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SINGLE-VALUED NEUTROSOPHIC LINE GRAPHS

S. NAZ1, M. A. MALIK1, §

Abstract. In this paper, the concept of a single-valued neutrosophic line graph (SVNLG)
of a single-valued neutrosophic graph (SVNG) is introduced and its properties are inves-
tigated. We state a necessary and sufficient condition for a SVNG to be isomorphic to
its corresponding SVNLG. Moreover, a necessary and sufficient condition for a SVNG
to be the SVNLG of some SVNG is given. The notion of a single-valued neutrosophic
clique (SVNC) is introduced. A complete characterization of the structure of the SVNC
is presented.
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1. Introduction

In 1965, Zadeh [25] originally introduced the concept of fuzzy set, characterized by
a membership function in [0, 1], which shows great advantages in expressing vague in-
formation when accurate judgments to the things cannot be given. But sometimes, to
explain the characters of things, membership function of the fuzzy set is not adequate. To
overcome this shortcoming of the fuzzy set, Atanassov [5] proposed an extension of fuzzy
set by introducing a non-membership and a hesitancy function, and defined intuitionis-
tic fuzzy set (IFS) which has been applied in many areas, such as pattern recognition,
decision making, medical diagnosis and cluster analysis. Atanassov and Gargov [6] in-
troduced interval-valued intuitionistic fuzzy set (IVIFS) which consists of a membership
function and a non-membership function, whose values are intervals rather than exact
numbers. The IVIFS comprehensively depicts the characters of things. However IFSs and
IVIFSs cannot deal with all types of uncertainty, such as indeterminate information and
inconsistent information, which exist commonly in different real-world problems.

To effectively accommodate such situations, Smarandache [21] firstly proposed neutro-
sophic set theory from philosophical point of view. Its prominent characteristic is that a
truth-membership degree, an indeterminacy-membership degree and a falsity-membership
degree, in non-standard unit interval ]0−, 1+[, are independently assigned to each element
in the set. Gradually, it has been discovered that without a specific description, neutro-
sophic sets are difficult to apply in the real applications. After analyzing this difficulty,
Wang et al. [23] initiated the concept of a single-valued neutrosophic set (SVNS) from
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scientific or engineering point of view, as an instance of the neutrosophic set and an exten-
sion of IFS, and provided its various properties. SVNSs represent uncertainty, incomplete,
inconsistent, and imprecise information which exist in real world.

The concept of fuzzy graphs was initiated by Kaufmann [11], based on Zadeh’s fuzzy
relations. Later, another elaborated definition of fuzzy graph with fuzzy vertex and fuzzy
edges was introduced by Rosenfeld [18] and obtaining analogs of several graph theoretical
concepts such as paths, cycles and connectedness etc, he developed the structure of fuzzy
graphs. Some remarks on fuzzy graphs were given by Bhattacharya [7]. Fuzzy line graphs
were studied in [12] by Mordeson. Nair and Cheng [13] defined the concept of a fuzzy
clique consistent with the definition of fuzzy cycles in fuzzy graphs. Intuitionistic fuzzy
graphs with vertex sets and edge sets as IFS were introduced by Akram and Davvaz [1].
Sahoo and Pal [19, 20] introduced some new concepts of intuitionistic fuzzy graphs. Naz
et al. [3, 16, 17] put forward many new concepts concerning the extended structures
of fuzzy graphs. Kandasamy et al. [22] put forward the notion of neutrosophic graphs.
Neutrosophic graphs, particularly SVNGs [2, 4, 8, 9, 14, 15] have attracted significant
interest from researchers in recent years. In literature, the study of SVNLGs and SVNCs
is still blank. To fill this vacancy, we shall focus on the study of SVNLGs and SVNCs, in
this paper.

The paper is structured as follows: Section 2 contains a brief background about SVNSs
and SVNGs. Section 3 introduces the concept of SVNLG of a SVNG and, investigates their
properties. In Section 4, the notion of SVNC consistent with single-valued neutrosophic
cycles in SVNGs is proposed and a complete characterization of the structure of the SVNC
is presented, and finally we draw conclusions in Section 5.

2. Preliminaries

In the following, some basic concepts on SVNSs and SVNGs are reviewed to facilitate
next sections.

A graph is a pair of sets G = (V,E), satisfying E ⊆ V × V . The elements of V and E
are the vertices and edges of the graph G, respectively. The line graph L(G) of G is the
graph whose vertices are the edges of G, two vertices of L(G) being adjacent if and only
if the corresponding edges of G are adjacent. A connected graph is isomorphic to its line
graph if and only if it is a cycle [10]. The idea of line graph of any graph is so natural
that many authors have discovered it independently.

Consider a graph G = (V,E), where V = {v1, v2, . . . , vn}. Let Si = {vi, xi1, . . . , xipi}
where xij ∈ E has vi as a vertex, i = 1, 2, . . . , n; j = 1, 2, . . . , pi. Let S = {S1, S2, . . . , Sn}
and T = {SiSj | Si, Sj ∈ S, Si ∩ Sj 6= ∅, i 6= j}. Then Ω(S) = (S, T ) is an intersection
graph and G ∼= Ω(S).

For a graph G, the line graph L(G) is the intersection graph of the set of lines of G.
That is, L(G) = (Z,W ) where Z = {{x} ∪ {ux, vx} | x ∈ E, ux, vx ∈ V, x = uxvx} and
W = {SxSy | Sx ∩ Sy 6= ∅, x, y ∈ E, x 6= y}, with Sx = {x} ∪ {ux, vx}, x ∈ E.

A clique in a graph G is a complete subgraph of G. A subgraph H of a graph G
is a disjoint union of cliques if V (H) can be partitioned into H1, H2, . . . ,Hk such that
xy ∈ E(H) for all x, y ∈ V (H) if and only if {x, y} ⊆ Hi, for some i, i = 1, 2, . . . , k [13].

Definition 2.1. [18, 25] A fuzzy subset η of a set V is a function η : V → [0, 1]. A
fuzzy (binary) relation on a set V is a mapping µ : V × V → [0, 1] such that µ(x, y) ≤
min{η(x), η(y)} for all x, y ∈ V . A fuzzy relation µ is symmetric if µ(x, y) = µ(y, x) for
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all x, y ∈ V . A fuzzy graph is a pair G = (η, µ), where η is a fuzzy subset of a set V and
µ is a (symmetric) fuzzy relation on η.

Definition 2.2. [5] An IFS X in V is an object having the form

X = {〈x, µX(x), νX(x)〉 | x ∈ V },

where the functions µX : V → [0, 1] and νX : V → [0, 1] define the degree of mem-
bership and degree of non-membership of the element x ∈ V , respectively, such that
0 ≤ µX(x) + νX(x) ≤ 1 for all x ∈ V.

For each IFS X in V , πX(x) = 1− µX(x)− νX(x) is called a hesitancy degree of x in
X. If πX(x) = 0 for all x ∈ V, then IFS reduces to Zadeh’s fuzzy set.

Definition 2.3. [21] Let V be a space of points (objects), with a generic element in V
denoted by x. A neutrosophic set X in V is characterized by a truth-membership function
TX , an indeterminacy-membership function IX and a falsity-membership function FX .
TX(x), IX(x) and FX(x) are real standard or non-standard subsets of ]0−, 1+[. That is,
TX : V →]0−, 1+[, IX : V →]0−, 1+[ and FX : V →]0−, 1+[.

There is no restriction on the sum of TX(x), IX(x) and FX(x), therefore 0− ≤ supTX(x)+
sup IX(x) + supFX(x) ≤ 3+.

Definition 2.4. [23] Let V be a space of points (objects), with a generic element in V
denoted by x. A SVNS X in V is characterized by a truth-membership function TX , an
indeterminacy-membership function IX and a falsity-membership function FX . For each
point x ∈ X, TX(x), IX(x), FX(x) ∈ [0, 1]. Therefore, a SVNS X in V can be written as

X = {〈x, TX(x), IX(x), FX(x)〉 | x ∈ V },

Definition 2.5. [24] A SVNS Y in V ×V is said to be a single-valued neutrosophic relation
in V , denoted by

Y = {〈xy, TY (xy), IY (xy), FY (xy)〉 | xy ∈ V × V }

where TY : V × V → [0, 1], IY : V × V → [0, 1] and FY : V × V → [0, 1] represent
the truth-membership, indeterminacy-membership and falsity-membership function of Y,
respectively.

Definition 2.6. [8, 14] A single-valued neutrosophic graph (SVNG) on a non-empty set
V is a pair G = (X,Y ), where X is a SVNS in V and Y is a single-valued neutrosophic
relation on V such that

TY (xy) ≤ min{TX(x), TX(y)},

IY (xy) ≥ max{IX(x), IX(y)},

FY (xy) ≥ max{FX(x), FX(y)}

for all x, y ∈ V . X and Y are called the single-valued neutrosophic vertex set and the
single-valued neutrosophic edge set of G, respectively. Here Y is a symmetric single-valued
neutrosophic relation on X.

Definition 2.7. [8] A SVNG G = (X,Y ) is called strong if TY (xy) = min{TX(x), TX(y)},
IY (xy) = max{IX(x), IX(y)} and FY (xy) = max{FX(x), FX(y)} for all xy ∈ E.
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3. Single-valued neutrosophic line graphs

This section proposes the concept of a SVNLG of a SVNG based on the extension of
the concept of a fuzzy line graph of a fuzzy graph which was proposed by Mordeson [12],
and investigates its properties.

Definition 3.1. Let Ω(S) = (S, T ) be an intersection graph of a graph G = (V,E) and
let G = (X1, Y1) be a SVNG with underlying set V . A SVNG of Ω(S) is a pair (X2, Y2),
where X2 = 〈TX2 , IX2 , FX2〉 and Y2 = 〈TY2 , IY2 , FY2〉 are SVNSs of S and T , respectively,
such that

(i): TX2(Si) = TX1(vi), IX2(Si) = IX1(vi) and FX2(Si) = FX1(vi) for all Si, Sj ∈ S,
(ii): TY2(SiSj) = TY1(vivj), IY2(SiSj) = IY1(vivj) and FY2(SiSj) = FY1(vivj) for all
SiSj ∈ T.

That is, any SVNG of intersection graph Ω(S) is a single valued neutrosophic intersection
graph of G.

Definition 3.2. Let L(G) = (Z,W ) be a line graph of a graph G = (V,E). A SVNLG
of a SVNG G = (X1, Y1) (with underlying set V ) is a pair L(G) = (X2, Y2), where X2 =
〈TX2 , IX2 , FX2〉 and Y2 = 〈TY2 , IY2 , FY2〉 are SVNSs of Z and W , respectively, such that

TX2(Sx) = TY1(x) = TY1(uxvx), IX2(Sx) = IY1(x) = IY1(uxvx)

and FX2(Sx) = FY1(x) = FY1(uxvx) for all Sx, Sy ∈ Z,

TY2(SxSy) = min{TY1(x), TY1(y)}, IY2(SxSy) = max{IY1(x), IY1(y)}
and FY2(SxSy) = max{FY1(x), FY1(y)} for all SxSy ∈W.

Example 3.1. Consider a graph G = (V,E), where V = {a1, a2, a3} and E = {x1 =
a1a2, x2 = a2a3, x3 = a1a3}. Let G = (X1, Y1) be a SVNG of G, as shown in Figure 1,
defined by

a1 a2 a3
TX1 0.5 0.4 0.6
IX1 0.2 0.3 0.1
FX1 0.4 0.1 0.2

a1a2 a2a3 a1a3
TY1 0.2 0.1 0.1
IY1 0.6 0.4 0.3
FY1 0.4 0.3 0.5

〈a2, 0.4, 0.3, 0.1〉

 

  

〈a3, 0.6, 0.1, 0.2〉

〈a1, 0.5, 0.2, 0.4〉

〈0.1, 0.3, 0.5〉

〈0.1, 0.4, 0.3〉

〈0.2, 0.6, 0.4〉

Figure 1. Single-valued neutrosophic graph G = (X1, Y1).

Consider a line graph L(G) = (Z,W ), where Z = {Sx1 , Sx2 , Sx3} and W = {Sx1Sx2 , Sx2Sx3 ,
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Sx3Sx1}. Let L(G) be the SVNLG, as shown in Figure 2. Then, we have

TX2(Sx1) = 0.2, IX2(Sx1) = 0.6, FX2(Sx1) = 0.4,

TX2(Sx2) = 0.1, IX2(Sx2) = 0.4, FX2(Sx2) = 0.3,

TX2(Sx3) = 0.1, IX2(Sx3) = 0.3, FX2(Sx3) = 0.5.

TY2(Sx1Sx2) = 0.1, IY2(Sx1Sx2) = 0.6, FY2(Sx1Sx2) = 0.4,

TY2(Sx2Sx3) = 0.1, IY2(Sx2Sx3) = 0.4, FY2(Sx2Sx3) = 0.5,

TY2(Sx1Sx3) = 0.1, IY2(Sx1Sx3) = 0.6, FY2(Sx1Sx3) = 0.5.

〈Sx2 , 0.1, 0.4, 0.3〉

 

  

〈Sx3 , 0.1, 0.3, 0.5〉

〈Sx1 , 0.2, 0.6, 0.4〉

〈0.1, 0.6, 0.5〉

〈0.1, 0.4, 0.5〉

〈0.1, 0.6, 0.4〉

Figure 2. Single-valued neutrosophic line graph L(G).

Proposition 3.1. A SVNLG is always a strong SVNG.

Proof. It is obvious, therefore omitted. �

Proposition 3.2. If L(G) is a SVNLG of SVNG G. Then L(G) is the line graph of G.

Proof. Since G = (X1, Y1) is a SVNG of G and L(G) = (X2, Y2) is a SVNG of L(G),

TX2(Sx) = TY1(x), IX2(Sx) = IY1(x), FX2(Sx) = FY1(x) for all x ∈ E

and so Sx ∈ Z if and only if x ∈ E. Also

TY2(SxSy) = min{TY1(x), TY1(y)}, IY2(SxSy) = max{IY1(x), IY1(y)},
FY2(SxSy) = max{FY1(x), FY1(y)} for all SxSy ∈W

and so W = {SxSy | Sx ∩ Sy 6= ∅, x, y ∈ E, x 6= y}. Hence proved. �

Proposition 3.3. Let L(G) = (X2, Y2) be a SVNG of L(G). Then L(G) is a SVNLG of
some SVNG of G if and only if

TY2(SxSy) = min{TX2(Sx), TX2(Sy)}, IY2(SxSy) = max{IX2(Sx), IX2(Sy)},
FY2(SxSy) = max{FX2(Sx), FX2(Sy)} for all SxSy ∈W.

Proof. Suppose that TY2(SxSy) = min{TX2(Sx), TX2(Sy)}, IY2(SxSy) = max{IX2(Sx), IX2(Sy)},
FY2(SxSy) = max{FX2(Sx), FX2(Sy)} for all SxSy ∈W. Define

TX2(Sx) = TY1(x), IX2(Sx) = IY1(x), FX2(Sx) = FY1(x) for all x ∈ E.
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Then

TY2(SxSy) = min{TX2(Sx), TX2(Sy)} = min{TY1(x), TY1(y)},
IY2(SxSy) = max{IX2(Sx), IX2(Sy)} = max{IY1(x), IY1(y)},
FY2(SxSy) = max{FX2(Sx), FX2(Sy)} = max{FY1(x), FY1(y)} for all SxSy ∈W.

Any SVNS X1 that yields the property TY1(uv) ≤ min{TX1(u), TX1(v)}, IY1(uv) ≥
max{IX1(u), IX1(v)} and FY1(uv) ≥ max{FX1(u), FX1(v)} will suffice. The converse is
immediate. Hence proved. �

The following theorem shows that when a SVNG is a SVNLG of some SVNG.

Theorem 3.1. L(G) is a SVNLG if and only if L(G) is a line graph and

TY2(uv) = min{TX2(u), TX2(v)}, IY2(uv) = max{IX2(u), IX2(v)},
FY2(uv) = max{FX2(u), FX2(v)} for all uv ∈W.

Proof. Straightforward using Propositions 3.2 and 3.3. �

Definition 3.3. A homomorphism χ : G1 → G2 of two SVNGs G1 = (X1, Y1) and G2 =
(X2, Y2) is a mapping χ : V1 → V2 such that

(a): TX1(x1) ≤ TX2(χ(x1)),IX1(x1) ≥ IX2(χ(x1)),FX1(x1) ≥ FX2(χ(x1)) for all x1 ∈
V1,

(b): TY1(x1y1) ≤ TY2(χ(x1)χ(y1)),IY1(x1y1) ≥ IY2(χ(x1)χ(y1)), FY1(x1y1) ≥ FY2(χ(x1)χ(y1))
for all x1y1 ∈ E1.

Definition 3.4. A (weak) vertex-isomorphism is a bijective homomorphism χ : G1 → G2
such that TX1(x1) = TX2(χ(x1)),IX1(x1) = IX2(χ(x1)),FX1(x1) = FX2(χ(x1)) for all x1 ∈
V1.

A (weak) line-isomorphism is a bijective homomorphism χ : G1 → G2 such that TY1(x1y1) =
TY2(χ(x1)χ(y1)),IY1(x1y1) = IY2(χ(x1)χ(y1)),FY1(x1y1) = FY2(χ(x1)χ(y1)) for all x1y1 ∈
E1.

If χ : G1 → G2 is a (weak) vertex-isomorphism and a (weak) line-isomorphism, then χ
is called a (weak) isomorphism.

The following proposition shows that any SVNG is isomorphic to a single-valued neu-
trosophic intersection graph.

Proposition 3.4. Let G = (X1, Y1) be a SVNG with underlying set V . Then

(i): (X2, Y2) is a SVNG of Ω(S),
(ii): (X1, Y1) ∼= (X2, Y2).

Proposition 3.5. Let G and G′
be SVNGs of G and G

′
, respectively. If χ : G → G′

is a
weak isomorphism, then χ : G→ G

′
is an isomorphism.

Proof. Let χ : G → G′
be a weak isomorphism, then v ∈ V if and only if χ(v) ∈ V ′

and

uv ∈ E if and only if χ(u)χ(v) ∈ E′
.

Hence proved. �

Now we provide a necessary and sufficient condition for a SVNG to be isomorphic to
its corresponding SVNLG.

Proposition 3.6. Let G = (V,E) be a connected graph. Suppose that L(G) = (X2, Y2) is
a SVNLG corresponding to a SVNG G = (X1, Y1). Then
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(i): there exists a weak isomorphism of G onto L(G) if and only if G is a cycle and
for all v ∈ V, x ∈ E, TX1(v) = TY1(x), IX1(v) = IY1(x), FX1(v) = FY1(x), that is,
X1 = 〈TX1 , IX1 , FX1〉 and Y1 = 〈TY1 , IY1 , FY1〉 are constant functions on V and E,
respectively, taking on the same value.

(ii): If χ : G → L(G) is a weak isomorphism, then χ is an isomorphism.

Proof. Suppose that χ : G → L(G) is a weak isomorphism. From Proposition 3.5, it follows
that G = (V,E) is a cycle. Consider V = {v1, v2, . . . , vn} and E = {v1v2 = x1, v2v3 =
x2, . . . , vnv1 = xn}, where v1v2, . . . , vnv1 is a cycle. Let

TX1(vi) = si, IX1(vi) = s
′
i, FX1(vi) = s

′′
i ,

TY1(xi) = ri, IY1(xi) = r
′
i, FY1(xi) = r

′′
i

i = 1, 2, . . . , n, vn+1 = v1. Then for s1 = sn+1, s
′
1 = s

′
n+1, s

′′
1 = s

′′
n+1,

ri ≤ min{si, si+1}, r
′
i ≥ max{s′i, s

′
i+1}, r

′′
i ≥ max{s′′i , s

′′
i+1} i = 1, 2, . . . , n. (1)

Now Z = {Sxi | i = 1, 2, . . . , n} and W = {SxiSxi+1 | i = 1, 2, . . . , n− 1}.
Also for r1 = rn+1, r

′
1 = r

′
n+1, r

′′
1 = r

′′
n+1,

TX2(Sxi) = TY1(xi) = ri,

IX2(Sxi) = IY1(xi) = r
′
i,

FX2(Sxi) = FY1(xi) = r
′′
i ,

TY2(SxiSxi+1) = min{TY1(xi), TY1(xi+1)} = min{ri, ri+1},
IY2(SxiSxi+1) = max{IY1(xi), IY1(xi+1)} = max{r′i, r

′
i+1},

FY2(SxiSxi+1) = max{FY1(xi), FY1(xi+1)} = max{r′′i , r
′′
i+1}

for all i = 1, 2, . . . , n, where vn+2 = v2.
Since χ is an isomorphism of G onto L(G), χ maps V one-to-one onto X2. Also χ preserves
adjacency. Hence χ induces a permutation π of {1, 2, . . . ,n} such that χ(vi) = Sxπ(i) and

xi = vivi+1 → χ(vi)χ(vi+1) = Sxπ(i)Sxπ(i+1)
, i = 1, 2, . . . , n− 1.

Now
si = TX1(vi) ≤ TX2(χ(vi)) = TX2(Sxπ(i)) = rπ(i),

s
′
i = IX1(vi) ≥ IX2(χ(vi)) = IX2(Sxπ(i)) = r

′

π(i),

s
′′
i = FX1(vi) ≥ FX2(χ(vi)) = FX2(Sxπ(i)) = r

′′

π(i)

and

ri = TY1(xi) ≤ TY2(χ(vi)χ(vi+1)) = TY2(Sxπ(i)Sxπ(i+1)
)

= min{TY1(xπ(i)), TY1(xπ(i+1))}
= min{rπ(i), rπ(i+1)},

r
′
i = IY1(xi) ≥ IY2(χ(vi)χ(vi+1)) = IY2(Sxπ(i)Sxπ(i+1)

)

= max{IY1(xπ(i)), IY1(xπ(i+1))}

= max{r′π(i), r
′

π(i+1)},

r
′′
i = FY1(xi) ≥ FY2(χ(vi)χ(vi+1)) = FY2(Sxπ(i)Sxπ(i+1)

)

= max{FY1(xπ(i)), FY1(xπ(i+1))}

= max{r′′π(i), r
′′

π(i+1)} i = 1, 2, . . . , n.
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That is,

si ≤ rπ(i), s
′
i ≥ r

′

π(i), s
′′
i ≥ r

′′

π(i), (2)

and
ri ≤ min{rπ(i), rπ(i+1)}, r

′
i ≥ max{r′π(i), r

′

π(i+1)}, r
′′
i ≥ max{r′′π(i), r

′′

π(i+1)}. (3)

From (3), we get ri ≤ rπ(i), r
′
i ≥ r

′

π(i), r
′′
i ≥ r

′′

π(i) and so rπ(i) ≤ rπ(π(i)), r
′

π(i) ≥ r
′

π(π(i)),

r
′′

π(i) ≥ r
′′

π(π(i)) i = 1, 2, . . . , n. Continuing, we have ri ≤ rπ(i) ≤ . . . ≤ rπj(i) ≤ ri, r
′
i ≥

r
′

π(i) ≥ . . . ≥ r
′

πj(i)
≥ r

′
i, r

′′
i ≥ r

′′

π(i) ≥ . . . ≥ r
′′

πj(i)
≥ r

′′
i and so ri = rπ(i), r

′
i = r

′

π(i),

r
′′
i = r

′′

π(i) for all i = 1, 2, . . . , n, where πj+1 is the identity map. Again, from 3, we get

ri ≤ rπ(i+1) = ri+1, r
′
i ≥ r

′

π(i+1) = r
′
i+1, r

′′
i ≥ r

′′

π(i+1) = r
′′
i+1 for all i = 1, 2, . . . , n where

rn+1 = r1.
Hence from (1), (2) and (3),

r1 = . . . = rn = s1 = . . . = sn, r
′
1 = . . . = r

′
n = s

′
1 = . . . = s

′
n, r

′′
1 = . . . = r

′′
n = s

′′
1 = . . . =

s
′′
n.

Hence X1 and Y1 are constant functions and we have also proved that (2) holds. The
converse part is obvious.
Hence proved. �

Proposition 3.7. Let G = (X1, Y1) and G′
= (X

′
1, Y

′
1 ) be the SVNGs of connected graphs

G and G
′
, respectively. Let L(G) = (X2, Y2) and L(G′

) = (X
′
2, Y

′
2 ) denote respectively the

SVNLGs corresponding to G and G′
. Assume that it is not the case that one of G and G

′

is complete graph K3 and the other is bipartite complete graph K1,3. If L(G) and L(G′
)

are isomorphic, then G and G′
are line-isomorphic.

Proof. Suppose that L(G) ∼= L(G′
), then by Proposition 3.5, L(G) ∼= L(G

′
). Since L(G)

and L(G
′
) are respectively the line graphs of G and G

′
, so, G ∼= G

′
.

Let φ1 : L(G)→ L(G′
) and φ2 : G→ G

′
be the isomorphisms. Then

TX2(Suv) = T
X

′
2
(φ1(Suv)) = T

X
′
2
(Sφ2(u)φ2(v)),

IX2(Suv) = I
X

′
2
(φ1(Suv)) = I

X
′
2
(Sφ2(u)φ2(v)),

FX2(Suv) = F
X

′
2
(φ1(Suv)) = F

X
′
2
(Sφ2(u)φ2(v)).

Therefore, TY1(uv) = T
Y

′
1
(φ2(u)φ2(v)), IY1(uv) = I

Y
′
1
(φ2(u)φ2(v)), FY1(uv) = F

Y
′
1
(φ2(u)φ2(v)).

Hence, G1 and G2 are line-isomorphic. Hence proved. �

4. Single-valued neutrosophic cliques

In this section, we propose the notion of SVNC consistent with single-valued neutro-
sophic cycles in SVNGs and present a complete characterization of the structure of the
SVNC. To do this, we firstly introduce the concept of single-valued neutrosophic cycles.

Definition 4.1. Let G = (X,Y ) be a SVNG. Then

(i): G is a cycle if and only if G = (V,E) is a cycle.
(ii): G is called a single-valued neutrosophic cycle if and only if G is a cycle and

there does not exist unique edge lm of G such that

TY (lm) = min{TY (xy) | xy ∈ E}, IY (lm) = max{IY (xy) | xy ∈ E},
and FY (lm) = max{FY (xy) | xy ∈ E}.

Definition 4.2. Let G = (X,Y ) be a SVNG of a graph G = (V,E) and H = (X
′
, Y

′
) be

a subgraph induced by S ⊆ V . Then H is a clique if H∗ = (S, T ) is a clique and H is a
SVNC if H is a clique and every cycle in H is a single-valued neutrosophic cycle.
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Example 4.1. Consider a graph G = (V,E), where V = {a1, a2, a3} and E = {a1a2, a2a3, a1a3}.
Let G be a SVNG of G, given in Figure 3.

〈a1, 0.4, 0.5, 0.3〉
 

 

 

〈0.2, 0.5, 0.4〉

〈a2, 0.3, 0.4, 0.3〉〈a3, 0.2, 0.4, 0.1〉

〈0.2, 0.5, 0.4〉〈0.1, 0.6, 0.7〉

Figure 3. Not a single-valued neutrosophic clique.

Take S = V , then H is the same as G. Routine computations show that H is a cycle but
not a single-valued neutrosophic cycle. Hence H is a clique but not a SVNC.

Example 4.2. Consider a graph G = (V,E), where V = {a1, a2, a3, a4} and E =
{a1a2, a2a3, a3a4, a4a1, a1a3, a2a4}. Let G be a SVNG of G, given in Figure 4.

〈a1, 0.5, 0.2, 0.3〉
 

 

 

 

〈0.1, 0.4, 0.6〉〈0.4, 0.2, 0.3〉

〈0.2, 0.3, 0.5〉

〈0.1, 0.4, 0.6〉

〈0.
2,
0.
3,
0.
5〉

〈0.1, 0.4, 0.6〉

〈a3, 0.5, 0.2, 0.3〉〈a4, 0.5, 0.2, 0.3〉

〈a2, 0.5, 0.2, 0.3〉

Figure 4. Single-valued neutrosophic clique.

Take S = V , then H is the same as G. Routine computations show that every cycle in H
is a single-valued neutrosophic cycle. Hence H is a clique and is also a SVNC.

Theorem 4.1. Let G = (X,Y ) be a SVNG of a graph G = (V,E) and H = (X
′
, Y

′
) be a

subgraph induced by S ⊆ V . Then H is a SVNC if and only if every cycle of length 3 in
H is a single-valued neutrosophic cycle.

Proof. Suppose that H is a SVNC. Then by above definition every cycle in H is a single-
valued neutrosophic cycle and so every cycle of length 3 in H is also a single-valued
neutrosophic cycle.

Conversely, assume that every cycle of length 3 is a single-valued neutrosophic cycle.
To prove that H is a SVNC, we have to show that every cycle in H of length n ≥ 3
is a single-valued neutrosophic cycle. The proof is by induction on the length of single-
valued neutrosophic cycles in H. By assumption, every cycle of length 3 is a single-valued
neutrosophic cycle. Induction hypothesis is that every cycle of length n is a single-valued
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neutrosophic cycle. Let v0, v1, ..., vn, vn+1 be any cycle Cn+1 of length n + 1 in H. Since
H is a clique, H contains a cycle Cn of length n i.e v0, v1, ..., vn and is a single-valued
neutrosophic cycle in H. Therefore ∃ at least two edges, say e1 and e2 in a single valued
neutrosophic cycle Cn such that

TY (e1) = TY (e2) = min{TY (e) | e is an edge in Cn},
IY (e1) = IY (e2) = max{IY (e) | e is an edge in Cn},
FY (e1) = FY (e2) = max{FY (e) | e is an edge in Cn}.

Also v0, vn, vn+1 is a single-valued neutrosophic cycle and hence ∃ at least two edges, say
e3 and e4 in a single-valued neutrosophic cycle v0, vn, vn+1 such that

TY (e3) = TY (e4) = min{TY (e) | e is an edge in v0, vn, vn+1},
IY (e3) = IY (e4) = max{IY (e) | e is an edge in v0, vn, vn+1},
FY (e3) = FY (e4) = max{FY (e) | e is an edge in v0, vn, vn+1}.

Then two cases arise, firstly, if one of the edges e1 or e2 is the same as one of the edges e3
or e4. In this case, take e1 = e3. Then e2 and e4 are the edges in Cn+1 such that

TY (e2) = TY (e4) = min{TY (e) | e is an edge in Cn+1},
IY (e2) = IY (e4) = max{IY (e) | e is an edge in Cn+1},
FY (e2) = FY (e4) = max{FY (e) | e is an edge in Cn+1}

as required.
Secondly, all four edges e1, e2, e3, e4 are edges in Cn+1 and either

TY (e1) = TY (e2) = min{TY (e) | e is an edge in Cn+1},
IY (e1) = IY (e2) = max{IY (e) | e is an edge in Cn+1},
FY (e1) = FY (e2) = max{FY (e) | e is an edge in Cn+1}

or

TY (e3) = TY (e4) = min{TY (e) | e is an edge in Cn+1},
IY (e3) = IY (e4) = max{IY (e) | e is an edge in Cn+1},
FY (e3) = FY (e4) = max{FY (e) | e is an edge in Cn+1}.

Hence in both cases, H is a SVNC. �

Lemma 4.1. Let G = (X,Y ) be a SVNG of a graph G = (V,E) and H = (X
′
, Y

′
)

be a subgraph induced by S ⊆ V . Then every cycle of length 3 in H is a single-valued
neutrosophic cycle if and only if for any three vertices u, v, w in H such that the edges
uv, vw ∈ E(Ht) implies uw ∈ E(Ht) for all t ∈ [0, 1].

Lemma 4.2. Let G = (X,Y ) be a SVNG of a graph G = (V,E) and H = (X
′
, Y

′
) be a

subgraph induced by S ⊆ V . Then H is a disjoint union of cliques if and only if for any
three vertices u, v, w in H such that the edges uv, vw ∈ E(Ht) implies uw ∈ E(Ht) for all
t ∈ [0, 1].

As a consequence of Lemmas 4.1 and 4.2, we obtain

Theorem 4.2. Let G = (X,Y ) be a SVNG of a graph G = (V,E) and H = (X
′
, Y

′
) be

a subgraph induced by S ⊆ V . Then H is a SVNC if and only if every cut set of H is a
disjoint union of cliques.
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5. Conclusions

Single-valued neutrosophic models are more flexible and practical than fuzzy and in-
tuitionistic fuzzy models. In this paper, we have introduced the concept of SVNLG of a
SVNG and discussed some of their desirable properties. We have introduced the notion of
SVNC and presented a complete characterization of the structure of the SVNC. SVNGs
can be used in computer technology, networking, communication, economics, genetics, lin-
guistics, sociology, etc, when the concept of indeterminacy is present. We are extending
our research work to (i) Interval-valued neutrosophic line graphs, (ii) Intuitionistic neu-
trosophic line graphs, (iii) Vague neutrosophic line graphs, and (iv) Bipolar neutrosophic
line graphs.
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