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SPECIAL TYPES OF SINGLE VALUED NEUTROSOPHIC GRAPHS

A. HASSAN1, M. A. MALIK2, §

Abstract. Neutrosophic theory has many applications in graph theory, single valued
neutrosophic graph (SVNG) is the generalization of fuzzy graph and intuitionistic fuzzy
graph. In this paper, we introduced some types of SVNGs, which are subdivision SVNGs,
middle SVNGs, total SVNGs and single valued neutrosophic line graphs (SVNLGs), also
discussed the isomorphism, co weak isomorphism and weak isomorphism properties of
subdivision SVNGs, middle SVNGs, total SVNGs and SVNLGs.

Keywords: Single valued neutrosophic line graph, Subdivision SVNG, middle SVNG,
total SVNG.

AMS Subject Classification: 05C75.

1. Introduction

Neutrosopic sets were introduced by Smarandache [6], which are the generalization of
fuzzy sets and intuitionistic fuzzy sets. Later on The Liu worked on neutrosophic sets
ant its uses in decision making problems in [11, 13, 14, 8, 15]. The Neutrosophic sets
have many applications in medical, management sciences, life sciences, engineering, graph
theory, robotics, automata theory and computer science. The single valued neutrosophic
graphs were introduced by Broumi, Talea, Bakali and Smarandache [9]. Recently in [12, 10]
proposed some algorithms dealt with shortest path problem in a network (graph) where
edge weights are characterized by a neutrosophic numbers including single valued neutro-
sophic numbers, bipolar neutrosophic numbers and interval valued neutrosophic numbers.
Also the concept of single valued neutrosophic hyper-graphs generalized by Hassan et al
in [1, 2, 4, 7]. Later on Malik and Hassan in [3] defined the concept of single valued
neutrosophic trees and studied some of their properties. A graph is a convenient way of
representing information involving relationship between objects. The objects are repre-
sented by vertices’s and the relations by edges. When there is vagueness in the description
of the objects or in its relations hips or in both, it is natural that we need to design a fuzzy
graph Model. The special types and its truncations were paid the way by [5]. The SVNGs
have many applications in path problems, networks and computer science. The strong
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SVNG and complete SVNG are the special types of SVNG. In this paper, we introduce
the another types of SVNGs, which are subdivision SVNGs, middle SVNGs, total SVNGs
and SVNLGs. These are all the strong SVNGs, also we discuss their relations based on
isomorphism, co weak isomorphism and weak isomorphism.

2. Preliminaries

In this section we recall some basic concepts on SVNG and let G denotes SVNG and
G∗ = (V,E) denotes its underlying crisp graph.

Definition 2.1. [6] Let X be a crisp set, the single valued neutrosophic set (SVNS) A is
characterized by three membership functions TA, IA and FA. which are truth, indeterminacy
and falsity membership functions, for every element in X its memberships contained in
[0, 1].

Definition 2.2. [?] The single valued neutrosophic graph (SVNG) is a pair G = (C,D)
of G∗ = (V,E), where C is SVNS on V and D is SVNS on E such that

TD(αβ) ≤ min(TC(α), TC(β))

ID(αβ) ≥ max(IC(α), IC(β))

FD(αβ) ≥ max(FC(α), FC(β))

whenever

0 ≤ TD(αβ) + ID(αβ) + FD(αβ) ≤ 3

∀ α, β ∈ V. In this case D is SVN-Relation on C. The SVNG G is said to be complete
(strong) SVNG, whenever

TD(xy) = min(TC(x), TC(y))

ID(xy) = max(IC(x), IC(y))

FD(xy) = max(FC(x), FC(y))

∀ x, y ∈ V (∀xy ∈ E). The order of G, which is denoted by O(G), is defined by

O(G) = (OT (G), OI(G), OF (G)),

where

OT (G) =
∑
α∈V

TC(α), OI(G) =
∑
α∈V

IC(α), OF (G) =
∑
α∈V

FC(α).

The size of G, which is denoted S(G), is defined by

S(G) = (ST (G), SI(G), SF (G)),

where

ST (G) =
∑
αβ∈E

TD(αβ), SI(G) =
∑
αβ∈E

ID(αβ), SF (G) =
∑
αβ∈E

FD(αβ).

The degree of a vertex α in G, which is denoted by dG(α), is defined by

dG(α) = (dT (α), dI(α), dF (α)),

where

dT (α) =
∑
αβ∈E

TD(αβ), dI(α) =
∑
αβ∈E

ID(αβ), dF (α) =
∑
αβ∈E

FD(αβ).
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3. Types of SVNGs

Definition 3.1. Let G1 = (C1, D1) and G2 = (C2, D2) be two SVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. Then the homomorphism χ : V1 → V2 is a mapping from
V1 into V2 satisfying following conditions

TC1(p) ≤ TC2(χ(p)), IC1(p) ≥ IC2(χ(p)), FC1(p) ≥ FC2(χ(p))

∀p ∈ V1.
TD1(pq) ≤ TD2(χ(p)χ(q)), ID1(pq) ≥ ID2(χ(p)χ(q)), FD1(pq) ≥ FD2(χ(p)χ(q))

∀pq ∈ E1. The weak isomorphism υ : V1 → V2 is a bijective homomorphism from V1 into
V2 satisfying following conditions

TC1(p) = TC2(υ(p)), IC1(p) = IC2(υ(p)), FC1(p) = FC2(υ(p))

∀p ∈ V1. The co-weak isomorphism κ : V1 → V2 is a bijective homomorphism from V1 into
V2 satisfying following conditions

TD1(pq) = TD2(κ(p)κ(q)), ID1(pq) = ID2(κ(p)κ(q)), FD1(pq) = FD2(κ(p)κ(q))

∀pq ∈ E1. An isomorphism ψ : V1 → V2 is a bijective homomorphism from V1 into V2
satisfying following conditions

TC1(p) = TC2(ψ(p)), IC1(p) = IC2(v(p)), FC1(p) = FC2(ψ(p))

∀p ∈ V1.
TD1(pq) = TD2(ψ(p)ψ(q)), ID1(pq) = ID2(ψ(p)ψ(q)), FD1(pq) = FD2(ψ(p)ψ(q))

∀pq ∈ E1.

Remark 3.1. The weak isomorphism between two SVNGs preserves the orders.

Remark 3.2. The isomorphism between two SVNGs is an equivalence relation.

Remark 3.3. The isomorphism between two SVNGs is an equivalence relation.

Remark 3.4. The weak isomorphism between SVNGs is a partial order relation.

Remark 3.5. The co-weak isomorphism between two SVNGs preserves the sizes.

Remark 3.6. The co-weak isomorphism between SVNGs is a partial order relation.

Remark 3.7. The isomorphism between two SVNGs preserves the orders and sizes.

Remark 3.8. The isomorphism between two SVNGs preserves the degrees of their ver-
tices’s.

Definition 3.2. The subdivision SVNG sd(G) = (C,D) of SVNG G = (A,B), where C
is a SVNS on V ∪ E and D is a SVNR on C, such that
(1) C = A on V and C = B on E. (2) If v ∈ V lie on edge e ∈ E, then

TD(ve) = min(TA(v), TB(e))

ID(ve) = max(IA(v), IB(e))

FD(ve) = max(FA(v), FB(e))

else

D(ve) = O = (0, 0, 0).
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Figure 1. Crisp Graph of SVNG.

Figure 2. Crisp Graph of SDSVNG.

Example 3.1. The crisp graph G∗ = (V,E) of SVNG G = (A,B), which is shown in
Figure 1. The SVNSs A and B over V = {a, b, c} and E = {p = ab, q = bc, r = ac} are
defined in Table 1.

A TA IA FA B TB IB FB
a 0.2 0.1 0.4 p 0.2 0.4 0.5
b 0.3 0.2 0.5 q 0.3 0.8 0.6
c 0.4 0.7 0.6 r 0.1 0.7 0.9

Table 1. SVNSs of SVNG.

The crisp graph of SDSVNG sd(G) = (C,D) of a SVNG G,is shown in Figure 2. By
calculations the SVNSs C and D are given in Table 2.

C TC IC FC D TD ID FD
a 0.2 0.1 0.4 ap 0.2 0.4 0.5
p 0.2 0.4 0.5 pb 0.2 0.4 0.5
b 0.3 0.2 0.5 bq 0.3 0.8 0.6
q 0.3 0.8 0.6 qc 0.3 0.8 0.6
c 0.4 0.7 0.6 cr 0.1 0.7 0.9
r 0.1 0.7 0.9 ra 0.1 0.7 0.9

Table 2. SVNSs of SDSVNG.

Proposition 3.1. Let G be a SVNG and sd(G) be the subdivision SVNG of a SVNG G,
then
(1) O(sd(G)) = O(G) + S(G).
(2) S(sd(G)) = 2S(G).

Proposition 3.2. If G is complete SVNG, then sd(G) need not to be complete SVNG.

Definition 3.3. The total single valued neutrosophic graph (TSVNG) T (G) = (C,D) of
G = (A,B), where C is a SVNS on V ∪ E and D is a SVNR on C defined by
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Figure 3. Crisp Graph of TSVNG.

(1) C = A on V and C = B on E.
(2) If v ∈ V lie on edge e ∈ E, then

TD(ve) = min(TA(v), TB(e))

ID(ve) = max(IA(v), IB(e))

FD(ve) = max(FA(v), FB(e))

else

D(ve) = O = (0, 0, 0).

(3) If α, β ∈ E, then

TD(αβ) = TB(αβ), ID(αβ) = IB(αβ), FD(αβ) = FB(αβ).

(4) If e, f ∈ E have a common vertex, then

TD(ef) = min(TB(e), TB(f))

ID(ef) = max(IB(e), IB(f))

FD(ef) = max(FB(e), FB(f))

else

D(ef) = O = (0, 0, 0).

D TD ID FD D TD ID FD
ab 0.2 0.4 0.5 ap 0.2 0.4 0.5
bc 0.3 0.8 0.6 pb 0.2 0.4 0.5
ca 0.1 0.7 0.9 bq 0.3 0.8 0.6
pq 0.2 0.8 0.6 qc 0.3 0.8 0.6
qr 0.1 0.8 0.9 cr 0.1 0.7 0.9
rp 0.1 0.7 0.9 ra 0.1 0.7 0.9

Table 3. SVNS of TSVNG.

Example 3.2. Consider the Example 3.1 the crisp graph of TSVNG T (G) = (C,D), is
shown in Figure 3. Here C is same as given in Example 3.1. By calculations the SVNS
D is defined in Table 3.

Proposition 3.3. Let G be a SV NG and T (G) be the TSVNG of G, then
(1) O(T (G)) = O(G) + S(G) = O(sd(G)).
(2) S(sd(G)) = 2S(G).

Proposition 3.4. If G is a SVNG, then sd(G) is weak isomorphic to T (G).



346 TWMS J. APP. ENG. MATH. V.8, N.2, 2018

Figure 4. Crisp Graph of SVNG.

Figure 5. Crisp Graph of MSVNG.

Definition 3.4. The middle single valued neutrosophic graph (MSVNG) M(G) = (C,D)
of G = (A,B), where C is a SVNS on V ∪ E and D is a SVNR on C defined by
(1) C = A on V and C = B on E, else C = O = (0, 0, 0).
(2) If v ∈ V lie on edge e ∈ E, then

TD(ve) = TB(e), ID(ve) = IB(e), FD(ve) = FB(e)

else

D(ve) = O = (0, 0, 0).

(3) If u, v ∈ V, then

D(uv) = O = (0, 0, 0).

(4) If e, f ∈ E and e and f are adjacent in G, then

TD(ef) = TB(uv), ID(ef) = IB(uv), FD(ef) = FB(uv).

Example 3.3. Consider the SVNG G = (A,B) of a G∗, which is shown in Figure 4. The
SVNSs A and B are defined in Table 4. The crisp graph of MSVNG M(G) = (C,D), is
shown in Figure 5. By calculations, the SVNSs C and D are defined in Table 5.

A TA IA FA
a 0.3 0.4 0.4
b 0.7 0.6 0.3
c 0.9 0.7 0.2
B TB IB FB
e1 0.2 0.6 0.6
e2 0.4 0.8 0.7

Table 4. SVNSs of SVNG.
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C TC IC FC D TD ID FD
a 0.3 0.4 0.5 e1e2 0.2 0.8 0.7
b 0.7 0.6 0.3 ae1 0.2 0.6 0.6
c 0.9 0.7 0.2 be1 0.2 0.6 0.6
e1 0.2 0.6 0.6 be2 0.2 0.6 0.6
e2 0.4 0.8 0.7 ce2 0.4 0.8 0.7

Table 5. SVNSs of MSVNG.

Remark 3.9. Let G be a SVNG and M(G) be the MSVNG of G, then
O(M(G)) = O(G) + S(G).

Remark 3.10. Let G be a SVNG, then M(G) is a strong SVNG.

Remark 3.11. If G is complete SVNG, then M(G) need not to be complete SVNG.

Proposition 3.5. Let G be a SVNG, then sd(G) is weak isomorphic with M(G).

Proposition 3.6. Let G be a SVNG, then M(G) is weak isomorphic with T (G).

Proposition 3.7. Let G be a SVNG, then T (G) is isomorphic with G ∪M(G).

Definition 3.5. Let the intersection graph be P (X) = (X,Y ) of a G∗, let C1 and D1

be SVNSs over V and E. Also let C2 and D2 be SVNSs over X and Y. Then the single
valued neutrosophic intersection graph (SVNIG) of a SVNG G = (C1, D1) is a SVNG
P (G) = (C2, D2), such that

TC2(Xi) = TC1(vi), IC2(Xi) = IC1(vi), FC2(Xi) = FC1(vi)

TD2(XiXj) = TD1(vivj), ID2(XiXj) = ID1(vivj), FD2(XiXj) = FD1(vivj)

∀ Xi, Xj ∈ X and XiXj ∈ Y.

Proposition 3.8. Let G = (A1, B1) be a SVNG of G∗ = (V,E), and let P (G) = (A2, B2)
be a SVNIG, then
(1) The SVNIG is a SVNG.
(2) The SVNG is isomorphic to SVNIG.

Proof. (1) By the definition of SVNIG, we have

TB2(SiSj) = TB1(vivj) ≤ min(TA1(vi), TA1(vj)) = min(TA2(Si), TA2(Sj))

IB2(SiSj) = IB1(vivj) ≥ max(IA1(vi), IA1(vj)) = max(IA2(Si), IA2(Sj))

FB2(SiSj) = FB1(vivj) ≥ max(FA1(vi), FA1(vj)) = max(FA2(Si), FA2(Sj))

this shows that SVNIG is a SVNG.
(2) Define f : V → X by f(vi) = Si for i = 1, 2, 3, . . . , n clearly f is bijective. Now
vivj ∈ E if and only if SiSj ∈ T, and T = {f(vi)f(vj) : vivj ∈ E}, also

TA2(f(vi)) = TA2(Si) = TA1(vi)

IA2(f(vi)) = IA2(Si) = IA1(vi)

FA2(f(vi)) = FA2(Si) = FA1(vi)

∀ vi ∈ V.
TB2(f(vi)f(vj)) = TB2(SiSj) = TB1(vivj)

IB2(f(vi)f(vj)) = IB2(SiSj) = IB1(vivj)

FB2(f(vi)f(vj)) = FB2(SiSj) = FB1(vivj)
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Figure 6. The SVNG.

Figure 7. The SVNLG.

∀ vivj ∈ E. �

Definition 3.6. Let G∗ = (V,E) and L(G∗) = (X,Y ) be its line graph, where A1 and
B1 be SVNSs over V and E. Let A2 and B2 be SVNSs over X and Y. The single valued
neutrosophic line graph (SVNLG) of SVNG G = (A1, B1) is SVNG L(G) = (A2, B2), such
that

TA2(Sx) = TB1(x) = TB1(uxvx)

IA2(Sx) = IB1(x) = IB1(uxvx)

FA2(Sx) = FB1(x) = FB1(uxvx)

∀ Sx, Sy ∈ X and
TB2(SxSy) = min(TB1(x), TB1(y))

IB2(SxSy) = max(IB1(x), IB1(y))

FB2(SxSy) = max(FB1(x), FB1(y))

∀ SxSy ∈ Y.

Example 3.4. Consider the G∗ = (V,E) where V = {α1, α2, α3, α4} and E = {x1 =
α1α2, x2 = α2α3, x3 = α3α4, x4 = α4α1} and G = (A1, B1) is SVNG of G∗ = (V,E), which
is shown in Figure 6. Consider the L(G∗) = (X,Y ), such that X = {Γx1 ,Γx2 ,Γx3 ,Γx4}
and Y = {Γx1Γx2 ,Γx2Γx3 ,Γx3Γx4 ,Γx4Γx1}. Let A2 and B2 be SVNSs over X and Y. Then
by calculations, SVNLG L(G) is shown in Figure 7.

Proposition 3.9. Every SVNLG is a strong SVNG.

Proposition 3.10. The L(G) = (A2, B2) is a SVNLG corresponding to SVNG G =
(A1, B1).

Proposition 3.11. The L(G) = (A2, B2) is a SVNLG of some SVNG G = (A1, B1) if
and only if

TB2(SxSy) = min(TA2(Sx), TA2(Sy))

IB2(SxSy) = max(IA2(Sx), IA2(Sy))
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FB2(SxSy) = max(FA2(Sx), FA2(Sy))

∀ SxSy ∈ Y.

Proof. Assume that
TB2(SxSy) = min(TA2(Sx), TA2(Sy))

IB2(SxSy) = max(IA2(Sx), IA2(Sy))

FB2(SxSy) = max(FA2(Sx), FA2(Sy))

∀ SxSy ∈ Y. We define

TA1(x) = TA2(Sx), IA1(x) = IA2(Sx), FA1(x) = FA2(Sx)

∀ x ∈ E, then

TB2(SxSy) = min(TA2(Sx), TA2(Sy)) = min(TA2(x), TA2(y))

IB2(SxSy) = max(IA2(Sx), IA2(Sy)) = max(IA2(x), IA2(y))

FB2(SxSy) = max(FA2(Sx), FA2(Sy)) = max(FA2(x), FA2(y))

A SVNS A1 that yields the property

TB1(xy) ≤ min(TA1(x), TA1(y))

IB1(xy) ≥ max(IA1(x), IA1(y))

FB1(xy) ≥ max(FA1(x), FA1(y))

will suffice. Converse is straight forward. �

Proposition 3.12. If L(G) = (A2, B2) is SVNLG of SVNG G = (A1, B1), then L(G∗) is
the crisp line graph of G∗.

Proof. Since L(G) be a SVNLG,

TA2(Sx) = TB1(x), IA2(Sx) = IB1(x), FA2(Sx) = FB1(x)

∀ x ∈ E, and so Sx ∈ X if and only if x ∈ E, also

TB2(SxSy) = min(TB1(x), TB1(y))

IB2(SxSy) = max(IB1(x), IB1(y))

FB2(SxSy) = max(FB1(x), FB1(y))

∀ SxSy ∈ Y and so, Y = {SxSy : Sx ∩ Sy 6= φ, x, y ∈ E, x 6= y}. �

Proposition 3.13. If L(G) = (A2, B2) is SVNLG of SVNG G = (A1, B1) if and only if
L(G∗) = (X,Y ) is the line graph and

TB2(xy) = min(TA2(x), TA2(y))

IB2(xy) = max(IA2(x), IA2(y))

FB2(xy) = max(FA2(x), FA2(y))

∀ xy ∈ Y.

Proof. It follows from Propositions 3.11 and 3.12. �

Proposition 3.14. Let G be a SVNG, then M(G) is isomorphic with sd(G) ∪ L(G).

Theorem 3.1. Let L(G) = (A2, B2) be SVNLG corresponding to SVNG G = (A1, B1).
(a) If G is weak isomorphic onto L(G) if and only if ∀ v ∈ V, x ∈ E and G∗ to be a cycle,
such that

TA1(v) = TB1(x), IA1(v) = TB1(x), FA1(v) = TB1(x).

(b) If G is weak isomorphic onto L(G), then G and L(G) are isomorphic.
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Proof. By hypothesis G∗ is a cycle. Let V = {v1, v2, v3, . . . , vn} and E = {x1 = v1v2, x2 =
v2v3, . . . , xn = vnv1} where P : v1v2v3 . . . vn is a cycle, characterize a SVNS A1 by A1(vi) =
(pi, qi, ri) and B1 by B1(xi) = (ai, bi, ci) for i = 1, 2, 3, . . . , n and vn+1 = v1, then for
pn+1 = p1, qn+1 = q1, rn+1 = r1, we have

ai ≤ min(pi, pi+1), bi ≥ max(qi, qi+1), ci ≥ max(ri, ri+1)

for i = 1, 2, 3, . . . , n. Now X = {Γx1 ,Γx2 , . . . ,Γxn} and Y = {Γx1Γx2 ,Γx2Γx3 , . . . ,ΓxnΓx1},
thus for an+1 = a1, we obtain

A2(Γxi) = B1(xi) = (ai, bi, ci)

and
B2(ΓxiΓxi+1) = (min(ai, ai+1),max(bi, bi+1),max(ci, ci+1))

for i = 1, 2, 3, . . . , n and vn+1 = v1. Since f preserves adjacency, hence it induce permuta-
tion π of {1, 2, 3, . . . , n},

f(vi) = Γvπ(i)vπ(i)+1

and
vivi+1 → f(vi)f(vi+1) = Γvπ(i)vπ(i)+1

Γvπ(i+1)vπ(i+1)+1

for i = 1, 2, 3, . . . , n− 1. Thus

pi = TA1(vi) ≤ TA2(f(vi)) = TA2(Γvπ(i)vπ(i)+1
) = TB1(vπ(i)vπ(i)+1) = aπ(i)

similarly, qi ≥ bπ(i) and ri ≥ cπ(i) and

ai = TB1(vivi+1) ≤ TB2(f(vi)f(vi+1))

= TB2(Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

)

= min(TB1(vπ(i)vπ(i)+1), TB1(vπ(i+1)vπ(i+1)+1))

= min(aπ(i), aπ(i)+1)

similarly bi ≥ max(bπ(i), bπ(i)+1) and ci ≥ max(cπ(i), cπ(i)+1) for i = 1, 2, 3, . . . , n. Therefore

pi ≤ aπ(i), qi ≥ bπ(i), ri ≥ cπ(i)
and

ai ≤ min(aπ(i), aπ(i)+1), bi ≥ max(bπ(i), bπ(i)+1), ci ≥ max(cπ(i), cπ(i)+1)

thus
ai ≤ aπ(i), bi ≥ bπ(i), ci ≥ cπ(i)

and so
aπ(i) ≤ aπ(π(i)), bπ(i) ≥ bπ(π(i)), cπ(i) ≥ cπ(π(i))

∀ i = 1, 2, 3, . . . , n. Next to extend,

ai ≤ aπ(i) ≤ . . . ≤ aπj(i) ≤ ai
bi ≥ bπ(i) ≥ . . . ≥ bπj(i) ≥ bi
ci ≥ cπ(i) ≥ . . . ≥ cπj(i) ≥ ci

where πj+1 identity. Hence

ai = aπ(i), bi = bπ(i), ci = cπ(i)

∀ i = 1, 2, 3, . . . , n. Thus we conclude that

ai ≤ aπ(i+1) = ai+1, bi ≥ bπ(i+1) = bi+1, ci ≥ cπ(i+1) = ci+1

which together with
an+1 = a1, bn+1 = b1, cn+1 = c1
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which implies that ai = a1, bi = b1, ci = c1 ∀ i = 1, 2, 3, . . . , n. Thus we have

a1 = a2 = . . . = an = p1 = p2 = . . . = pn

b1 = b2 = . . . = bn = q1 = q2 = . . . = qn

c1 = c2 = . . . = cn = r1 = r2 = . . . = rn

Therefore (a) and (b) holds, since converse of result (a) is straight forward. �

4. Conclusion

The neutrosophic graphs have many applications in path problems, networks and com-
puter science. Strong SVNG and complete SVNG are the types of SVNG. In this paper, we
discussed the special types of SVNGs, subdivision SVNGs, middle SVNGs, total SVNGs
and SVNLGs of the given SVNGs. We investigated isomorphism properties of subdivision
SVNGs, middle SVNGs, total SVNGs and SVNLGs. In our future research, we will focus
on types of bipolar SVNGs and interval valued neutrosophic graphs.
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