
k =

1− qk

1− q
zk−1,

therefore we have

(1) Dqf(z) = Dq

(
z + a2z

2 + a3z
3 + · · ·+ anz

n + · · ·
)

= 1 +
∑∞

n=2

1− qn

1− q
anz

n−1.

(2) Let f(z) and g(z) be defined on a q-geometric set B ⊂ C such that q-derivative of
f and g exist for all z ∈ B, then
(a) Dq (af(z)± bg(z)) = aDqf(z) ± bDqg(z) where a and b are real or complex

numbers.
(b) Dq (f(z) · g(z)) = g(z)Dqf(z) + f(qz)Dqg(z).

(c) Dq

(
f(z)

g(z)

)
=
g(z)Dqf(z)− f(z)Dqg(z)

g(z)g(qz)
, g(z)g(qz) 6= 0.

(d) The q-differential is defined as

dqf(z) = f(z)− f(qz),

therefore

Dqf(z) =
dqf(z)

dqz
=
f(z)− f(qz)

(1− q)z
⇒ dqf(z) =

f(z)− f(qz)

(1− q)z
dqz.

The following theorem is an analogue of the fundamental theorem of calculus.

Theorem 1.1 (Fundamental theorem of q-calculus, [3]). If F (z) is an antiderivative of
f(z) and F (z) is continuous at z = 0, we have∫ b

a
f(ζ)dqζ = F (b)− F (a)

where 0 ≤ a < b ≤ ∞.

In this paper, we investigate a new class of analytic functions defined in the open unit
disk, which are associated with q-calculus operators. In particular, we will give certain
inclusion properties for the newly defined class of q-starlike functions of order α, namely,

S∗q (α) =

{
f(z) ∈ A : z

Dqf(z)

f(z)
= α+ (1− α)p(z), p(z) ∈ P (q), 0 ≤ α < 1

}
.
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2. Main Results

For p(z) ∈ P (q) it can be easily seen that

z
Dqf(z)

f(z)
= α+ (1− α)p(z)⇒

z
Dqf(z)
f(z) − α
1− α

∈ P (q).

In a recent work of Polatoğlu et al. [4], authors proved that

Theorem 2.1. F (z) ∈ P (q) if and only if F (z) ≺ 1 + z

1− qz
.

Therefore we have the following lemma.

Lemma 2.1. f(z) ∈ S∗q (α) if and only if

z
Dqf(z)
f(z) − α
1− α

≺ 1 + z

1− qz
.

Proof. The proof of the Lemma 2.1 is an immediate consequence of the above Theorem. �

Lemma 2.2. Let the function f(z) ∈ A, then f(z) ∈ S∗q (α) if and only if

z
Dqf(z)

f(z)
≺ 1 +Az

1 +Bz
,

where A = b2−a2+a
b , B = 1−a

b , a = 1−αq
1−q and b = 1−α

1−q .

Proof. If f(z) ∈ S∗q (α), then we have by (1)∣∣∣∣(zDqf(z)

f(z)
− α

)
− 1− α

1− q

∣∣∣∣ ≤ 1− α
1− q

,

and ∣∣∣∣zDqf(z)

f(z)
− 1− αq

1− q

∣∣∣∣ ≤ 1− α
1− q

.

For brevity we say
1− αq
1− q

= a and
1− α
1− q

= b, thus we have∣∣∣∣zDqf(z)

f(z)
− a
∣∣∣∣ ≤ b,

and ∣∣∣∣1b · zDqf(z)

f(z)
− a

b

∣∣∣∣ ≤ 1.

Now we set

ψ(z) =
1

b
· zDqf(z)

f(z)
− a

b
.

then ψ is an analytic function and has a modulo at most one by (2). Furthermore, for
f(z) ∈ S∗q (α) we have

ψ(z) =
1

b

(
z

1 +
∑∞

n=2
1−qn
1−q anz

n−1

z +
∑∞

n=2 anz
n

)
− a

b
,

and

ψ(0) =
1

b
− a

b
=

1− a
b

.
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Therefore the function

φ(z) =
ψ(z)− ψ(0)

1− ψ(0)ψ(z)
=

z
Dqf(z)
f(z) − 1

b− 1−a
b

(
z
Dqf(z)
f(z) − a

) ,
satisfies the conditions of Schwarz lemma, then we have

z
Dqf(z)

f(z)
=

1 + b2−a2+a
b φ(z)

1 + 1−a
b φ(z)

=
1 +Aφ(z)

1 +Bφ(z)
,

and making use of subordination principle, one can easily see that

z
Dqf(z)

f(z)
≺ 1 +Az

1 +Bz
,

where A = b2−a2+a
b and B = 1−a

b . Conversely, if

z
Dqf(z)

f(z)
≺ 1 +Az

1 +Bz
,

then

z
Dqf(z)

f(z)
=

1 +Aφ(z)

1 +Bφ(z)
,

where , |φ(z)| < 1, φ(0) = 0. Thus we have

z
Dqf(z)

f(z)
− a = b

[
1−a
b + φ(z)

1 + 1−a
b φ(z)

]
.

Since the linear transformation
1−a
b + φ(z)

1 + 1−a
b φ(z)

maps the unit disc onto itself, it follows from

that ∣∣∣∣zDqf(z)

f(z)
− a
∣∣∣∣ = b

∣∣∣∣∣ 1−a
b + φ(z)

1 + 1−a
b φ(z)

∣∣∣∣∣ < |b| .
�

Theorem 2.2. Let f(z) be an element of S∗q (α) then

F2(α, q, r) ≤ |f(z)| ≤ F1(α, q, r), (a 6= 1)

G2(α, q, r) ≤ |f(z)| ≤ G1(α, q, r), (a = 1)

where

F1(α, q, r) =

r(1 +
1− a
b

r

) b2−(a−1)2

1−a


1−q

log q−1

,

F2(α, q, r) =

r(1− 1− a
b

r

) b2−(a−1)2

1−a


1−q

log q−1

,

G1(α, q, r) =

[
e

b2−a2+a
b

r

]
r

1−q

log q−1 ,

G2(α, q, r) =

[
e−

b2−a2+a
b

r

]
r

1−q

log q−1 .
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Furthermore, we have

M2(α, q, r) ≤ |Dqf(z)| ≤M1(α, q, r), (a 6= 1)

N2(α, q, r) ≤ |Dqf(z)| ≤ N1(α, q, r), (a = 1)

where

M1(α, q, r) =
1

r

r(1 +
1− a
b

) b2−(a−1)2

1−a


1−q

log q−1

1 +Ar

1 +Br
,

M2(α, q, r) =
1

r

r(1− 1− a
b

) b2−(a−1)2

1−a


1−q

log q−1

1−Ar
1−Br

,

and

N1(α, q, r) =
1

r
e

b2−a2+a
b

rr
1−q

log q−1 (1 +Ar),

N2(α, q, r) =
1

r
e−

b2−a2+a
b

rr
1−q

log q−1 (1−Ar).

Proof. Using the above Lemma (2.2), we can write if

z
Dqf(z)

f(z)
≺ 1 +Az

1 +Bz

then ∣∣∣∣zDqf(z)

f(z)
− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B) r

1−B2r2
. (4)

Because the linear transformation
1 +Az

1 +Bz
maps |z| = r onto the disc with centre c(r) =(

1−ABr2
1−B2r2

, 0
)

and the radius ρ(r) = (A−B)r
1−B2r2

(this was proved by W. Janowski [2]), therefore

using the subordination principle we can write∣∣∣∣zDqf(z)

f(z)
− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B) r

1−B2r2
, (a 6= 1)∣∣∣∣zDqf(z)

f(z)
− 1

∣∣∣∣ ≤ Ar, (a = 1)

(5)

Using q-differential properties and partial q-derivatives, we can write

Re z
Dqf(z)

f(z)
= r

∂q
∂r

log
∣∣∣f(reiθ)

∣∣∣ . (6)

Considering (5) and (6)together we obtain

1−Ar
r(1−Br)

≤ ∂q
∂r

log
∣∣∣f(reiθ)

∣∣∣ ≤ 1 +Ar

1 +Br
, (a 6= 1) (7)

1

r
−A ≤ ∂q

∂r
log
∣∣∣f(reiθ)

∣∣∣ ≤ 1

r
+A, (a = 1) (8)

and taking q-integrals both sides of (7) and (8), we getr(1− 1− a
b

r

) b2−(a−1)2

1−a


1−q

log q−1

≤ |f(z)| ≤

r(1 +
1− a
b

r

) b2−(a−1)2

1−a


1−q

log q−1

, a 6= 1 (9)

e−
(b2−a2+a)r

b r
1−q

log q−1 ≤ |f(z)| ≤ e
b2−a2+a

b
rr

1−q

log q−1 , a = 1. (10)
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On the other hand, we have from (4) that

1−Ar
1−Br

≤
∣∣∣∣zDqf(z)

f(z)

∣∣∣∣ ≤ 1 +Ar

1 +Br
, (a 6= 1)

1−Ar ≤
∣∣∣∣zDqf(z)

f(z)

∣∣∣∣ ≤ 1 +Ar, (a = 1)

and

1

r
|f(z)| 1−Ar

1−Br
≤ |Dqf(z)| ≤ 1

r
|f(z)| 1 +Ar

1 +Br
, (a 6= 1)

1

r
|f(z)| (1−Ar) ≤ |Dqf(z)| ≤ 1

r
|f(z)| (1 +Ar), (a = 1)

thus we obtain from (9) and (10)

1

r

[
r
(
1− 1−a

b r
) b2−(a−1)2

1−a

] 1−q

log q−1 1−Ar
1−Br

≤ |Dqf(z)| ≤ 1

r

[
r
(
1 + 1−a

b r
) b2−(a−1)2

1−a

] 1−q

log q−1 1 +Ar

1 +Br
, (a 6= 1)

1

r
e−

b2−a2+a
b

r 1− q
r log q−1

(1−Ar) ≤ |Dqf(z)| ≤ 1

r
e

b2−a2+a
b

rr
1−q

log q−1 (1 +Ar), (a = 1).

�

All these inequalities in the Theorem 2.2 are sharp because extremal function is the
solution of

z
Dqf(z)

f(z)
= α+ (1− α)p(z) = α+ (1− α)

1 + z

1− qz
q-differential equation.

3. Conclusion

We briefly consider some consequences of the results derived in the paper. In this paper,
we investigate a new class of analytic functions defined in the open unit disk, which are
associated with q-calculus operators. In particular, we gave certain inclusion properties
for the newly defined class of q-starlike functions of order α. If we let q → 1− and making
use of the techniques from q-calculus, we observe that the function class S∗q (α) and the
inequalities of Theorem 2.2 provide the q-extensions of the known class and the related
inequalities due to Janowski [2] (see also Goodman [1]).

We also conclude by remarking that the q-calculus operators defined in Section 1 can
be used to investigate properties like, coefficient estimates, distortion theorems, etc. of
several analytic (or meromorphic) function classes.
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