TWMS J. App. Eng. Math. V.8, N.2, 2018, pp. 448-453

BEST COAPPROXIMATION IN $L^{\infty}(\mu, X)$

J. JAWDAT¹, §

ABSTRACT. Let X be a real Banach space and let G be a closed subset of X. The set G is called coproximinal in X if for each $x \in X$, there exists $y_0 \in G$ such that $||y - y_0|| \le ||x - y||$, for all $y \in G$. In this paper, we study coproximinality of $L^{\infty}(\mu, G)$ in $L^{\infty}(\mu, X)$, when G is either separable or reflexive coproximinal subspace of X.

Keywords: Best Coapproximation, coproximinal set, essentially bounded functions.

AMS Subject Classification: Primary 46B20, Secondary 46E40

1. INTRODUCTION AND PRELIMINARIES

The theory of best coapproximation in normed linear spaces was developed as a counterpart to the theory of best approximation. It was initially introduced by Franchetti and Furi in 1972, [2], in order to study some characteristic properties of real Hilbert spaces. Many researches have been done since then, see [9-12]. Let X be a Banach space and G a bounded subset of X. For an element $x \in X$, the element $y_0 \in G$ is called a best coapproximation point of G to x, if

$$||y_0 - y|| \le ||x - y||, \forall y \in G.$$

Consider the set-valued map $R_G: X \to 2^G$ defined by

$$R_G(x) = \{y_0 \in G : ||y_0 - y|| \le ||x - y||, \forall y \in G\},\$$

namely, $R_G(x)$ is the set of all best coapproximation points to x from G. Notice that $R_G(x)$ is closed and bounded for each x, see [10], [9]. G is called coproximinal in X, if for each $x \in X$, there exists at least one point of best coapproximation to x in G. In other words, G is coproximinal in X iff R(G) = X, where $R(G) = \{x \in X : R_G(x) \neq \phi\}$. Clearly, $G \subset R(G)$. If R(G) is dense in X then G is called densely coproximinal in X. On the other hand, G is called co-Chebyshev in X, if for each $x \in X$, $R_G(x)$ is singelton. Notice that, see Theorem 2 in [12], if G is convex in X, then $R_G(x)$ is a convex subset of G, for any $x \in X$ such that $R_G(x) \neq \phi$. Now, let G be a coproximinal subspace of X and denote by \check{G} the following set

$$G = \{ x \in X : ||y|| \le ||y - x||, \forall y \in G \}.$$

 $^{^{1}}$ Zarqa University, Math. Department, Zarqa, Jordan.

e-mail: jjawdat@zu.edu.jo; ORCID: https://orcid.org/0000-0001-9652-2185.

[§] Manuscript received: December 28, 2016; accepted: March 17, 2017.

TWMS Journal of Applied and Engineering Mathematics, Vol.8, No.2 © Işık University, Department of Mathematics, 2018; all rights reserved.

Then, $X = G + \check{G}$, [10]. The set \check{G} is sometimes written as $ker(R_G)$ and it is called the cometric complement of G, whereas R_G above is called the cometric projection onto G.

Clearly, when G is coproximinal subspace of X then for each $x \in X$, $R_G(x) = \{y_0 \in G : x - y_0 \in \check{G}\}$.

Let X be a Banach space, (T, Σ, μ) a σ -finite complete measure space and let $L^p(\mu, X)$, $1 \leq p < \infty$, be the Banach spaces of all equivalence classes of strongly measurable, Bochner *p*-integrable functions on T i.e,

$$\int_T \|f(t)\|^p dt < \infty.$$

Usually, $L^p(\mu, X)$, $1 \le p < \infty$ are called Bochner *p*-integrable function spaces, with norm defined as follows,

$$||f||_p = \{\int_T ||f(t)||^p dt\}^{1/p}$$

Let $L\infty(\mu, X)$ be the Banach space of all equivalence classes of strongly measurable, X-valued, essentially bounded functions on T (i.e bounded except on a set of measure zero). For $f \in L^{\infty}(\mu, X)$ the norm of f, namely $||f||_{\infty}$ is given by

$$\left\|f\right\|_{\infty} = ess \ sup_{t \in T} \left\|f(t)\right\|$$

For more on the theory of $L^p(\mu, X)$, $1 \le p \le \infty$, see [1] or [7].

The theory of best coapproximation has been studied for $L^p(\mu, X)$, $1 \le p < \infty$, by [3] and [8], where several properties have been obtained. In [4], some results were generalized to Köthe Bochner function spaces. In this paper, we will study best coapproximation in $L^{\infty}(\mu, X)$ by elements in $L^{\infty}(\mu, G)$, where G is a closed subspace of X. Main results concerning coproximinality of $L^{\infty}(\mu, G)$, when G is either separable or reflexive coproximinal subspace of X, are presented in section 3.

2. Coproximinality in $L^{\infty}(\mu, X)$

Throughout this section, (T, Σ, μ) is a finite measure space, X is a real Banach space and G a closed subspace of X. $L^{\infty}(\mu, X)$ is the Banach space defined as above. The following theorem is the first to start with,

Theorem 2.1. For f in $L^{\infty}(\mu, X)$ and g in $L^{\infty}(\mu, G)$ such that g(t) is a best coapproximation point in G to f(t) in X, a.e. $t \in T$, then g is a best coapproximation to f.

Proof. Let g(t) be a best coapproximation element in G to $f(t) \in X$, a.e. $t \in T$. Then

$$||g(t) - y|| \le ||f(t) - y||, \forall y \in G, a.e \ t \in T.$$

Hence, in particular, for any function h in $L^{\infty}(\mu, G)$, we have

$$||g(t) - h(t)|| \le ||f(t) - h(t)||, a.e \ t \in T.$$

This implies for all $h \in L^{\infty}(\mu, G)$,

$$ess \ sup_{t \in T} \|g(t) - h(t)\| \le ess \ sup_{t \in T} \|f(t) - h(t)\|.$$

So, we get

$$\|g-h\|_{\infty} \le \|f-h\|_{\infty}, \forall h \in L^{\infty}(\mu, G)$$

Hence, g is a best coapproximation to f.

On the other hand, consider the following theorem,

Theorem 2.2. Let G be closed subspace of X. If $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$ then G is coproximinal in X.

Proof. Let $x \in X$. Define the function f_x as follows: $f_x(t) = x$, a.e $t \in T$. Then, it is clear that $f_x \in L^{\infty}(\mu, X)$.

Now, from the given there exists $w \in L^{\infty}(\mu, G)$ such that

$$\|w-h\|_{\infty} \le \|f_x-h\|_{\infty}, \ \forall h \in L^{\infty}(\mu, G).$$

In particular, for $h = f_y$, where $y \in G$. Hence,

$$\begin{aligned} \|w - f_y\|_{\infty} &\leq \|f_x - f_y\|_{\infty}, \ \forall y \in G. \\ &= ess \ sup_{t \in T} \|f_x(t) - f_y(t)\|, \ \forall y \in G. \\ &= \|x - y\|, \ \forall y \in G. \end{aligned}$$

So, for some t_0 in T, then

$$||w(t_0) - y|| \le ||w - f_y||_{\infty} \le ||x - y||, \ \forall y \in G.$$

This implies that $w(t_0) \in G$ is a best coapproximation of $x \in X$, where $w \in L^{\infty}(\mu, G)$ is a best coapproximation of the constant function $f_x \in L^{\infty}(\mu, X)$. Hence, G is coproximinal in X.

Next, let us consider the set of countably-valued functions which is dense in $L^{\infty}(\mu, X)$. For a countable collection $A_1, ..., A_n, ...$ of mutually disjoint measurable subsets of T, such that $\bigcup_{i=1}^{\infty} A_i = T$ and a sequence $x_1, ..., x_n, ...$ of elements in X, a function with countable range (countably-valued function) $f: T \to X$ is defined as follows,

$$f(t) = \sum_{i=1}^{\infty} x_i \chi_{A_i}(t), \ t \in T,$$

where for each i, χ_{A_i} is the characteristic function on A_i . Clearly, simple functions are included.

Theorem 2.3. Let G be a coproximinal subspace in X. Then every countably-valued function in $L^{\infty}(\mu, X)$ has a best coapproximation in $L^{\infty}(\mu, G)$.

Proof. Let $f = \sum_{i=1}^{\infty} x_i \chi_{A_i}$ be a countably-valued function in $L^{\infty}(\mu, X)$. For each $g \in L^{\infty}(\mu, G)$ and a given $\epsilon > 0$, there exists a countably-valued function $\varphi_g = \sum_{i=1}^{\infty} y_i \chi_{A_i}$ in $L^{\infty}(\mu, G)$, with $y_i \in G$, such that $\|g - \varphi_g\|_{\infty} < \epsilon/2$.

Now, for all $g \in L^{\infty}(\mu, G)$, we can write

$$\|f - g\|_{\infty} \ge \|f - \varphi_g\|_{\infty} - \|\varphi_g - g\|_{\infty}$$
$$> \|f - \varphi_g\|_{\infty} - \epsilon/2$$

And since G is coproximinal, let z_i , for each i, be the best coapproximation in G to $x_i \in X$. Thus, for each i, we have

$$||x_i - y_i||_X \ge ||z_i - y_i||_X.$$

Hence,

$$ess \ sup_{t \in T} \{ \sum_{i=1}^{\infty} \|x_i - y_i\|_X \ \chi_{A_i}(t) \} \ge ess \ sup_{t \in T} \{ \sum_{i=1}^{\infty} \|z_i - y_i\|_X \ \chi_{A_i}(t) \}$$

So, by taking $g_0 = \sum_{i=1}^{\infty} z_i \chi_{A_i}$, we get

$$\left\|f-\varphi_{g}\right\|_{\infty} \geq \left\|g_{0}-\varphi_{g}\right\|_{\infty}.$$

But again write

$$\left\|g_0 - \varphi_g\right\|_{\infty} \ge \left\|g_0 - g\right\|_{\infty} - \left\|g - \varphi_g\right\|_{\infty}$$

which implies

$$\|f-g\|_{\infty} > \|g_0-g\|_{\infty} - \epsilon.$$

And since ϵ arbitrary, we get

$$\|f - g\|_{\infty} \ge \|g_0 - g\|_{\infty}$$

for all $g \in L^{\infty}(\mu, G)$.

Corollary 2.1. Let G be a coproximinal subspace in X. Then $L^{\infty}(\mu, G)$ is densely coproximinal in $L^{\infty}(\mu, X)$.

3. Main Results

In this section, we will give two main results concerning coproximinality of $L^{\infty}(\mu, G)$ in $L^{\infty}(\mu, X)$ when G is either separable or reflexive coproximinal subspace of the Banach space X. First, we deal with G being separable. Let us recall, see [6], pp.133, that a set-valued map on a measure space $(T, \Sigma, \mu), F : T \to 2^X$ is said to be weakly measurable if for any open set U of X, the set $\{t \in T : F(t) \cap U \neq \phi\}$ is measurable (i.e belongs to Σ). A measurable selection of F is a measurable function $h : T \to X$ such that $h(t) \in F(t)$, for all $t \in T$. The following Lemma, known as Kuratowski-Ryll-Nardzewski Measurable Selection Theorem [5], can also be found in [6].

Lemma 3.1. Let $F: T \to 2^X$ be a weakly measurable set-valued map carrying each $t \in T$ to a nonempty closed and bounded subset of X. If X is a separable Banach space then F has a measurable selection.

Now, let G be a coproximinal subspace in the Banach space X and \check{G} the cometric complement of G in X. For each $f \in L^{\infty}(\mu, X)$, define the map $\pi_f : T \to 2^G$ as

$$\pi_f(t) = \{ z_t \in G : f(t) - z_t \in G \}, \ t \in T.$$

Then π_f is a set-valued map, taking each element $t \in T$ into a subset of G, precisely the set of best coapproximation points to $f(t) : R_G(f(t))$.

Theorem 3.1. Let G be a separable subspace of X such that π_f as defined above is weakly measurable. Then $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$ if G is coproximinal in X.

Proof. Suppose that G is coproximinal in X and let f be in $L^{\infty}(\mu, X)$. Let $\pi_f: T \to 2^G$ be the set-valued map defined as above. Hence, we can write,

$$\pi_f(t) = \{ z_t \in G : ||z_t - y|| \le ||f(t) - y||, \text{ for all } y \in G \}.$$

Hence, for each $t \in T$, $\pi_f(t)$ is closed, bounded and nonempty subset in G, since it takes $t \in T$ to the set of best coapproximation points in G to f(t). The assumption that the

map π_f is weakly measurable implies (by Lemma 3.1) that it has a measurable selection, say $w: T \to G$ such that $w(t) \in \pi_f(t)$, a.e $t \in T$. But since G separable, w is strongly measurable by Lemma 10.3 in [6]. Hence the result follows, from Theorem 2.1, if we show that $w \in L^{\infty}(\mu, G)$. Indeed, since $w: T \to G$ satisfies

$$||w(t) - y|| \le ||f(t) - y||$$
, for all $y \in G$

So, in particular

$$||w(t)|| \le ||f(t)||$$
, a.e $t \in T$,

which implies $||w||_{\infty} \le ||f||_{\infty}$. Hence, $w \in L^{\infty}(\mu, G)$.

For the next main result, Theorem 3.2, we need the following Lemma which has been proved in [4], (see Theorem 7 in [4])

Lemma 3.2. Let (I, μ) be a finite measure space, G be a separable coproximinal subspace of X and $f : I \to X$ be measurable function. Then there is a measurable function $g : I \to G$ such that g(t) is a point of coapproximation to f(t) in G, a.e. $t \in I$.

Theorem 3.2. Let G be a seperable subspace of X. G is coproximinal in X iff $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$.

Proof. Suppose that G is separable and coproximinal in X and let $f \in L^{\infty}(\mu, X)$. Lemma 3.2 above guarantees that there exists a measurable function g defined on T with values in G (hence g is strongly measurable since G separable) such that g(t) is a point of best coapproximation to f(t), a.e. $t \in T$. Thus, we have $f(t) - g(t) \in \check{G}$, a.e. $t \in T$, which implies that

 $||y|| \le ||y - (f(t) - g(t))|| \le ||f(t) - g(t) + y||, \forall y \in G.$

In particular, taking y = g(t), we get a.e $t \in T$,

$$||g(t)|| \le ||f(t) - g(t) + g(t)|| = ||f(t)||.$$

Hence, $g \in L^{\infty}(\mu, G)$ and g(t) is a best coapproximation point to f(t). It follows from Theorem 2.1 that g is a point of best coapproximation to f in $L^{\infty}(\mu, G)$. The other direction follows from Theorem 2.2.

In the remaining part of this section, we will deal with coproximinality of $L^{\infty}(\mu, G)$ in $L^{\infty}(\mu, X)$, when G is reflexive coproximinal subspace in X. We assume that (T, μ) is a finite measure space.

Theorem 3.3. If $L^1(\mu, G)$ is coproximinal in $L^1(\mu, X)$, then $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$.

Proof. Let $f \in L^{\infty}(\mu, X)$. Since the measure space (T, μ) is finite then $f \in L^{1}(\mu, X)$. Hence, by the given there exists $g_{0} \in L^{1}(\mu, G)$ such that

$$||g_0 - g||_1 \le ||f - g||_1$$
, for all $g \in L^1(\mu, G)$.

By Lemma 2.2 in [3], we have

$$||g_0(t) - g(t)|| \le ||f(t) - g(t)||, \ \mu \text{ -a.e } t \in T.$$

Hence, in particular, for all $g(t) = w(t) \in G$, where $w \in L^{\infty}(\mu, G)$. But, since $0 \in G$, then $\|g_0(t)\| \leq \|f(t)\|, \mu$ -a.e $t \in T$. This implies $\|g_0\|_{\infty} \leq \|f\|_{\infty}$. Hence, $g_0 \in L^{\infty}(\mu, G)$. Now,

$$||g_0(t) - w(t)|| \le ||f(t) - w(t)||, \ \mu \text{ -a.e } t \in T,$$

452

which implies $\|g_0 - w\|_{\infty} \le \|f - w\|_{\infty}, \forall w \in L^{\infty}(\mu, G).$

Theorem 3.4. Let G be a reflexive coproximinal subspace of X. Then $L^{\infty}(\mu, G)$ is coproximinal in $L^{\infty}(\mu, X)$.

Proof. Let G be a reflexive coproximinal subspace in X. It has been proved in [3] (see Theorem 3.6 in [3]) that $L^1(\mu, G)$ is coproximinal in $L^1(\mu, X)$. Hence the result follows from Theorem 3.3.

Acknowledgement: The author would like to thank the reviewers for their valuable comments.

References

- Diestel, J., Uhl J. R., (1997), Vector Measures, Math. Surveys Monograghs, Vol. 15, Amer. Math. Soc. Providence, RI.
- Franchetti, C., Furi, M., (1972), Some Characteristic Properties of Real Hilbert Spaces, Rev. Roumaine Math. Pures Appl, 17, pp. 1045-1048.
- [3] Haddadi M. R., Hejazjpoor N., Mazaheri, H., (2010), Some Results About Best Coapproximation in $L^p(S, X)$, Anal. Theory Appl., 26 (1), pp. 69-75.
- [4] Jawdat, J., Al-sharif Sh., (2016), Coproximinality Results in Köthe Bochner Spaces, Italian J. of Pure and Applied Math., 36, pp. 783-790.
- [5] Kuratowski K., Ryll-Nardzewski C., (1965), A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, pp. 397403.
- [6] Light W. and Cheney E., (1985), Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, New York.
- [7] Lindenstrauss J., Tzafriri L., (1979), Classical Banach Spaces II, Function Spaces, Springer-Verlag, New York.
- [8] Mazaheri H., Jesmani S., (2007), Some results on best coapproximation in $L^1(I, G)$, Mediterr. J. Math., 26 (1), pp. 497-503.
- [9] Narang T. D., (1991), Best Coapproximation in Normed Linear Spaces, Rocky Mountain Journal of Mathematics, 22 (1), pp. 265-287.
- [10] Papini P. L., Singer I., (1979), Best Coapproximation in Normed Linear Spaces, Mh. Math., 88, pp. 27-44.
- [11] Rao, G. S., Chandrasekaran K. R., (1987), Characterizations of elements of best coapproximation in normed linear spaces, Pure and Applied Mathematika Sciences, 26, pp. 139-147.
- [12] Soni, D. C.; Bahadur, Lal, (1991), A Note on Coapproximation, Indian J. Pure Appl. Math., 22 (7), pp. 579- 582.

Jamila Jawdat received her Ph.D. in Mathematics from the University of Manchester, United Kingdom in 2005. From 2006 - on going, she is the Assistant Professor in the Department of Mathematics at Zarqa University in Jordan. She is the author or the co-author of more than 10 papers in the field of analysis in the areas of K-theory for C^* -algebras and the theory of Best Approximation in Banach spaces.