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GENERALIZED HANKEL DETERMINANT FOR A GENERAL

SUBCLASS OF UNIVALENT FUNCTIONS

S. YALÇIN1, Ş. ALTINKAYA2, S. OWA3, §

Abstract. Making use of the generalized Hankel determinant, in this work, we consider
a general subclass of univalent functions. Moreover, upper bounds are obtained for∣∣a3 − µa22∣∣ , where µ ∈ R.
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1. Introduction

Let A represent the class of functions f which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}
with in the form

f(z) = z +
∞∑
n=2

anz
n. (1)

Let S be the subclass of A consisting of the form (1) which are also univalent in U.
Let Pβ denote the class of functions consisting of p, such that

p(z) = 1 + p1z + p2z
2 + · · · = 1 +

∞∑
n=1

pnz
n,

which are regular in the open unit disc U and satisfy <(p(z)) > β for some β (0 ≤ β < 1)
and for any z ∈ U .

The Fekete-Szegö functional
∣∣a3 − µa22∣∣ for normalized univalent functions of the form

given by (1) is well known for its rich history in Geometric Function Theory. Its origin
was in the disproof by Fekete and Szegö of the 1933 conjecture of Littlewood and Paley
that the coefficients of odd univalent functions are bounded by unity (see [3]). The func-
tional has since received great attention, particularly in many subclasses of the family of
univalent functions. Nowadays, it seems that this topic had become an interest among the
researchers (see, for example, [1], [4], [5], [6]).
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The qth Hankel determinant for n ≥ 0 and q ≥ 1 is stated by Noonan and Thomas ([7])
as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

This determinant has also been investigated by several authors. For example, Noor [8]
determined the rate of growth of Hq(n) as n → ∞ for functions f given by (1) with
bounded boundary. In particular, sharp upper bounds on H2(2) were obtained by the
authors of articles ([8], [10]) for different classes of functions.

It is interesting to note that

H2(1) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = a3 − a22

and

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

The Hankel determinant H2(1) = a3 − a22 is well-known as Fekete-Szegö functional.

Definition 1.1. [2] A function f ∈ A is said to be in the class Qλ (β) , if the following
condition is satisfied:

<
(

(1− λ)
f (z)

z
+ λf ′ (z)

)
> β; 0 ≤ β < 1, λ ≥ 0, z ∈ U.

In order to derive our main results, we require the following lemmas.

Lemma 1.1. [9] If the function p ∈ Pβ, then

2(1− β)p2 = p21 + x(4(1− β)2 − p21)

4(1− β)2p3 = p31 + 2(4(1− β)2 − p21)p1x− p1(4(1− β)2 − p21)x2

+2(1− β)(4(1− β)2 − p21)(1− |x|
2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 1.2. [9] If the function p ∈ Pβ, then

|pn| ≤ 2(1− β) (n ∈ N = {1, 2, . . .}) .

Lemma 1.3. [9] If the function p ∈ Pβ, then, for all n and s (1 ≤ s < n),

|(1− α)µpn − pn−sps| ≤

 2(2− µ)(1− β)2; µ ≤ 1

2(1− β)2µ; µ ≥ 1
.

The purpose of this paper is to find the upper bounds of generalized Hankel determinant∣∣anan+2 − µa2n+1

∣∣ for functions in the class Qλ (β) .
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2. Main results

Theorem 2.1. Let f given by (1) be in the class Qλ (β), 0 ≤ β < 1 and n = 2, 3, . . . .
Then

∣∣anan+2 − µa2n+1

∣∣ ≤


4(1−β)2
1+2nλ+(n2−1)λ2

[
1− 1+2nλ+(n2−1)λ2

(1+nλ)2
µ
]

; µ ≤ 0

4(1−β)2
1+2nλ+(n2−1)λ2 ; 0 ≤ µ ≤ (1+nλ)2

1+2nλ+(n2−1)λ2

4(1−β)2
1+2nλ+(n2−1)λ2

[
1+2nλ+(n2−1)λ2

(1+nλ)2
µ− 1

]
; µ ≥ (1+nλ)2

1+2nλ+(n2−1)λ2

.

(2)
The equality is satisfied for the function

f(z) = (1− λ)
z + (1− 2β)z2

1− z
− λ [(1− 2β)z + 2(1− β) log(1− z)] (µ ≤ 0).

Proof. Let f ∈ Qλ (β) . Then

(1− λ)
f (z)

z
+ λf ′ (z) = p(z)

or equivalently,

1 + (1 + λ) a2z + · · ·+ [1 + (n− 1)λ] anz
n−1 + [1 + nλ] an+1z

n + [1 + (n+ 1)λ] an+2z
n+1 + · · ·

= 1 + p1z + · · ·+ pn−1z
n−1 + pnz

n + pn+1z
n+1 + · · · .

(3)
It follows that

an =
pn−1

1 + (n− 1)λ
, an+1 =

pn
1 + nλ

and an+2 =
pn+1

1 + (n+ 1)λ
.

This gives us that∣∣anan+2 − µa2n+1

∣∣ =
1

1 + 2nλ+ (n2 − 1)λ2

∣∣∣∣pn−1pn+1 −
1 + 2nλ+ (n2 − 1)λ2

(1 + nλ)2
µp2n

∣∣∣∣ .
Applying Lemma 1.3, we get

∣∣anan+2 − µa2n+1

∣∣ ≤


4(1−β)2
1+2nλ+(n2−1)λ2

[
1− 1+2nλ+(n2−1)λ2

(1+nλ)2
µ
]

; µ ≤ 0

4(1−β)2
1+2nλ+(n2−1)λ2 ; 0 ≤ 1+2nλ+(n2−1)λ2

(1+nλ)2
µ ≤ 1

4(1−β)2
1+2nλ+(n2−1)λ2

[
1+2nλ+(n2−1)λ2

(1+nλ)2
µ− 1

]
; 1+2nλ+(n2−1)λ2

(1+nλ)2
µ ≥ 1

This gives the bound on
∣∣anan+2 − µa2n+1

∣∣ as asserted in (2). �

Theorem 2.2. Let f given by (1) be in the class Qλ (β) and µ ∈ R. Then

∣∣a3 − µa22∣∣ ≤


2(1−β)
1+2λ

[
1− 2(1−β)(1+2λ)

(1+λ)2
µ
]

; µ ≤ 0

2(1−β)
1+2λ ; 0 ≤ µ ≤ (1+λ)2

(1−β)(1+2λ)

2(1−β)
1+2λ

[
2(1−β)(1+2λ)

(1+λ)2
µ− 1

]
; µ ≥ (1+λ)2

(1−β)(1+2λ)

.
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The equality is satisfied for the function

f(z) = (1− λ)
z + (1− 2β)z2

1− z
− λ [(1− 2β)z + 2(1− β) log(1− z)] (µ ≤ 0).

Proof. From (3) ∣∣(1 + 2λ)a3 − µ(1 + λ)2a22
∣∣ =

∣∣p2 − µp21∣∣ , (4)

and from this equation (4), we obtain

(1 + 2λ)

∣∣∣∣a3 − µ(1 + λ)2

1 + 2λ
a22

∣∣∣∣ =
∣∣p2 − µp21∣∣ .

Our result now follows by an application of Lemma 4:

∣∣a3 − µa22∣∣ ≤ 1

1 + 2λ



2(1− β)
[
1− 2(1−β)(1+2λ)

(1+λ)2
µ
]

; µ ≤ 0

2(1− β); 0 ≤ (1+2λ)

(1+λ)2
µ ≤ 1

1−β

2(1− β)
[
2(1−β)(1+2λ)

(1+λ)2
µ− 1

]
; (1+2λ)

(1+λ)2
µ ≥ 1

1−β

.

�

Remark 2.1. Putting λ = 0 in Theorem 2.2 we have the generalized Hankel determinant
for the well-known class Qλ (β) = Q (β) as in [10].

Corollary 2.1. Let f given by (1) be in the class Q (β) and 0 ≤ β < 1. Then

∣∣a3 − µa22∣∣ ≤


2(1− β) [1− 2(1− β)µ] ; µ ≤ 0

2(1− β); 0 ≤ µ ≤ 1
1−β

2(1− β) [2(1− β)µ− 1] ; µ ≥ 1
1−β

.

Remark 2.2. Putting λ = 1 in Theorem 2.2 we have the generalized Hankel determinant
for the well-known class Qλ (β) = R (β) as in [10].

Corollary 2.2. Let f given by (1) be in the class R (β) and 0 ≤ β < 1. Then

∣∣a3 − µa22∣∣ ≤


2(1−β)
3

[
1− 3

2(1− β)µ
]

; µ ≤ 0

2
3(1− β); 0 ≤ µ ≤ 4

3(1−β)

2(1−β)
3

[
3
2(1− β)µ− 1

]
; µ ≥ 4

3(1−β)

.

Theorem 2.3. Let f given by (1) be in the class Qλ (β) and 0 ≤ β < 1. Then∣∣a2a4 − µa23∣∣ ≤ 3B2−4B+9
8(1+λ)(1+3λ)(1−B) ; for (1+2λ)2

2(1+λ)(1+3λ) ≤ µ ≤ (1+2λ)2

(1+λ)(1+3λ)
,

where B = (1+λ)(1+3λ)

(1+2λ)2
µ.

Proof. Using (3), one can see easily that∣∣a2a4 − µa23∣∣ = 1
(1+λ)(1+3λ)

∣∣∣p1p3 − (1+λ)(1+3λ)

(1+2λ)2
µp22

∣∣∣ .
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Then, Lemma 2.1 gives us that∣∣∣p1p3 − (1+λ)(1+3λ)

(1+2λ)2
µp22

∣∣∣ = 1
4(1−β)2

∣∣∣p41 + 2
{

4 (1− β)2 − p21
}
p21x−

{
4 (1− β)2 − p21

}
p21x

2

+2 (1− β)
{

4 (1− β)2 − p21
}
p1

(
1− |x|2

)
z

− (1+λ)(1+3λ)

(1+2λ)2
µ

[
p41 +

[
4 (1− β)2 − p21

]2
x2 + 2

{
4 (1− β)2 − p21

}
p21x

]∣∣∣∣ .
Letting |p1| = p, for η = |x| ≤ 1, |z| ≤ 1 we get∣∣∣p1p3 − (1+λ)(1+3λ)

(1+2λ)2
µp22

∣∣∣ ≤ 1
4(1−β)2

{[
1− (1+λ)(1+3λ)

(1+2λ)2
µ
]
p4

+2
[
1− (1+λ)(1+3λ)

(1+2λ)2
µ
] [

4 (1− β)2 − p2
]
p2η

+
[
4 (1− β)2 − p2

] [
p2 + (1+λ)(1+3λ)

(1+2λ)2
µ
[
4 (1− β)2 − p2

]
− 2 (1− β) p

]
η2

+2 (1− β)
[
4 (1− β)2 − p2

]
p
}

= F (η)

4(1−β)2 .

For F (η), we see that

F ′(η) = 2
[
4 (1− β)2 − p2

]
×
{(

1− (1 + λ) (1 + 3λ)

(1 + 2λ)2
µ

)
p2 +

(
p2 + (1+λ)(1+3λ)

(1+2λ)2
µ
[
4 (1− β)2 − p2

]
− 2 (1− β) p

)
η

}
.

Therefore, if

(1 + 2λ)2

2(1 + λ) (1 + 3λ)
≤ µ ≤ (1 + 2λ)2

(1 + λ) (1 + 3λ)
,

then F ′(η) satisfies

F ′(η) = 2
[
4 (1− β)2 − p2

] [
p2 + 1

2

(
4 (1− β)2 − p2

)
− 2 (1− β) p

]
η

=
[
4 (1− β)2 − p2

]
[p− 2 (1− β)]2 η

≥ 0,

because 0 ≤ η ≤ 1 and 0 ≤ p ≤ 2 (1− β) .
Writing that

F (1) ≡ G(p)

= − 1

A

{
2(1−B)p4 −A(3− 4B)p2 +A2B

}
,

where A = 4 (1− β)2 and B = (1+λ)(1+3λ)

(1+2λ)2
µ,
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we obtain that

G′(p) = − 1

A

{
8(1−B)p3 − 2A(3− 4B)p

}
= −8(1−B)p

A

{
p2 − A(3− 4B)

4(1−B)

}
= 0

for p = 0 and p = (1−β)
√
3−4B√

1−B .

(i) If 0 ≤ 3−4B
1−B ≤ 4, then (1+λ)(1+3λ)

(1+2λ)2
µ ≤ 3

4 .

In this case, G(p) has the maximum value

G(p) =
−1

4(1− β)2

{
2(1− β)4(3− 4B)2

1−B
− 4(1− β)4(3− 4B)2

1−B
+ 16(1− β)4B

}

= (1− β)2
{

4(1− 3B) +
1

2(1−B)

}
.

(ii) If 3−4B
1−B > 4, then we have the contradiction for G(p).

(iii) If p = 0, then G(p) takes its minimal value.

Consequently, we say that∣∣∣∣p1p3 − (1 + λ) (1 + 3λ)

(1 + 2λ)2
µp22

∣∣∣∣ ≤ G(p)

4(1− β)2
=

3B2 − 4B + 9

8(1−B)
.

This completes the proof of the theorem. �
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