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A CRITICAL STUDY OF MEROMORPHIC STARLIKE FUNCTIONS

IMRAN FAISAL1, M. DARUS2, F. A. SHAH3, §

Abstract. An attempt has been made to introduce a new criterion to make it possible to
change meromorphic analytic function into a meromorphic starlike function of particular
order. This criterion is based on a differential operator which is defined in a punctured
unit disk U∗. By using this criterion, one can find easily different types of meromorphic
starlike functions of specific order.
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1. Introduction

Let
∑

p denote the class of meromorphic functions [cf.[1]] of the form

f(z) =
1

zp
+

∞∑
k=0

akz
k, p ∈ N = {1, 2, 3...}, (1)

which are analytic in U∗ = {z : 0 < |z| < 1}. For f ∈
∑

p, we define

Θn
p,λ(α, β, µ)f(z) =

1

zp
+

∞∑
k=0

(
α+ (µ+ λ)(k + p) + β

α+ β

)n
akz

k, (2)

where α ≥ 0, β > 0, µ ≥ 0, λ ≥ 0 and n ∈ N ∪ {0}.
Also by specializing the parameters α, β, p, µ and λ, we obtain the following operators
studied by various authors:

Θm
p,λ(0, l, 0)f(z) = Imp (λ, l)f(z) (see R.M. El-Ashwah [2] );

Θm
1,1(0, l, 0)f(z) = I(m, l)f(z) (Cho et al. [3, 4]);

Θm
p,1(0, l, 0)f(z) = Dm

p f(z) (see Aouf and Hossen [5], Liu and Owa [6], Liu and Srivastava

[7], Srivastava and Patel [8]);
Θm

1,1(0, 1, 0)f(z) = Imf(z) (see Uralegaddi and Somanatha [9] and Ashwah and Aouf

[10]), respectively.
Note that:
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For β = 0 we get Θn
p,λ(α, 0, µ) = Υn

p,λ(α, µ) where

Υn
p,λ(α, µ)f(z) =

1

zp
+

∞∑
k=0

(
α+ (µ+ λ)(k + p)

α

)n
akz

k.

If β = 0 and α = 1 then Θn
p,λ(1, 0, µ) = Φn

p,λ(µ) where

Φn
p,λ(µ)f(z) =

1

zp
+

∞∑
k=0

(1 + (µ+ λ)(k + p))n akz
k.

When β = 0, α = λ = 1 we get Θn
p,1(1, 0, µ) = Θn

p (µ) where

Θn
p (µ)f(z) =

1

zp
+
∞∑
k=0

(1 + (µ+ 1)(k + p))n akz
k.

A function f ∈
∑

p is said to be meromorphic starlike functions of order ξ i.e. f ∈ S∗p(ξ)
if

<
(
−zf

′(z)

f(z)

)
> ξ, 0 ≤ ξ < p. (3)

For more details about meromorphic functions, we suggest the readers to study [[11]-[19]].

2. Criterion for Meromorphic Starlike Functions

Theorem 2.1. Let the meromorphic function f ∈
∑

p be regular in U∗ and Θn
p,λ(α, β, µ)f

be a differential operator defined in (2). For p = 1 if

g(z) =
1

zp
+

∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n((1− ξ)k+1

(k + 1)!

)
zk,

then Θn
p,λ(α, β, µ)g belongs to the class S∗p(ξ), i.e. Θn

p,λ(α, β, µ)g is a meromorphic starlike

functions of order ξ, where α, β, λ and µ have the same constraints as given in (1), (2)
and (3) respectively.

Proof. First we suppose the function

g(z) =
1

zp
+
∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n((1− ξ)k+1

(k + 1)!

)
zk,

where ξ, p, α, β, λ and µ have the same constraints as given in (1), (2) and (3).

By using (2), for f(z) = 1
zp +

∞∑
k=0

akz
k, z ∈ U = U∗ ∪ {0}, we have

Θ1
p,λ(α, β, µ)f(z) =

(
1 +

p(µ+ λ)

α+ β

)
f(z) +

(
µ+ λ

α+ β

)
zf ′(z),

therefore for the function g ∈
∑

p we define

Θ1
p,λ(α, β, µ)g(z) ==

(
1 +

p(µ+ λ)

α+ β

)
g(z) +

µ+ λ

α+ β

(
zg′(z)

)
, (4)

where

g(z) =
1

zp
+

∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n((1− ξ)k+1

(k + 1)!

)
zk, (5)
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implies

zg′(z) =
−p
zp

+
∞∑
k=0

k

(
α+ β

α+ (µ+ λ)(k + p) + β

)n((1− ξ)k+1

(k + 1)!

)
zk. (6)

By using (4), (5) and (6) and doing some calculation, we get

Θ1
p,λ(α, β, µ)g(z) =

1

zp
+
∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n−1((1− ξ)k+1

(k + 1)!

)
zk.

Suppose h(z) on temporary

h(z) =
1

zp
+
∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n−1((1− ξ)k+1

(k + 1)!

)
zk, (7)

and define

Θ2
p,λ(α, β, µ)f(z) =

(
1 +

p(µ+ λ)

α+ β

)
h(z) +

(
µ+ λ

α+ β

)
zh′(z), (8)

then by using (7) and (8), and after simplification

Θ2
p,λ(α, β, µ)g(z) =

1

zp
+
∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n−2((1− ξ)k+1

(k + 1)!

)
zk,

continuing the same process, finally we obtain

Θn
p,λ(α, β, µ)g(z) =

1

zp
+
∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n−n((1− ξ)k+1

(k + 1)!

)
zk,

hence for p = 1 and 0 ≤ ξ < 1

Θn
1,λ(α, β, µ)g(z) =

1

z
+
∞∑
k=0

(
(1− ξ)k+1

(k + 1)!

)
zk,

where
1

z
+
∞∑
k=0

(1− ξ)k+1

(k + 1)!
zk =

e(1−ξ)z

z
.

Let us define the function F (z) by

F (z) =
e(1−ξ)z

z
,

this give us that

<
(
zF ′(z)

F (z)

)
= <(−1 + (1− ξ)z) = −ξ,

Therefore we see that e(1−ξ)z

z ∈ S∗p(ξ), implies Θn
p,λ(α, β, µ)g(z) ∈ S∗p(ξ), for p = 1 as

required. �

Corollary 2.1. Let the meromorphic function f ∈
∑

p be regular in U∗ and Θn
p,λ(α, β, µ)f

be a differential operator defined in (2). For p = 1 if

g(z) =
1

zp
+

∞∑
k=0

(
α+ β

α+ (µ+ λ)(k + p) + β

)n( 1

(k + 1)!

)
zk,

then Θn
p,λ(α, β, µ)g belongs to the class S∗p(0), i.e. Θn

p,λ(α, β, µ)g is a meromorphic starlike

functions of order 0, where α, β, λ and µ have the same constraints as given in (1), (2)
and (3) respectively.
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