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BEST COAPPROXIMATION IN L∞(µ,X)

J. JAWDAT1, §

Abstract. Let X be a real Banach space and let G be a closed subset of X. The
set G is called coproximinal in X if for each x ∈ X, there exists y0 ∈ G such that
‖y − y0‖ ≤ ‖x− y‖ , for all y ∈ G. In this paper, we study coproximinality of L∞(µ,G)
in L∞(µ,X), when G is either separable or reflexive coproximinal subspace of X.
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1. Introduction and Preliminaries

The theory of best coapproximation in normed linear spaces was developed as a coun-
terpart to the theory of best approximation. It was initially introduced by Franchetti and
Furi in 1972, [2], in order to study some characteristic properties of real Hilbert spaces.
Many researches have been done since then, see [9-12]. Let X be a Banach space and
G a bounded subset of X. For an element x ∈ X, the element y0 ∈ G is called a best
coapproximation point of G to x, if

‖y0 − y‖ ≤ ‖x− y‖ ,∀y ∈ G.

Consider the set-valued map RG : X → 2G defined by

RG(x) = {y0 ∈ G : ‖y0 − y‖ ≤ ‖x− y‖ , ∀y ∈ G},

namely, RG(x) is the set of all best coapproximation points to x from G. Notice that
RG(x) is closed and bounded for each x, see [10], [9]. G is called coproximinal in X, if
for each x ∈ X, there exists at least one point of best coapproximation to x in G. In
other words, G is coproximinal in X iff R(G) = X, where R(G) = {x ∈ X : RG(x) 6= φ}.
Clearly, G ⊂ R(G). If R(G) is dense in X then G is called densely coproximinal in X.
On the other hand, G is called co-Chebyshev in X, if for each x ∈ X, RG(x) is singelton.
Notice that, see Theorem 2 in [12], if G is convex in X, then RG(x) is a convex subset of
G, for any x ∈ X such that RG(x) 6= φ. Now, let G be a coproximinal subspace of X and

denote by Ğ the following set

Ğ = {x ∈ X : ‖y‖ ≤ ‖y − x‖ , ∀y ∈ G}.
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of Mathematics, 2018; all rights reserved.

448



J.JAWDAT: BEST COAPPROXIMATION IN L∞(µ,X) 449

Then, X = G + Ğ, [10]. The set Ğ is sometimes written as ker(RG) and it is called the
cometric complement of G, whereas RG above is called the cometric projection onto G.

Clearly, when G is coproximinal subspace of X then for each x ∈ X, RG(x) = {y0 ∈
G : x− y0 ∈ Ğ}.

Let X be a Banach space, (T,Σ, µ) a σ-finite complete measure space and let Lp(µ,X),
1 ≤ p <∞, be the Banach spaces of all equivalence classes of strongly measurable, Bochner
p-integrable functions on T i.e, ∫

T
‖f(t)‖pdt <∞.

Usually, Lp(µ,X), 1 ≤ p <∞ are called Bochner p-integrable function spaces, with norm
defined as follows,

‖f‖p = {
∫
T
‖f(t)‖pdt}1/p.

Let L∞(µ,X) be the Banach space of all equivalence classes of strongly measurable,
X-valued, essentially bounded functions on T (i.e bounded except on a set of measure
zero). For f ∈ L∞(µ,X) the norm of f , namely ‖f‖∞ is given by

‖f‖∞ = ess supt∈T ‖f(t)‖
For more on the theory of Lp(µ,X), 1 ≤ p ≤ ∞, see [1] or [7].

The theory of best coapproximation has been studied for Lp(µ,X), 1 ≤ p < ∞, by [3]
and [8], where several properties have been obtained. In [4], some results were generalized
to Köthe Bochner function spaces. In this paper, we will study best coapproximation in
L∞(µ,X) by elements in L∞(µ,G), where G is a closed subspace of X. Main results con-
cerning coproximinality of L∞(µ,G), when G is either separable or reflexive coproximinal
subspace of X, are presented in section 3.

2. Coproximinality in L∞(µ,X)

Throughout this section, (T,Σ, µ) is a finite measure space, X is a real Banach space
and G a closed subspace of X. L∞(µ,X) is the Banach space defined as above. The
folllowing theorem is the first to start with,

Theorem 2.1. For f in L∞(µ,X) and g in L∞(µ,G) such that g(t) is a best coapproxi-
mation point in G to f(t) in X, a.e t ∈ T , then g is a best coapproximation to f .

Proof. Let g(t) be a best coapproximation element in G to f(t) ∈ X, a.e t ∈ T . Then

‖g(t)− y‖ ≤ ‖f(t)− y‖ , ∀y ∈ G, a.e t ∈ T.
Hence, in particular, for any function h in L∞(µ,G), we have

‖g(t)− h(t)‖ ≤ ‖f(t)− h(t)‖ , a.e t ∈ T.
This implies for all h ∈ L∞(µ,G),

ess supt∈T ‖g(t)− h(t)‖ ≤ ess supt∈T ‖f(t)− h(t)‖ .
So, we get

‖g − h‖∞ ≤ ‖f − h‖∞ ,∀h ∈ L∞(µ,G).

Hence, g is a best coapproximation to f . �
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On the other hand, consider the following theorem,

Theorem 2.2. Let G be closed subspace of X. If L∞(µ,G) is coproximinal in L∞(µ,X)
then G is coproximinal in X.

Proof. Let x ∈ X. Define the function fx as follows: fx(t) = x, a.e t ∈ T . Then, it is
clear that fx ∈ L∞(µ,X).
Now, from the given there exists w ∈ L∞(µ,G) such that

‖w − h‖∞ ≤ ‖fx − h‖∞ , ∀h ∈ L∞(µ,G).

In particular, for h = fy, where y ∈ G. Hence,

‖w − fy‖∞ ≤ ‖fx − fy‖∞ , ∀y ∈ G.
= ess supt∈T ‖fx(t)− fy(t)‖ , ∀y ∈ G.
= ‖x− y‖ , ∀y ∈ G.

So, for some t0 in T , then

‖w(t0)− y‖ ≤ ‖w − fy‖∞ ≤ ‖x− y‖ , ∀y ∈ G.

This implies that w(t0) ∈ G is a best coapproximation of x ∈ X, where w ∈ L∞(µ,G) is a
best coapproximation of the constant function fx ∈ L∞(µ,X). Hence, G is coproximinal
in X. �

Next, let us consider the set of countably-valued functions which is dense in L∞(µ,X).
For a countable collection A1, ..., An, ... of mutually disjoint measurable subsets of T , such
that ∪∞i=1Ai = T and a sequence x1, ..., xn, .... of elements in X, a function with countable
range (countably-valued function) f : T → X is defined as follows,

f(t) =

∞∑
i=1

xiχAi(t), t ∈ T,

where for each i, χAi is the characteristic function on Ai. Clearly, simple functions are
included.

Theorem 2.3. Let G be a coproximinal subspace in X. Then every countably-valued
function in L∞(µ,X) has a best coapproximation in L∞(µ,G).

Proof. Let f =
∞∑
i=1

xiχAi be a countably-valued function in L∞(µ,X). For each g ∈

L∞(µ,G) and a given ε > 0, there exists a countably-valued function ϕg =
∞∑
i=1

yiχAi in

L∞(µ,G), with yi ∈ G, such that ‖g − ϕg‖∞ < ε/2.

Now, for all g ∈ L∞(µ,G), we can write

‖f − g‖∞ ≥ ‖f − ϕg‖∞ − ‖ϕg − g‖∞
> ‖f − ϕg‖∞ − ε/2

And since G is coproximinal, let zi, for each i, be the best coapproximation in G to xi ∈ X.
Thus, for each i, we have

‖xi − yi‖X ≥ ‖zi − yi‖X .
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Hence,

ess supt∈T {
∞∑
i=1

‖xi − yi‖X χAi(t)} ≥ ess supt∈T {
∞∑
i=1

‖zi − yi‖X χAi(t)}

So, by taking g0 =
∞∑
i=1

ziχAi
, we get

‖f − ϕg‖∞ ≥ ‖g0 − ϕg‖∞ .

But again write
‖g0 − ϕg‖∞ ≥ ‖g0 − g‖∞ − ‖g − ϕg‖∞

which implies
‖f − g‖∞ > ‖g0 − g‖∞ − ε.

And since ε arbitrary, we get

‖f − g‖∞ ≥ ‖g0 − g‖∞ ,

for all g ∈ L∞(µ,G). �

Corollary 2.1. Let G be a coproximinal subspace in X. Then L∞(µ,G) is densely co-
proximinal in L∞(µ,X).

3. Main Results

In this section, we will give two main results concerning coproximinality of L∞(µ,G)
in L∞(µ,X) when G is either separable or reflexive coproximinal subspace of the Banach
space X. First, we deal with G being separable. Let us recall, see [6], pp.133, that a
set-valued map on a measure space (T,Σ, µ), F : T → 2X is said to be weakly measurable
if for any open set U of X, the set {t ∈ T : F (t)

⋂
U 6= φ} is measurable (i.e belongs to Σ).

A measurable selection of F is a measurable function h : T → X such that h(t) ∈ F (t),
for all t ∈ T . The following Lemma, known as Kuratowski-Ryll-Nardzewski Measurable
Selection Theorem [5], can also be found in [6].

Lemma 3.1. Let F : T → 2X be a weakly measurable set-valued map carrying each t ∈ T
to a nonempty closed and bounded subset of X. If X is a separable Banach space then F
has a measurable selection.

Now, let G be a coproximinal subspace in the Banach space X and Ğ the cometric
complement of G in X. For each f ∈ L∞(µ,X), define the map πf : T → 2G as

πf (t) = {zt ∈ G : f(t)− zt ∈ Ğ}, t ∈ T.
Then πf is a set-valued map, taking each element t ∈ T into a subset of G, precisely the
set of best coapproximation points to f(t) : RG(f(t)).

Theorem 3.1. Let G be a separable subspace of X such that πf as defined above is weakly
measurable. Then L∞(µ,G) is coproximinal in L∞(µ,X) if G is coproximinal in X.

Proof. Suppose that G is coproximinal in X and let f be in L∞(µ,X). Let πf : T → 2G

be the set-valued map defined as above. Hence, we can write,

πf (t) = {zt ∈ G : ‖zt − y‖ ≤ ‖f(t)− y‖ , for all y ∈ G}.
Hence, for each t ∈ T , πf (t) is closed, bounded and nonempty subset in G, since it takes
t ∈ T to the set of best coapproximation points in G to f(t). The assumption that the



452 TWMS J. APP. ENG. MATH. V. 8, N. 2, 2018

map πf is weakly measurable implies (by Lemma 3.1) that it has a measurable selection,
say w : T → G such that w(t) ∈ πf (t), a.e t ∈ T . But since G separable, w is strongly
measurable by Lemma 10.3 in [6]. Hence the result follows, from Theorem 2.1, if we show
that w ∈ L∞(µ,G). Indeed, since w : T → G satisfies

‖w(t)− y‖ ≤ ‖f(t)− y‖ , for all y ∈ G.
So, in particular

‖w(t)‖ ≤ ‖f(t)‖ , a.e t ∈ T ,

which implies ‖w‖∞ ≤ ‖f‖∞ . Hence, w ∈ L∞(µ,G). �

For the next main result, Theorem 3.2, we need the following Lemma which has been
proved in [4], (see Theorem 7 in [4])

Lemma 3.2. Let (I, µ) be a finite measure space, G be a separable coproximinal subspace
of X and f : I → X be measurable function. Then there is a measurable function g : I → G
such that g(t) is a point of coapproximation to f(t) in G, a.e t ∈ I.

Theorem 3.2. Let G be a seperable subspace of X. G is coproximinal in X iff L∞(µ,G)
is coproximinal in L∞(µ,X).

Proof. Suppose that G is separable and coproximinal in X and let f ∈ L∞(µ,X). Lemma
3.2 above guarantees that there exists a measurable function g defined on T with values
in G (hence g is strongly measurable since G separable) such that g(t) is a point of best

coapproximation to f(t), a.e t ∈ T . Thus, we have f(t) − g(t) ∈ Ğ, a.e t ∈ T , which
implies that

‖y‖ ≤ ‖y − (f(t)− g(t))‖ ≤ ‖f(t)− g(t) + y‖ , ∀y ∈ G.
In particular, taking y = g(t), we get a.e t ∈ T ,

‖g(t)‖ ≤ ‖f(t)− g(t) + g(t)‖ = ‖f(t)‖ .
Hence, g ∈ L∞(µ,G) and g(t) is a best coapproximation point to f(t). It follows from
Theorem 2.1 that g is a point of best coapproximation to f in L∞(µ,G). The other
direction follows from Theorem 2.2. �

In the remaining part of this section, we will deal with coproximinality of L∞(µ,G) in
L∞(µ,X), when G is reflexive coproximinal subspace in X. We assume that (T, µ) is a
finite measure space.

Theorem 3.3. If L1(µ,G) is coproximinal in L1(µ,X), then L∞(µ,G) is coproximinal
in L∞(µ,X).

Proof. Let f ∈ L∞(µ,X). Since the measure space (T, µ) is finite then f ∈ L1(µ,X).
Hence, by the given there exists g0 ∈ L1(µ,G) such that

‖g0 − g‖1 ≤ ‖f − g‖1 , for all g ∈ L1(µ,G).

By Lemma 2.2 in [3], we have

‖g0(t)− g(t)‖ ≤ ‖f(t)− g(t)‖ , µ -a.e t ∈ T .
Hence, in particular, for all g(t) = w(t) ∈ G, where w ∈ L∞(µ,G). But, since 0 ∈ G, then
‖g0(t)‖ ≤ ‖f(t)‖, µ -a.e t ∈ T . This implies ‖g0‖∞ ≤ ‖f‖∞. Hence, g0 ∈ L∞(µ,G).
Now,

‖g0(t)− w(t)‖ ≤ ‖f(t)− w(t)‖ , µ -a.e t ∈ T ,



J.JAWDAT: BEST COAPPROXIMATION IN L∞(µ,X) 453

which implies ‖g0 − w‖∞ ≤ ‖f − w‖∞ ,∀w ∈ L∞(µ,G). �

Theorem 3.4. Let G be a reflexive coproximinal subspace of X. Then L∞(µ,G) is co-
proximinal in L∞(µ,X).

Proof. Let G be a reflexive coproximinal subspace in X. It has been proved in [3] (see
Theorem 3.6 in [3]) that L1(µ,G) is coproximinal in L1(µ,X). Hence the result follows
from Theorem 3.3. �
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