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SOME RESULTS ON LEFT (σ, τ)−JORDAN IDEALS AND ONE SIDED

GENERALIZED DERIVATIONS

EVRIM GÜVEN1, §

Abstract. Let R be a prime ring with characteristic not 2 and σ, τ, α, β, λ, µ, γ au-
tomorphisms of R. Let h : R −→ R be a nonzero left (resp. right)- general-
ized (α, β)− derivation associated with (α, β)− derivation d1 (resp. d). Let W,V be
nonzero left (σ, τ)−Jordan ideals of R and I a nonzero ideal of R. In this paper we also
study the situations. (1) ah(R)b ⊂ Cλ,µ(R) (2) bh(I, a)σ,τ = 0 or h(I, a)σ,τ b = 0, (3)
bh(I) ⊂ Cλ,µ(W ) or h(I)b ⊂ Cλ,µ(W ), (4) h(I) ⊂ Cλ,µ(J), (5) (h(R), a)α,β ⊂ Cα,β(R),
(6) (h(I)b, a)λ,µ = 0, (7) bγ(W ) ⊂ Cλ,µ(V ) or γ(W )b ⊂ Cλ,µ(V ).
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1. Introduction

Let R be a ring and σ, τ two mappings of R. For each r, s ∈ R we set [r, s]σ,τ =
rσ(s) − τ(s)r and (r, s)σ,τ = rσ(s) + τ(s)r. Let U be an additive subgroup of R. If
(U,R) ⊂ U then U is called a Jordan ideal of R. The definition of (σ, τ)−Jordan ideal
of R is introduced in [8] as follows: (i) U is called a right (σ, τ)−Jordan ideal of R if
(U,R)σ,τ ⊂ U , (ii) U is called a left (σ, τ)−Jordan ideal if (R,U)σ,τ ⊂ U . (iii) U is called
a (σ, τ)−Jordan ideal if U is both right and left (σ, τ)−Jordan ideal of R. Every Jordan
ideal of R is a (1, 1)−Jordan ideal of R, where 1 : R→ R is a identity map. The following
example is given in [8]. If R = { (x y0 0) | x and y are integers}, U = { (x 0

0 0) | x is integer},
σ(x y0 0) = (x 0

0 0) and τ(x y0 0) = (x −y
0 0 ) then U is (σ, τ)−right Jordan ideal but not a Jordan

ideal of R.
A derivation d is an additive mapping on R which satisfies d(rs) = d(r)s+rd(s),∀r, s ∈

R. The notion of generalized derivation was introduced by Brešar [3] as follows. An
additive mapping h : R → R will be called a generalized derivation if there exists a
derivation d of R such that h(xy) = h(x)y + xd(y) for all x, y ∈ R.

An additive mapping d : R→ R is said to be a (σ, τ)−derivation if d(rs) = d(r)σ(s) +
τ(r)d(s) for all r, s ∈ R. Every derivation d : R → R is a (1, 1)−derivation. Chang
[4] gave the following definition. Let R be a ring, σ and τ automorphisms of R and
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d : R → R a (σ, τ)−derivation. An additive mapping h : R → R is said to be a right
generalized (σ, τ)−derivation of R associated with d if h(xy) = h(x)σ(y)+τ(x)d(y), for all
x, y ∈ R and h is said to be a left generalized (σ, τ)−derivation of R associated with d if
h(xy) = d(x)σ(y)+τ(x)h(y) for all x, y ∈ R. h is said to be a generalized (σ, τ)−derivation
of R associated with d if it is both a left and right generalized (σ, τ)−derivation of R
associated with d.

According to Chang’s definition, every (σ, τ)−derivation d : R → R is a generalized
(σ, τ)−derivation associated with d and every derivation d : R → R is a generalized
(1, 1)−derivation associated with d. A generalized (1, 1)−derivation is simply called a
generalized derivation. The definition of generalized derivation which is given in [3] is a
right generalized derivation associated with derivation d according to Chang’s definition.

The mapping h(r) = (a, r)σ,τ for all r ∈ R is a left-generalized (σ, τ)−derivation
associated with (σ, τ)−derivation d1(r) = [a, r]σ,τ for all r ∈ R and right-generalized
(σ, τ)−derivation associated with (σ, τ)−derivation d(r) = −[a, r]σ,τ for all r ∈ R.

Throughout the paper, R will be a prime ring with centre Z, characteristic not 2 and
σ, τ, α, β, λ, µ, γ automorphisms of R. We set Cσ,τ (R) = {c ∈ R | cσ(r) = τ(r)c,∀r ∈ R},
and shall use the following relations frequently:

[rs, t]σ,τ = r[s, t]σ,τ + [r, τ(t)]s = r[s, σ(t)] + [r, t]σ,τs
[r, st]σ,τ = τ(s)[r, t]σ,τ + [r, s]σ,τσ(t)
(rs, t)σ,τ = r(s, t)σ,τ − [r, τ(t)]s = r[s, σ(t)] + (r, t)σ,τs
(r, st)σ,τ = τ(s)(r, t)σ,τ + [r, s]σ,τσ(t) = −τ(s)[r, t]σ,τ + (r, s)σ,τσ(t)

2. Results

Lemma 2.1. [2, Lemma 1] Let d : R −→ R be a nonzero (σ, τ)−derivation of R and U a
nonzero right ideal of R. If a ∈ R such that d(U) = 0 then d = 0.

Lemma 2.2. [5, Theorem 2. 12] Let W be a left (σ, τ)−Jordan ideal of R and b ∈ R.
(i) If [W, b]λ,µ = 0 then b ∈ Z or σ(v) − τ(v) ∈ Z,∀v ∈ W . (ii) If [b,W ]λ,µ = 0 then
b ∈ Cλ,µ(R) or σ(v)− τ(v) ∈ Z, ∀v ∈W .

Lemma 2.3. [6, Theorem 2.7] Let h : R −→ R be a nonzero right-generalized (σ, τ)−derivation
associated with (σ, τ)−derivation d and I, J nonzero ideals of R. If a ∈ R such that
ah(I) ⊂ Cλ,µ(J) then a ∈ Z or d = 0.

Lemma 2.4. [5, Lemma 2.2] Let I be a nonzero ideal of R and a, b ∈ R. If bγ(I, a)α,β = 0
or γ(I, a)α,βb = 0 then b = 0 or a ∈ Z.

Theorem 2.1. Let h : R −→ R be a nonzero left-generalized (α, β)−derivation associated
with a nonzero (α, β)−derivation d. Let I be a nonzero ideal of R and a, b ∈ R.

(i) If hλ(I)b = 0 then b = 0.
(ii) If hλ(I, a)σ,τ = 0 then a ∈ Z or dλτ(a) = 0.
(iii) If ah(I)b = 0 then b = 0 or adβ−1(a) = 0.

Proof. (i) If hλ(I)b = 0 then we have, for all r ∈ R, x ∈ I

0 = hλ(rx)b = dλ(r)αλ(x)b+ βλ(r)hλ(x)b =dλ(r)αλ(x)b

and so dλ(R)αλ(I)b = 0. Since λ(I) is a nonzero ideal of R and d 6= 0 then the last
relation gives that b = 0.
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(ii) If hλ(I, a)σ,τ = 0 then we get, for all x ∈ I
0 = hλ(τ(a)x, a)σ,τ = hλ{τ(a)(x, a)σ,τ − [τ(a), τ(a)]x}

= h{λτ(a)λ(x, a)σ,τ} = dλτ(a)αλ(x, a)σ,τ + βλτ(a)hλ(x,a)σ,τ

= dλτ(a)αλ(x, a)σ,τ .

That is dλτ(a)αλ(I, a)σ,τ = 0. Using 2.4 we obtain that a ∈ Z or dλτ(a) = 0 by the
last relation.

(iii) If ah(I)b = 0 then we have, for all x ∈ I
0 = ah(β−1(a)x)b = adβ−1(a)α(x)b+ aah(x)b = adβ−1(a)α(x)b.

That is, adβ−1(a)α(I)b = 0. Since α(I) is a nonzero ideal of R then we obtain that
b = 0 or adβ−1(a) = 0 in prime rings. �

Corollary 2.1. Let I be a nonzero ideal of R and a, b, c ∈ R. If a(I, c)σ,τ b = 0 then b = 0
or a[a, τ(c)] = 0 (and a = 0 or [b, σ(c)]b = 0).

Proof. The mapping defined by h(r) = (r, c)σ,τ ,∀r ∈ R is a left-generalized derivation
associated with derivation d1(r) = −[r, τ(c)],∀r ∈ R and right-generalized derivation
associated with derivation d(r) = [r, σ(c)], ∀r ∈ R. If h = 0 then d = 0 = d1 and so c ∈ Z
is obtained. Let h 6= 0.

If a(I, c)σ,τ b = 0 then we have ah(I)b = 0. Since h is a left-generalized derivation
associated with d1 then we have b = 0 or ad1(a) = 0 by 2.1(iii). That is b = 0 or
a[a, τ(c)] = 0. If c ∈ Z then a[a, τ(c)] = 0. Finally we obtain that b = 0 or a[a, τ(c)] = 0
for any cases.

On the other hand, since h is a right-generalized derivation associated with d then
ah(R)b = 0 gives that a = 0 or d(b)b = 0 by [6, Lemma 2.19 (i)]. That is a = 0 or
[b, σ(c)]b = 0. If c ∈ Z then [b, σ(c)]b = 0. Finally we obtain that a = 0 or [b, σ(c)]b = 0
for any cases. �

Theorem 2.2. Let h : R −→ R be a nonzero left-generalized (α, β)−derivation associated
with a nonzero (α, β)−derivation d. Let I be a nonzero ideal of R and a, b ∈ R.

(i) If h(I, a)σ,τ b = 0 then dτ(a) = or [b, σ(a)]b = 0.
(ii) If bhλ(I) = 0 then bdβ−1(b) = 0.

Proof. (i) If h(I, a)σ,τ b = 0 then we get, for all x ∈ I
0 = h(τ(a)x, a)σ,τ b = h{τ(a)(x, a)σ,τ − [τ(a), τ(a)]x}b

= h{τ(a)(x, a)σ,τ}b = dτ(a)α(x, a)σ,τ b+ βτ(a)h(x, a)σ,τ b

= dτ(a)α(x, a)σ,τ b

which gives that
α−1dτ(a)(I, a)σ,τα

−1(b) = 0. (1)

Then 1 gives that dτ(a) = 0 or [b, ασ(a)]b = 0 by 2.1.
(ii) If bhλ(I) = 0 then we have, for all x ∈ I

0 = bhλ(λ−1β−1(b)x) = bh(β−1(b)λ(x))

= bdβ−1(b)αλ(x) + bbhλ(x) =bdβ−1(b)αλ(x)

and so bdβ−1(b)αλ(I) = 0. Since αλ(I) is a nonzero ideal of R then we obtain that
bdβ−1(b) = 0. �

Remark 2.1. [5, Corollary 2.11] Let d : R −→ R be a nonzero (α, β)− derivation and W
a nonzero left (σ, τ)−Jordan ideal of R. If dγ(W ) = 0 then σ(v)−τ(v) ∈ Z for all v ∈W .
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Theorem 2.3. Let h : R −→ R be a nonzero right-generalized (α, β)−derivation associ-
ated with a nonzero (α, β)−derivation d. Let I be a nonzero ideal of R and a, b ∈ R.

(i) If hλ(I, a)σ,τ = 0 then a ∈ Z or dλσ(a) = 0.
(ii) If bhλ(I) = 0 then b = 0.
(iii) If bh(I, a)σ,τ = 0 then b[b, τ(a)] = 0 or dσ(a) = 0.

Proof. (i) If hλ(I, a)σ,τ = 0 then we get, for all x ∈ I

0 = hλ(xσ(a), a)σ,τ = hλ{x[σ(a), σ(a)] + (x, a)σ,τσ(a)}
= h{λ(x, a)σ,τλσ(a)} = hλ(x, a)σ,ταλσ(a) + βλ(x, a)σ,τdλσ(a)

= βλ(x, a)σ,τdλσ(a)

That is βλ(I, a)σ,τdλσ(a) = 0. Using 2.4 we obtain that a ∈ Z or dλσ(a) = 0 by the
last relation.

(ii) If bhλ(I) = 0 then we have, for all r ∈ R, x ∈ I

0 = bhλ(xr) = bhλ(x)αλ(r) + bβλ(x)dλ(r)=bβλ(x)dλ(r)

and so bβλ(I)dλ(R) = 0. Since λ(I) is a nonzero ideal of R and d 6= 0 then the last
relation gives that b = 0.

(iii) If bh(I, a)σ,τ = 0 then we get, for all x ∈ I

0 = bh(xσ(a), a)σ,τ = bh{(x, a)σ,τσ(a)}
= bh(x, a)σ,τασ(a) + bβ(x, a)σ,τdσ(a)

= bβ(x, a)σ,τdσ(a).

That is

β−1(b)(I, a)σ,τβ
−1dσ(a) = 0. (2)

Using 2.1 and 2 we obtain b[b, βτ(a)] = 0 or dσ(a) = 0. �

Corollary 2.2. Let h : R −→ R be a nonzero right-generalized (α, β)−derivation associ-
ated with a nonzero (α, β)−derivation d and W be a nonzero left (σ, τ)−Jordan ideal of
R. If hλ(W ) = 0 then σ(v)− τ(v) ∈ Z,∀v ∈W .

Proof. If hλ(W ) = 0 then we have hλ(R, v)σ,τ = 0, ∀v ∈ W . This means that, for any
v ∈W

v ∈ Z or dλτ(v) = 0

by 2.3(i). This means that W is the union of its additive subgroups K = {v ∈ W |
v ∈ Z} and L = {v ∈ W | dλτ(v) = 0}. Since a group can not be the union of two of its
proper subgroups, we have W = K or W = L. We obtain that

W ⊂ Z or dλτ(W ) = 0.

If dλτ(W ) = 0 then we obtain σ(v) − τ(v) ∈ Z,∀v ∈ W by 2.1. On the other hand
W ⊂ Z gives that σ(v)− τ(v) ∈ Z for all v ∈W . �

Lemma 2.5. [5, Lemma 2.2] Let I be a nonzero ideals of R and a, b ∈ R. If b, ba ∈ Cλ,µ(I)
or (b, ab ∈ Cλ,µ(I)) then b = 0 or a ∈ Z.

Lemma 2.6. Let W be a nonzero left (σ, τ)−Jordan ideal of R and a, b ∈ R. If b, ba ∈
Cλ,µ(W ) or b, ab ∈ Cλ,µ(W ) then b = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W.
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Proof. b, ba ∈ Cλ,µ(W ) then we have [b,W ]λ,µ = 0 and [ba,W ]λ,µ = 0. Using this relations
and 2.2(ii) we get, for all v ∈W

{σ(v)− τ(v) ∈ Z or b ∈ Cλ,µ(R)} and {σ(v)− τ(v) ∈ Z or ba ∈ Cλ,µ(R)} .

This means that

σ(v)− τ(v) ∈ Z or {b ∈ Cλ,µ(R) and ba ∈ Cλ,µ(R)}

If {b ∈ Cλ,µ(R) and ba ∈ Cλ,µ(R)} then we have b = 0 or a ∈ Z by 2.5 . Finally we
obtain that b = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W.

If b, ab ∈ Cλ,µ(W ) then, considering as above we get the required result. �

Theorem 2.4. Let W be a nonzero left (σ, τ)−Jordan ideal of R and a, b ∈ R. Let I be
a nonzero ideal of R.

(i) If (I, a)α,β ⊂ Cλ,µ(W ) then a ∈ Z or σ(v)− τ(v) ∈ Z,∀v ∈W .
(ii) If bγ(I, a)α,β ⊂ Cλ,µ(W ) or γ(I, a)α,βb ⊂ Cλ,µ(W ) then b = 0 or a ∈ Z or σ(v) −

τ(v) ∈ Z, ∀v ∈W .

Proof. (i) If (I, a)α,β ⊂ Cλ,µ(W ) then we have, for all x ∈ I

Cλ,µ(W ) 3 (β(a)x, a)α,β = β(a)(x, a)α,β − [β(a), β(a)]x = β(a)(x, a)α,β

and so β(a)(I, a)α,β ⊂ Cλ,µ(W ). Using 2.6 we obtain

(I, a)α,β = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W.

If (I, a)α,β = 0 then 0 = (rx, a)α,β = r(x, a)α,β − [r, β(a)]x = −[r, β(a)]x for all r ∈
R, x ∈ I. That is [R, β(a)]I = 0.This gives that a ∈ Z in prime rings.

(ii) If bγ(I, a)α,β ⊂ Cλ,µ(W ) then we get, for all x ∈ I

Cλ,µ(W ) 3 bγ(xα(a), a)α,β = bγ(x)γ[α(a),α(a)] + bγ(x, a)α,βγα(a) = bγ(x, a)α,βγα(a)

and so

bγ(I, a)α,βγα(a) ⊂ Cλ,µ(W ). (3)

If we use hypothesis and 2.6 in 3 then we get

bγ(I, a)α,β = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W.

If bγ(I, a)α,β = 0 then we obtain that b = 0 or a ∈ Z by 2.4.
If γ(I, a)α,βb ⊂ Cλ,µ(W ) then we have, for all x ∈ I

Cλ,µ(W ) 3 γ(β(a)x, a)α,βb = γβ(a)γ(x, a)α,βb− γ[β(a), β(a)]γ(x)b = γβ(a)γ(x, a)α,βb

That is

γβ(a)γ(I, a)α,βb ⊂ Cλ,µ(W ). (4)

If we use 2.6 and hypothesis then 4 gives that

γ(I, a)α,βb = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W.

If γ(I, a)α,βb = 0 then we obtain that b = 0 or a ∈ Z by 2.4. Finally we obtain that
b = 0 or a ∈ Z or σ(v)− τ(v) ∈ Z for all v ∈W . �

Corollary 2.3. Let W,V be nonzero left (σ, τ)−Jordan ideals of R and b ∈ R.

(i) If V ⊂ Cλ,µ(W ) then V ⊂ Z or σ(w)− τ(w) ∈ Z,∀w ∈W .
(ii) If bγ(V ) ⊂ Cλ,µ(W ) or γ(V )b ⊂ Cλ,µ(W ) then b = 0 or V ⊂ Z or σ(w) − τ(w) ∈

Z, ∀w ∈W .
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Proof. (i) If V ⊂ Cλ,µ(W ) then (R, V )σ,τ ⊂ Cλ,µ(W ) and so V ⊂ Z or σ(w) − τ(w) ∈
Z, ∀w ∈W by 2.4(i).

(ii) If bγ(V ) ⊂ Cλ,µ(W ) or γ(V )b ⊂ Cλ,µ(W ) then we have bγ(R, V )σ,τ ⊂ Cλ,µ(W ) or
γ(R, V )σ,τ b ⊂ Cλ,µ(W ). This gives that b = 0 or V ⊂ Z or σ(w)− τ(w) ∈ Z,∀w ∈ W by
2.4(ii). �

Lemma 2.7. Let h : R −→ R be a nonzero right-generalized (α, β)− derivtaion associated
with a nonzero (α, β)−derivation d and I, J nonzero ideals of R. If h(I) ⊂ Cλ,µ(J) then
R is commutative.

Proof. If h(I) ⊂ Cλ,µ(J) then we have, for all x ∈ I, t ∈ J , r ∈ R

0 = [h(xr), t]λ,µ = [h(x)α(r) + β(x)d(r), t]λ,µ

= h(x)[α(r), λ(t)] + [h(x), t]λ,µα(r) + β(x)[d(r), t]λ,µ + [β(x), µ(t)]d(r)

= h(x)[α(r), λ(t)] + β(x)[d(r), t]λ,µ + [β(x), µ(t)]d(r).

That is

h(x)[α(r), λ(t)] + β(x)[d(r), t]λ,µ + [β(x), µ(t)]d(r) = 0 for all x ∈ I, t ∈ J, r ∈ R. (5)

Replacing r by α−1λ(t) in 5 we get

β(x)[k(t), t]λ,µ + [β(x), µ(t)]k(t) = 0 for all x ∈ I, t ∈ J (6)

where k(t) = dα−1λ(t). Replacing x by rx in 6 we obtain, for all x ∈ I, t ∈ J, r ∈ R

0 = β(rx)[k(t), t]λ,µ + [β(rx), µ(t)]k(t)

= β(r)β(x)[k(t), t]λ,µ + β(r)[β(x), µ(t)]k(t) + [β(r), µ(t)]β(x)k(t) = [β(r), µ(t)]β(x)k(t)

which gives [R,µ(t)]β(I)dα−1λ(t) = 0. Since β(I) is a nonzero ideal then we have, for
any t ∈ J

t ∈ Z or dα−1λ(t) = 0.

Considering as in the proof of 2.2 we get J ⊂ Z or dα−1λ(J) = 0. Since d is nonzero
then dα−1λ(J) 6= 0 by 2.1 and so J ⊂ Z is obtained. This means that R is commutative
by [9, Lemma 3]. �

Theorem 2.5. Let W be a left (σ, τ)−Jordan ideal of R and I a nonzero ideal of R.
Let h : R −→ R be a nonzero right-generalized (α, β)−derivation associated with nonzero
(α, β)− derivation d : R −→ R and b ∈ R.

(i) If h(I) ⊂ Cλ,µ(W ) then σ(v)− τ(v) ∈ Z,∀v ∈W .
(ii) If bh(I) ⊂ Cλ,µ(W ) then b ∈ Z or σ(v)− τ(v) ∈ Z,∀v ∈W .

Proof. (i) If h(I) ⊂ Cλ,µ(W ) then we have [h(I),W ]λ,µ = 0. This means that, h(I) ⊂
Cλ,µ(R) or σ(v)− τ(v) ∈ Z,∀v ∈W by 2.2 (ii).

If h(I) ⊂ Cλ,µ(R) then we get R is commutative by 2.7 and so σ(v)−τ(v) ∈ Z,∀v ∈W .
(ii) If bh(I) ⊂ Cλ,µ(W ) then [bh(I),W ]λ,µ = 0. Using 2.2 (ii) we have bh(I) ⊂ Cλ,µ(R)

or σ(v)− τ(v) ∈ Z, ∀v ∈W .
If bh(I) ⊂ Cλ,µ(R) then b ∈ Z by 2.3. Finally we obtain that b ∈ Z or σ(v) − τ(v) ∈

Z,∀v ∈W . �

Theorem 2.6. Let W be a left (σ, τ)−Jordan ideal of R and I 6= 0 an ideal of R and
I a nonzero ideal of R.. Let h : R −→ R be a nonzero left-generalized (α, β)−derivation
associated with nonzero (α, β)− derivation d and a, b ∈ R.
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(i) If h(I) ⊂ Cλ,µ(W ) then σ(v)− τ(v) ∈ Z,∀v ∈W .
(ii) If h(I)b ⊂ Cλ,µ(W ) then b ∈ Z or σ(v)− τ(v) ∈ Z,∀v ∈W .
(iii) If (h(R), a)α,β ⊂ Cα,β(R) then a2 ∈ Z or d(a2) = 0.

Proof. (i) If h(I) ⊂ Cλ,µ(W ) then [h(I),W ]λ,µ = 0. This means that, h(I) ⊂ Cλ,µ(R) or
σ(v)− τ(v) ∈ Z, ∀v ∈W by 2.2 (ii).

If h(I) ⊂ Cλ,µ(R) then we get R is commutative by [7, Theorem 2.12] and so σ(v) −
τ(v) ∈ Z,∀v ∈W .

(ii) If h(I)b ⊂ Cλ,µ(W ) then [h(I)b,W ]λ,µ = 0. This gives h(I)b ⊂ Cλ,µ(R) or σ(v) −
τ(v) ∈ Z,∀v ∈W by 2.2 (ii).

If h(I)b ⊂ Cλ,µ(R) then b ∈ Z by 2.3. Finally we obtain that b ∈ Z or σ(v) − τ(v) ∈
Z, ∀v ∈W .

(iii) Using the hypothesis (h(R), a)α,β ⊂ Cα,β(R) we get, for all r ∈ R
0 = [h(r)α(a) + β(a)h(r), a]α,β

= h(r)α(a)α(a) + β(a)h(r)α(a)− β(a)h(r)α(a)− β(a)β(a)h(r) = [h(r), a2]α,β.

That is [h(R), a2]α,β = 0. This means that a2 ∈ Z or d(a2) = 0 by [7, Lemma 8]. �

Corollary 2.4. Let W be nonzero left (σ, τ)−Jordan ideal of R and b ∈ R. If (W, b)α,β ⊂
Cα,β(R) then b2 ∈ Z or σ(w)− τ(w) ∈ Z for all w ∈W .

Proof. For any w ∈ W let us define the mapping h(r) = (r, w)σ,τ ,∀r ∈ R. Then h is a
left-generalized derivation associated with derivation d(r) = −[r, τ(w)],∀r ∈ R.

If (W, b)α,β ⊂ Cα,β(R) then we have ((R,w)σ,τ , b)α,β ⊂ Cα,β(R) and so (h(R), b)α,β ⊂
Cα,β(R).

If h 6= 0 then we have b2 ∈ Z or dβ(b2) = 0 by 2.6 (iii) and so

b2 ∈ Z or [β(b2), τ(w)] = 0.

If h = 0 then d = 0 is obtained. This gives that w ∈ Z and so [β(b2), τ(w)] = 0. If we
consider this argument for all w ∈W then we get

b2 ∈ Z or [τ−1α(b2),W ] = 0.

If [τ−1α(b2),W ] = 0 then b2 ∈ Z or σ(w)− τ(w) ∈ Z for all w ∈W by 2.2 (ii). �
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