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HESITANT FUZZY IDEAL EXTENSION IN PO-SEMIGROUPS
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Abstract. In this paper, the notions of extension of hesitant fuzzy ideals, hesitant
fuzzy prime ideals, hesitant fuzzy semiprime ideals and hesitant 3-prime fuzzy ideals
in po-semigroups are introduced with some of their properties are investigated. We
discuss the relationship between between prime(semi prime) ideals and 3-prime ideals in
po-semigroup by means of the extensions hesitant fuzzy ideals.
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1. Introduction

Given a set S, a fuzzy subset of S (or a fuzzy set in S) is described as an arbitrary
mapping f : S → [0,1], where [0,1] is the usual interval of real numbers. The concept of
fuzzy set was introduced by Zadeh[19]. Rosenfeld[13] gave the concept of fuzzy groups
and fuzzy semigroups by Kuroki[8, 9]. Kehayopulu and Tsingelis[7] introduced fuzzy bi-
ideals in po-semigroups (ordered semigroups). Xie et al.[16, 17, 18] introduced the idea
of extensions of fuzzy ideals in semigroups. Torra[14, 15] initiated the hesitant fuzzy
set theory. Hesitant fuzzy sets have attracted the attention of many researchers in a
short period of time because hesitant situations are very common in different real world
problems. Hesitant fuzzy set theory has been applied to different algebraic structures. Jun
et al.[4, 5, 6] applied the notion of hesitant fuzzy sets to semigroups and hesitant fuzzy
soft sets to subalgebras and BCK/BCI-algebras. They introduced the notion of hesitant
fuzzy semigroups and hesitant fuzzy left (resp right ideals). Abbasi et al.[1, 2] applied the
notion of hesitant fuzzy sets to po-semigroups.

Our main aim in this study is to use the idea of Torra and Xie to introduce the notion of
extension of hesitant fuzzy ideals and 3-prime hesitant fuzzy ideals in po-semigroups and
investigate some related properties. We study the relationships between hesitant fuzzy
prime ideals and 3-prime hesitant fuzzy ideals in po-semigroups. We give an example
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to show that a 3-prime hesitant fuzzy ideal is not necessarily prime in a po-semigroup.
Furthermore, we show that in a po-semigroup with identity element, the 3-prime hesitant
fuzzy ideal coincides with the hesitant fuzzy prime ideal.

2. Preliminaries

Throughout the paper unless otherwise mentioned S denotes a po-semigroup. In this
section we discuss some elementary definitions and results that we use in the sequel.

Definition 2.1. Let S be a reference set, a hesitant fuzzy set on S is a function H that
returns a subset of values in [0,1]:

H : S → P([0, 1])

where P([0, 1]) denotes the set of all subsets of [0,1].

Definition 2.2. An ordered semigroup (or po-semigroup) is a system (S, .,≤) satisfying
the following properties:
(1) (S, .) is a semigroup;
(2) (S,≤) is a poset;
(3) for all x ∈ S, a ≤ b implies xa ≤ xb and ax ≤ bx.

Definition 2.3. Let S be a po-semigroup. A hesitant fuzzy set H is called a hesitant fuzzy
subsemigroup of S if it satisfies:

(∀ x, y ∈ S)(H(x) ∩H(y) ⊆ H(xy)).

Definition 2.4. Let S be a po-semigroup. A hesitant fuzzy set H on S is called a hesitant
fuzzy left ideal of S if it satisfies :
(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y)
(2) (∀ x, y ∈ S) H(y) ⊆ H(xy)

Definition 2.5. Let S be a po-semigroup. A hesitant fuzzy set H on S is called a hesitant
fuzzy right ideal of S if it satisfies:
(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y)
(2) (∀ x, y ∈ S) H(x) ⊆ H(xy)

Definition 2.6. A hesitant fuzzy subset H of a po-semigroup S is called a hesitant fuzzy
ideal of S, if it is both a hesitant fuzzy left ideal and a hesitant fuzzy right ideal of S.

Example 2.1. Let S = {a, b, c, d} be the po-semigroup with the following multiplication
table and the order below:

. a b c d
a a a a a
b a a a a
c a a b a
d a a b b

≤:= {(a, a); (a, b); (b, b); (c, c); (d, d)}.
Clearly S is a po-semigroup.
Define a hesitant fuzzy subset H of S such that

H(a) = [0, 1]; H(b) = [0.1, 0.9]; H(c) = ∅; H(d) = [0.2, 0.8]
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Clearly

H(xy) =

 H(b) if (x, y) :=

 (c, c)
(d, d)
(d, c)

H(a) otherwise

for every x and y of S. This implies that H(y) ⊆ H(xy) and H(x) ⊆ H(xy). Moreover
for all x, y ∈ S, x ≤ y we have H(x) ⊇ H(y). Hence H is a hesitant fuzzy ideal on S.

Definition 2.7. Let S be a po-semigroup. A hesitant fuzzy subsemigroup H of S is called
a hesitant fuzzy bi-ideal of S if it satisfies:
(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y)
(2) (∀ x, y, z ∈ S) (H(xyz) ⊇ H(x) ∩H(z))

Definition 2.8. A po-semigroup S is called left(right) regular if for every a ∈ S there
exists x ∈ S such that a ≤ xa2 (resp., a ≤ a2x ).

Definition 2.9. A po-semigroup S is called regular if for every a ∈ S, there exists x ∈ S
such that a ≤ axa.

Definition 2.10. A po-semigroup S is called intra regular if for every a ∈ S there exists
x, y ∈ S such that a ≤ xa2y.

Lemma 2.1. [1] Let S be left regular po-semigroup. Then for every hesitant fuzzy left
ideal H of S, H(a) = H(a2) holds for all a ∈ S.

Proof. Let H be any hesitant fuzzy ideal of S and a be any element of S. Then, since S
is left regular, there exist an element x in S such that a ≤ xa2. Then we have

H(a2) ⊇ H(a) ⊇ H(x(a2)) ⊇ H(a2) and so H(a) = H(a2). �

3. Hesitant fuzzy ideals extensions in po-semigroups

Definition 3.1. Let S be a po-semigroup, H a hesitant fuzzy subset of S, x ∈ S. The
hesitant fuzzy subset < x,H > of S defined by:

< x,H > (y) = H(xy),∀y ∈ S

is called the extension of H by x.

Example 3.1. Let S = {a, b, c, d} be the po-semigroup with the following multiplication
table and the order below:

. a b c d
a a a a a
b a a a a
c a a b a
d a a b b

≤:= {(a, a); (a, b); (b, b); (c, c); (d, d)}.
Clearly S is a po-semigroup.
Let H be a hesitant fuzzy subset of S such that

H(x) =

 [0, 1] if x = a
{0.1, 0.2} if x = b
{0.2} if x = c, d

For x = a, the hesitant fuzzy subset < a,H > of S is defined by

< a,H > (y) = [0, 1] ∀ y ∈ S.
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For x = b, the hesitant fuzzy subset < b,H > of S is defined by

< b,H > (y) = [0, 1] ∀ y ∈ S.

For x = c, the hesitant fuzzy subset < c,H > of S is defined by

< c,H > (y) =

{
[0, 1] if y = a, b, d

{0.1, 0.2} if y = c

For x = d, the hesitant fuzzy subset < d,H > of S is defined by

< d,H > (y) =

{
[0, 1] if y = a, b

{0.1, 0.2} if y = c, d

Lemma 3.1. Let S be a commutative po-semigroup. If H is a hesitant fuzzy ideal of S
and x ∈ S, then the extension of H by x is a hesitant fuzzy ideal of S.

Proof. Let H be a hesitant fuzzy ideal of S. For any x ∈ S,< x,H > is a hesitant fuzzy
subset of S. Let y, z ∈ S such that y ≤ z. Then

xy ≤ xz ⇒ H(xy) ⊇ H(xz)⇒< x,H > (y) ⊇< x,H > (z).

Also,
< x,H > (yz) = H(xyz) ⊇ H(xy) =< x,H > (y).

Thus < x,H > is a hesitant fuzzy right ideal of S. Hence S being commutative < x,H >
is a hesitant fuzzy ideal of S. �

Remark 3.1. Commutativity of a po-semigroup S is not necessary to prove that< x,H >
is a hesitant fuzzy right ideal of S, when H is a hesitant fuzzy right ideal of S.

Definition 3.2. Let S be a po-semigroup and H be a hesitant fuzzy subset of S. Then we
define

supp H = {x ∈ S : H(x) 6= ∅}.

Theorem 3.1. Let S be a po-semigroup and H be a hesitant fuzzy ideal of S and x ∈ S.
Then the following hold:

(1) H ⊆< x,H > .
(2) < xn, H >⊆< xn+1, H >,∀n ∈ N.
(3) If H(x) 6= ∅, then supp < x,H >= S.
(4) If x ≤ y, then < x,H >⊇< y,H >.

Proof. (1) Let y ∈ S. Since H is a hesitant fuzzy ideal of S, we have

< x,H > (y) = H(xy) ⊇ H(y).

Hence H ⊆< x,H > .
(2) Let n ∈ N and y ∈ S. Since H is a hesitant fuzzy ideal of S, we have

< xn+1, H > (y) = H(xn+1y)

= H(xxn)y

⊇ H(xny)

= < xn, H > (y)

Hence < xn, H >⊆< xn+1, H >,∀n ∈ N.
(3) Let H(x) 6= ∅. Since < x,H > is a hesitant fuzzy subset of S, we have supp

< x,H >⊆ S. Let y ∈ S. Since H is a hesitant fuzzy ideal of S, we have

< x,H > (y) = H(xy) ⊇ H(x) 6= ∅.
This implies that < x,H > (y) 6= ∅ and so y ∈ supp < x,H >. Hence supp < x,H >= S.
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(4) Let x ≤ y,∀ x, y ∈ S and S is a po-semigroup, we have xz ≤ yz ∀ z ∈ S. Then
< x,H > (z) = H(xz) ⊇ H(yz) =< y,H > (z). Hence < x,H >⊇< y,H > . �

Definition 3.3. A hesitant fuzzy ideal H in a semigroup S is called hesitant fuzzy semiprime
if for all x ∈ S,

H(x) ⊇ H(x2).

Definition 3.4. A hesitant fuzzy ideal H in a semigroup S is called hesitant fuzzy prime
if for all x, y ∈ S,

H(xy) = H(x) ∪H(y).

Theorem 3.2. Let S be a commutativity po-semigroup and H be a hesitant fuzzy prime
ideal of S. Then < x,H > is a hesitant fuzzy prime ideal of S and < x,H >=< x2, H >
∀x ∈ S.

Proof. Let H be a hesitant fuzzy prime ideal of S. Then by Lemma 3.1, < x,H > is a
hesitant fuzzy ideal of S. Let y, z ∈ S. Then

< x,H > (yz) = H(xyz) = H(xy) ∪H(z)

= H(x) ∪H(y) ∪H(z)

= (H(x) ∪H(y)) ∪ (H(x) ∪H(z))

= H(xy) ∪H(xz)

= < x,H > (y)∪ < x,H > (z).

Hence < x,H > is a hesitant fuzzy prime ideal of S.
Let x, y ∈ S. We have < x,H > (y) := H(xy), < x2, H > (y) := H(x2y). Since H is a
hesitant fuzzy prime subset of S, we have H(x) = H(x2). Then

< x,H > (y) = H(xy) = H(x) ∪H(y) = H(x2) ∪H(y) = H(x2y) =< x2, H > (y).
Hence < x,H >=< x2, H > ∀ x ∈ S. �

Theorem 3.3. Let S be a commutativity po-semigroup and H be a hesitant fuzzy semiprime
ideal of S. Then < x,H > is a hesitant fuzzy semiprime ideal of S.

Proof. Let H be a hesitant fuzzy semiprime ideal of S. Then by Lemma 3.1, < x,H > is
a hesitant fuzzy ideal of S. Let a ∈ S. Then

< x,H > (a) = H(xa) ⊇ H(xa)2

= H(xaxa)

= H(xa2x)

⊇ H(xa2)

= < x,H > (a2)

Hence < x,H > is a hesitant fuzzy semiprime ideal of S. �

Definition 3.5. [18] Let S be a po-semigroup and A ⊆ S and x ∈ S. Then we define

< x,A >= {y ∈ S | xy ∈ A}.

Remark 3.2. Let S be a po-semigroup and ∅ 6= A ⊆ S. Let x, y ∈ S. Then

< x,HA > (y) = HA(xy) =

 [0, 1] if xy ∈ A

∅ if xy /∈ A
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On the other hand,

H<x,A>(y) =

 [0, 1] if y ∈< x,A > i.e; if xy ∈ A

∅ if y /∈< x,A > i.e; if xy /∈ A

Hence < x,HA >= H<x,A> for every x ∈ S.

Theorem 3.4. Let S be a po-semigroup. If H is a hesitant fuzzy prime subset of S and
x ∈ S such that H(x) =

⋂
y∈S

H(y), then < x,H >= H.

Proof. Let H be hesitant fuzzy prime subset of S and x ∈ S such that H(x) =
⋂
y∈S

H(y).

⇒ H(x) ⊆ H(y) ∀ y ∈ S.

⇒ H(x) ∪H(y) = H(y) ∀ y ∈ S.
Since H is a hesitant fuzzy prime, we have

< x,H > (y) = H(xy) = H(x) ∪H(y) = H(y).

Hence < x,H >= H. �

Theorem 3.5. Let S be a commutative po-semigroup and H be a hesitant fuzzy subset of
S such that < x,H >= H for every x ∈ S. Then H is a constant function.

Proof. Let x, y ∈ S. Then by hypothesis we have

H(y) = < x,H > (y) = H(xy) = H(yx) = < y,H > (x) = H(x).

Hence H is a constant function. �

If H is a hesitant fuzzy ideal of S, we denote by H% the equivalent relation on S
defined by:

H% = {(x, y) :< x,H >=< y,H >}
Theorem 3.6. Let S be a commutative po-semigroup and H be a hesitant fuzzy ideal of
S. Then

(1) H% is congruence on S.
(2) If H is semiprime then H% is a semilattice congruence on S.
(3) If H is prime and x ≤ y, then (x, xy) ∈ H%.

Proof. (1) To show that H% is a congruence on S, we need to show that H% is compatible
with the operation on S. Let (x, y) ∈ H%, a ∈ S. Then ∀z ∈ S, we have

< xa,H > (z) = H(xaz) =< x,H > (az) =< y,H > (az) = H(yaz) =< ya,H > (z)
Thus (xa, ya) ∈ H%. Similarly (ax, ay) ∈ H%. Hence H% is a congruence on S.
(2) Let S be a commutative semigroup and H be a hesitant semiprime fuzzy ideal of S.
Then for any y ∈ S, we have

< x,H > (y) = H(xy) ⊇ H(xy)2 = H(xyxy) = H(yx2y) ⊇ H(x2y) =< x2, H > (y)
and so < x2, H >⊆< x,H >. It follows from Theorem 3.1, < x2, H >=< x,H > . Hence
(x, x2) ∈ H%.
(3) Let H be prime and x ≤ y. Therefore, H(x) ⊇ H(y). Then ∀z ∈ S, we have

< x,H > (z) = H(xz) = H(y) ∪H(z)

= H(x) ∪H(y) ∪H(z)

= H(xy) ∪H(z)

= H(xyz) =< xy,H > (z).

Hence < x,H >=< xy,H >, i.,e (x, xy) ∈ H% . �
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Theorem 3.7. Let S be a po-semigroup and H be a hesitant fuzzy prime ideal of S. Then
H% = Hσ,

where Hσ = {(x, y) : H(x) = H(y) or H(xz) = H(yz) ∀z ∈ S}
Proof. Let H be a hesitant fuzzy prime ideal of S and (x, y) ∈ H%. Then < x,H >=<
y,H > . For any z ∈ S, we have

< x,H > (z) =< y,H > (z)

This implies that H(xz) = H(yz) ∀z ∈ S. Therefore, (x, y) ∈ Hσ.
Conversly, let (x, y) ∈ Hσ. Then H(x) = H(y) or H(xz) = H(yz) ∀z ∈ S

If H(xz) = H(yz) ∀z ∈ S, implies that < x,H >=< y,H >. Hence (x, y) ∈ H%.
If H(x) = H(y). Then for each z ∈ S, we have

H(xz) = H(x) ∪H(z) = H(y) ∪H(z) = H(yz)
This implies that < x,H >=< y,H >. Hence (x, y) ∈ H%.

�

Theorem 3.8. Let S be a commutative regular po-semigroup and H be a hesitant fuzzy
right ideal of S. Then for any x ∈ S,< x,H > is hesitant fuzzy semiprime in S.

Proof. Let H be a hesitant fuzzy ideal of S and a ∈ S. Then, since S is regular, there exists
an element y in S such that a ≤ aya. Then for any x ∈ S, xa ≤ xaya, we have H(xa) ⊇
H(xaya). Therefore, < x,H > (a) = H(xa) ⊇ H(xaya) = H(xa2y) ⊇ H(xa2) =< x,H >
(a2). Hence< x,H > is hesitant fuzzy semiprime in S. �

The left-right dual of Theorem 3.8 reads as follows:

Theorem 3.9. Let S be a commutative regular po-semigroup and H be a hesitant fuzzy
left ideal of S. Then for any x ∈ S,< x,H > is hesitant fuzzy semiprime in S.

Theorem 3.10. Let S be a commutative left regular po-semigroup and H be a hesitant
fuzzy ideal of S. Then for any x ∈ S,< x,H > is hesitant fuzzy semiprime in S.

Proof. Let H be a hesitant fuzzy ideal of S and a ∈ S. Then, since S is left regular,
there exists an element y in S such that a ≤ ya2. Then for any x ∈ S, xa ≥ xya2, we
haveH(xa) ⊇ H(xya2). Therefore,< x,H > (a) = H(xa) ⊇ H(xya2) = H(xa2y) ⊇
H(xa2) =< x,H > (a2). Hence < x,H > is hesitant fuzzy semiprime in S. �

Remark 3.3. Commutativity of a po-semigroup S is not necessary to prove that< x,H >
is a hesitant fuzzy semiprime in S, when S is a right regular po-semigroup.

Theorem 3.11. Let S be an intra-regular commutative po-semigroup and H be a hesitant
fuzzy ideal of S. Then for any x ∈ S,< x,H > is hesitant fuzzy semiprime in S.

Proof. Let H be a hesitant fuzzy ideal of S and a ∈ S : Then, since S is intra regular,
there exist elements y and z in S such that a ≤ ya2z. Then for any x ∈ S, xa ≤ xya2z, we
have H(xa) ⊇ H(xya2z). Therefore < x,H > (a) = H(xa) = H(xya2z) = H(yxa2z) ⊇
H(xa2) =< x,H > (a2). Hence < x,H > is hesitant fuzzy semiprime in S. �

Theorem 3.12. If S is a po-semigroup and H a hesitant fuzzy semiprime ideal of S.
Then H =

⋂
x∈S

< x,H > .

Proof. Let H be a hesitant fuzzy semiprime ideal of S. By Theorem 3.1, H ⊆< x,H >
∀x ∈ S. This implies that H ⊆

⋂
x∈S

< x,H > . Let G be a hesitant fuzzy subset of S such

that G ⊆< x,H > ∀x ∈ S. Since H is semiprime, for any y ∈ S we have

G(y) ⊆< y,H > (y) = H(y2) ⊆ H(y).
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Therefore, G ⊆ H. Hence H =
⋂
x∈S

< x,H > . �

Theorem 3.12 is illustrated by the following example:

Example 3.2. Let S = {0, 1, 2} be a semigroup with the following cayley table .

. 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

≤:= {(0, 0); (1, 1); (2, 2)}
Let H be a hesitant fuzzy subset of S such that

H(x) =

 [0, 1] if x = 0
{0.1} if x = 1
{0.1, 0.2} if x = 2

For any x, y ∈ S. Let one of x, y be 0 then we have
H(xy) = H(0) ⊇ H(x) and H(xy) = H(0) ⊇ H(y).
In case x, y be different from 0. Then H(xy) has the following cases:

H(11) = H(1) ⊇ H(1)

H(12) = H(2) ⊇ H(1)

H(21) = H(2) ⊇ H(1)

H(22) = H(2)

Thus H(xy) ⊇ H(x) and H(xy) ⊇ H(y) ∀x, y ∈ S
Hence H is a hesitant fuzzy ideal of S.
Further H(x2) ⊆ H(x)∀x ∈ S. Hence H is a hesitant fuzzy semiprime ideal of S. For
x = 0, we have

< 0, H > (y) = [0, 1] ∀ y ∈ S.

For x = 1, we have

< 1, H > (y) =

 [0, 1] if y = 0
{0.1} if y = 1
{0.1, 0.2} if y = 2

For x = 2, we have

< 2, H > (y) =

{
[0, 1] if y = 0
{0.1, 0.2} if y = 1, 2

Clearly

⋂
x∈S

< x,H >=

 [0, 1] if y = 0
{0.1} if y = 1
{0.1, 0.2} if y = 2

= H.
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4. Hesitant 3-prime fuzzy ideals in po-semigroups

Definition 4.1. A hesitant fuzzy subset H of a po-semigroup S is called 3-prime if for
any x, y, z ∈ S,

H(xyz) = H(xy) ∪H(xz)

= H(yx) ∪H(yz)

= H(zx) ∪H(zy)

Theorem 4.1. Let S be a po-semigroup and H a hesitant fuzzy ideal of S. If H is prime,
then H is 3-prime.

Proof. Let H be any hesitant fuzzy prime ideal of S. Then for any x, y, z ∈ S, we have

H(xyz) = H((xy)z) = H(xy) ∪H(z)

⊆ H(xy) ∪H(xz)

= H(x) ∪H(y) ∪H(z)

= H(xyz)

Therefore, H(xyz) = H(xy) ∪H(xz).
In the same way, we have

H(xyz) = H(x(yz)) = H(x) ∪H(yz)

⊆ H(xy) ∪H(yz)

= H(x) ∪H(y) ∪H(z)

= H(xyz)

Therefore, H(xyz) = H(xy) ∪H(yz) = H(yx) ∪H(yz).
Since H is prime, we have H(xyz) = H(yzx)

H(xyz) = H(yzx) = H(y(zx)) = H(y) ∪H(zx)

⊆ H(zy) ∪H(zx)

= H(x) ∪H(y) ∪H(z)

= H(xyz)

Therefore, H(xyz) = H(zy) ∪H(zx).
Hence H is 3-prime. �

In general the 3-prime hesitant fuzzy ideal need not necessarily hesitant fuzzy prime
ideal as shown in the following example:

Example 4.1. Let S = {0, 1, 2} be a po-semigroup with the following cayley table and
the order below:

. 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

≤:= {(0, 0); (0, 1); (1, 1); (2, 2)}
Let H be a hesitant fuzzy subset of S such that

H(x) =

{
[0, 1] if x = 0
∅ otherwise

For any x, y ∈ S. Let one of x, y be 0 then we have
H(xy) = H(0) ⊇ H(x) and H(xy) = H(0) ⊇ H(y).
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In case x, y be different from 0. ThenH(xy) has the following cases:

H(11) = H(1) ⊇ H(1)

H(12) = H(0) ⊇ H(1)

H(21) = H(0) ⊇ H(1)

H(22) = H(2)

Thus H(xy) ⊇ H(x) and H(xy) ⊇ H(y) ∀x, y ∈ S
Moreover for all x, y ∈ S, x ≤ y H(x) ⊇ H(y). Hence H is a hesitant fuzzy ideal of S.
For any x, y and z ∈ S, let one of x, y and z be 0 then we have

H(xyz) = H(0) = [0, 1] = H(xy) ∪H(xz)

= H(yx) ∪H(yz)

= H(zx) ∪H(zy)

In case x, y and z be different from 0. Then H(xyz) has the following cases:

H(111) = H(1) = H(11) ∪H(11)

H(112) = H(0) = H(11) ∪H(12) = H(12) ∪H(21)

H(222) = H(2) = H(22) ∪H(22)

H(221) = H(0) = H(22) ∪H(21) = H(21) ∪H(12)

Hence H is a hesitant fuzzy 3-prime ideal of S.
But H(12) := [0, 1] 6= H(1) ∪H(2) := ∅
Therefore, H is not hesitant fuzzy prime.

Theorem 4.2. Let S be a commutative po-semigroup and H a hesitant fuzzy subset of S.
Then H is 3-prime if and only if for each x ∈ S, < x,H > is prime.

Proof. Let H be 3-prime. Then for any y, z ∈ S, we have

< x,H > (yz) = H(xyz)

= H(xy) ∪H(xz)

= < x,H > (y) ∪ < x,H > (z)

Hence < x,H > is prime.
Conversely, Let S be a commutative po-semigroup and for each x ∈ S,< x,H > is

prime. Then ∀ y, z ∈ S.

H(xyz) = < x,H > (yz)

= < x,H > (y) ∪ < x,H > (z)

= H(xy) ∪H(xz)

Since S is commutative, H(xyz) = H(yxz) = H(zxy) we have

H(xyz) = < y,H > (xz)

= < y,H > (x) ∪ < y,H > (z)

= H(yx) ∪H(yz)
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In the same way we have

H(xyz) = < z,H > (xy)

= < z,H > (x) ∪ < z,H > (y)

= H(zx) ∪H(zy)

Hence H is 3-prime. �

Remark 4.1. Commutativity of a po-semigroup S is not necessary to prove that any ex-
tension of H is prime, when H is 3-prime.

Theorem 4.2 is illustrated by the following example.

Example 4.2. Let S = {x, y, z, e} be commutative po-semigroup with the following mul-
tiplication table and the order below:

. x y z e
x y y e e
y y y e e
z e e z e
e e e e e

≤:= {(x, x); (y, y); (z, z); (e, e)}.

Define a hesitant fuzzy subset H on S as follows:

H(a) =

{
{0.1} if a = e
∅ otherwise

For any a, b ∈ S, we have H(ab) ⊇ H(a) and H(ab) ⊇ H(b). Moreover for all a, b ∈
S, a ≤ b we have H(a) ⊇ H(b). Hence H is a hesitant fuzzy ideal of S.

Now we will show for each a ∈ S,< a,H > is prime; i,e for any a, b, c ∈ S

< a,H > (bc) =< a,H > (b) ∪ < a,H > (c).

If any of a, b and c is e. Then we have

< a,H > (bc) = H(e) = {0.1} =< a,H > (b) ∪ < a,H > (c).

Now, assume that a, b and c be different from e. Then we have the following cases:

< x,H > (xx) = ∅ = < x,H > (x) ∪ < x,H > (x);

< x,H > (xy) = ∅ = < x,H > (x) ∪ < x,H > (y);

< y,H > (yx) = ∅ = < y,H > (y) ∪ < y,H > (x);

< y,H > (yy) = ∅ = < y,H > (y) ∪ < y,H > (y);

< z,H > (zz) = ∅ = < z,H > (z) ∪ < z,H > (z);

< x,H > (xz) = {0.1} =< x,H > (x) ∪ < x,H > (z);

< x,H > (yz) = {0.1} =< x,H > (y) ∪ < x,H > (z);

< y,H > (yz) = {0.1} =< y,H > (y) ∪ < y,H > (z);

< z,H > (zx) = {0.1} =< z,H > (z) ∪ < z,H > (x);

< z,H > (zy) = {0.1} =< z,H > (z) ∪ < z,H > (y).
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Hence, in any case

< a,H > (bc) =< a,H > (b) ∪ < a,H > (c) ∀ a, b ∈ S.

Finally, we will show H is 3-prime; i,e for any a, b, c ∈ S

H(abc) = H(ab) ∪H(ac).

If any of of a, b and c is e. Since S is commutative and ae = ea = e, we have

H(abc) = H(e) = {0.1} = H(ab) ∪H(ac).

In case, a, b and c be different from e. Then H(abc) has the following cases:

H(x3) = ∅ = H(x2) ∪ H(x2);

H(y3) = ∅ = H(y2) ∪ H(y2);

H(z3) = ∅ = H(z2) ∪ H(z2);

H(x2y) = ∅ = H(xy) ∪ H(xy);

H(y2x) = ∅ = H(yx) ∪ H(yx);

H(x2z) = {0.1} = H(xz) ∪ H(xz);

H(y2z) = {0.1} = H(yz) ∪ H(yz);

H(z2x) = {0.1} = H(zx) ∪ H(zx);

H(z2y) = {0.1} = H(zy) ∪ H(zy);

H(xyz) = {0.1} = H(xy) ∪ H(xz).

Hence, in any case H(abc) = H(ab) ∪H(ac) ∀ a, b, c ∈ S.

Theorem 4.3. Let S be a po-semigroup with an identity e and H be any hesitant fuzzy
set of S. Then H is 3-prime if and only if H is prime.

Proof. The proof follows from Theorem 4.1 and Theorem 4.2. �
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