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TIGHT JUST EXCELLENT GRAPHS

SR. I. K. MUDARTHA1, R. SUNDARESWARAN2, V. SWAMINATHAN3, §

Abstract. A graph G is χ-excellent if for every vertex v, there exists a chromatic par-
tition π such that {v} ∈ π.A graph G is just χ-excellent if every vertex appears as a
singleton in exactly one χ-partition. In this paper, a special type of just χ-excellence
namely tight just χ-excellence is defined and studied.

AMS Subject Classifcation: 03B52; 05C40; 05C75.

1. Definition and Properties of tight just χ-excellent graphs

Definition 1.1. G is χ-excellent if for every vertex v, there exists a chromatic partition
π such that {v} ∈ π.

Example 1.1. :

1. Kn is χ-excellent.
2. C2n is not χ-excellent but C2n+1 (n ≥ 1) is χ-excellent.
3. W2n (n ≥ 2) is χ-excellent.

Definition 1.2. A graph G is just χ-excellent if every vertex appears as a singleton in
exactly one χ-partition.

Example 1.2.

1. Kn is just χ-excellent.
2. C2n+1 is just χ-excellent

Definition 1.3. Harary graphs Hn,m with n vertices and m < n are defined as follows:
Case(i):
n is even and m = 2r. Then Hn,2r has n vertices 0, 1, 2, · · · , n − 1 and i, j are joined if
i− r ≤ j ≤ i+ r, where the addition is taken with respect to modulo n.
Case(ii):
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m is odd and n is even. Let m = 2r + 1. Then Hn,2r+1 is constructed by first drawing
Hn,2r and then adding edges joining vertex i to the vertex i+ n

2 , for 0 ≤ i ≤ n
2 .

Case(iii):
m,n are odd. Let m = 2r + 1. Then Hn,2r+1 is constructed by drawing Hn,2r and then
adding edges joining vertex 0 to the vertices n−1

2 and n+1
2 and vertex i to i + n+1

2 , for

1 ≤ i ≤ n−1
2 .

Definition 1.4. Kneser Graph Let k, n be two positive integers, such that 2 ≤ k ≤ n.
Let M be a set with n elements. The Kneser graph K(n, k) is defined as the graph with
vertex set V as the set of all subsets of n of cardinality k. Two vertices of K(n, k) are
adjacent if and only if the corresponding sets are disjoint. This concept was introduced
by Kneser in 1978. When n = 2k + 1, the Kneser graph is also called odd by Mulder.
The domination number of K(n, 2) is 3 for every n.

Definition 1.5. A just χ-excellent graph of order n having exactly n χ-partitions is called
a tight just χ-excellent graph.

Example 1.3.

uu
u

u u
u
u

1

2

3

45

6

7

Fig 1: H4,7

The only χ-partitions are:
π1 = {{1}, {2, 5}, {3, 6}, {4, 7}}; π2 = {{2}, {1, 5}, {3, 6}, {4, 7}}
π3 = {{3}, {1, 5}, {2, 6}, {4, 7}}; π4 = {{4}, {1, 5}, {2, 6}, {3, 7}}
π5 = {{5}, {1, 4}, {2, 6}, {3, 7}}; π6 = {{6}, {1, 4}, {2, 5}, {3, 7}}
π7 = {{7}, {1, 4}, {2, 5}, {3, 6}}
Examples of graphs which are χ- just excellent but not tight just χ-excellent: H4,10, H5,10, H7,13, H9,13.

Corollary 1.1. If G is a just χ-excellent graph, then either it is tight or it contains a
χ-partition in which no singleton appears( That is it contains at least n+1 χ-partitions).

Example 1.4. ssss ss
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Fig 2: C7

The χ-partitions of are :
{{1}, {2, 4, 6}, {3, 5, 7}}; {{2}, {3, 5, 7}, {1, 4, 6}}; {{3}, {1, 4, 6}, {2, 5, 7}}
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{{4}, {2, 5, 7}, {1, 3, 6}}; {{5}, {1, 3, 6}, {2, 4, 7}}; {{6}, {2, 4, 7}, {1, 3, 5}}
{{7}, {1, 3, 5}, {2, 4, 6}}
Some other χ-partitions are:
{{1, 3}, {2, 4, 6}, {5, 7}}; {{1, 3}, {2, 5, 7}, {4, 6}}; {{1, 4}, {3, 5, 7}, {2, 6}}
{{1, 4}, {2, 5, 7}, {3, 6}}; {{1, 5}, {2, 4, 6}, {3, 7}}; {{1, 5}, {2, 4, 7}, {3, 6}}
{{1, 6}, {3, 5, 7}, {2, 4}}; {{1, 6}, {2, 4, 7}, {3, 5}}; {{2, 4}, {1, 3, 6}, {5, 7}}
{{2, 5}, {1, 3, 6}, {4, 7}}; {{2, 5}, {1, 4, 6}, {3, 7}}; {{2, 6}, {1, 3, 5}, {4, 7}}
{{2, 7}, {1, 3, 5}, {4, 6}}; {{2, 7}, {1, 4, 6}, {3, 5}}

Total number of chromatic partitions = 21. Of these14 Chromatic partitions do not
involve singletons. It is an example of a non-tight just χ-excellent graph. In general C2n+1

is a non-tight just χ-excellent graph.

Remark 1.1. If G is just χ-excellent and not tight, then any chromatic partition with a
singleton class contains at least one class with more than two elements.

Proposition 1.1. Let G be a just χ-excellent graph. Then G is a tight χ-excellent graph
if and only if n = 2χ− 1.

Proof. Let G be a just χ-excellent graph with n = 2χ− 1. Since G is just
χ-excellent, given any vertex u, there exists a chromatic partition with {u} as an element
of the partition. The remaining χ−1 partitions must have atleast two elements each since
in a just χ-excellent graph no chromatic partition can contain two singletons. Therefore
the minimum number of elements in any partitions are 2(χ − 1) + 1 = 2χ − 1 = n. But
the total number of elements are n. Therefore every chromatic partition containing a
singleton must contain only two elements sets as other elements of the partition. If a
chromatic partition does not contain a singleton then the total number of elements in the
partition are at least 2χ > n a contradiction. Therefore the graph is tight just χ-excellent.

The converse is obvious. �

Remark 1.2. C5 is χ-excellent and number of χ-partitions is 5.

Proposition 1.2. If G is a tight just χ-excellent graph, then
χ− 1 ≤ deg(u) ≤ 2χ− 4 = |V (G)| − 3 for any u ∈ V (G).

Proof. Since G is a tight just χ-excellent graph, |V (G)| = 2χ − 1. Clearly u is not a full
degree vertex. Therefore deg u ≤ n − 2 = 2χ − 3. Suppose degu = n − 2. Then u is not
adjacent to exactly one vertex of G say v. Let π = {{v}, V2, · · · , Vχ} be a χ-partition of
G containing {v}. Then u ∈ Vi for some i, 2 ≤ i ≤ χ. But u is adjacent to every vertex
other than v. Therefore |Vi| = {u} , a contradiction, since in a just χ-excellent graph any
χ-partition can contain at most one singleton class. Hence deg(u) ≤ n− 3 ≤ 2χ− 4. �

Proposition 1.3. Given a positive integer k, there exists a tight just χ-excellent regular
hamiltonian graph G such that χ(G) = k+1, |V (G)| = 2k+1 and every vertex that appears
as a singleton in a chromatic partition is adjacent to every element of (k − 2) doubletons
in that partition and adjacent with exactly one element in the remaining two doubleton
classes.

Proof. Consider the graph H2k−2,2k+1. β0(H2k−2,2k+1) = 2. ( For: Suppose S is an
independent set with 3 vertices say {u1, u2, u3}. But u1 is not adjacent with only two
vertices say v, w where d(u1, v) = k and d(u1, w) = k + 1. Therefore u2 = v and u3 = w.
But d(v, w) = 1 and hence u2 and u3 are adjacent, a contradiction. Clearly {u1, v} is
independent ). Therefore n

β0
≤ χ gives 2k+1

2 ≤ χ. Therefore χ ≥ k + 1.



R. SUNDARESWARAN ET AL: TIGHT JUST EXCELLENT GRAPHS 297

Let π = {{1}, {2, k + 2}, {3, k + 3}, · · · , {k + 1, 2k + 1}}. Then π is a proper colour
partition of cardinality k+1 and hence χ = k+1 and π is a χ-partition in which 1 is adjacent
with 2, 3, 4, · · · , k, 2k + 1, 2k, · · · , k + 3. Therefore 1 is adjacent with exactly 1 element
namely 2 and 2k+ 1 in the remaining two doubleton classes {2, k+ 2}, {k+ 1, 2k+ 1}. �

Observation 1.1. The graph G = H2k−2,2k+1 is 2k−2 regular, β0 = 2 and χ ≥ k+ 1
2 . The

graph admits a k + 1-colour partition. Therefore χ(H2k−2,2k+1) = k + 1. Degree of every
vertex = 2k − 2 = 2χ− 4. |V (G)| = 2k + 1 = 2χ− 1. This graph is tight just χ-excellent
and the degree of every vertex is 2χ− 4. As illustrations, the graphs H6,9, H8,11, H10,13 are
drawn and the chromatic partitions are exhibited.
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Fig 3: H6,9

The chromatic partitions are:
π1 = {{1}, {2, 6}, {3, 7}, {4, 8}, {5, 9}}
π2 = {{2}, {1, 6}, {3, 7}, {4, 8}, {5, 9}}
π3 = {{3}, {1, 6}, {2, 7}, {4, 8}, {5, 9}}
π4 = {{4}, {1, 6}, {2, 7}, {3, 8}, {5, 9}}
π5 = {{5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}}
π6 = {{6}, {1, 5}, {2, 7}, {3, 8}, {4, 9}}
π7 = {{7}, {1, 5}, {2, 6}, {3, 8}, {4, 9}}
π8 = {{8}, {1, 5}, {2, 6}, {3, 7}, {4, 9}}
π9 = {{9}, {1, 5}, {2, 6}, {3, 7}, {4, 8}}

In H8,11,
The chromatic partitions are:
π1 = {{1}, {2, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 11}}
π2 = {{2}, {1, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 11}}
π3 = {{3}, {1, 7}, {2, 8}, {4, 9}, {5, 10}, {6, 11}}
π4 = {{4}, {1, 7}, {2, 8}, {3, 9}, {5, 10}, {6, 11}}
π5 = {{5}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {6, 11}}
π6 = {{6}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}}
π7 = {{7}, {1, 6}, {2, 8}, {3, 9}, {4, 10}, {5, 11}}
π8 = {{8}, {1, 6}, {2, 7}, {3, 9}, {4, 10}, {5, 11}}
π9 = {{9}, {1, 6}, {2, 7}, {3, 8}, {4, 10}, {5, 11}}
π10 = {{10}, {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 11}}
π11 = {{11}, {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}}

Remark 1.3. There exist hamiltonian graphs which are tight just χ-excellent and for
every k, χ− 1 ≤ k ≤ 2χ− 4, there exists a vertex u with degree k.
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Observation 1.2. Two families of tight just χ-excellent graphs are given below. Both are
obtained from Harary graphs by removing suitable edges. Construct H2n−2,2n+1. Remove
the edges with one end at vertex i (1 ≤ i ≤ 2n+1) and the other end at the vertices shown
against each i. The resulting graph is tight just χ-excellent with χ = n+ 1. Every positive
integral value in the range [χ− 1, 2χ− 4] (that is n to 2n− 2) is realized as degree of the
vertices.

Case 1: n is odd. Consider H16,19 with specified edges removed.

Vertex degree Non-adjacent vertices Other end of the Edges

1 n+ 1 n+ 1, n+ 2 n+ 3, n+ 4, · · · , 2n− 1

2 n+ 1 n+ 2, n+ 3 n+ 4, ..., 2n

3 n+ 2 n+ 3, n+ 4 n+ 5, ..., 2n

4 n+ 2 n+ 4, n+ 5 n+ 6, ..., 2n+ 1

5 n+ 3 n+ 5, n+ 6 n+ 7, ..., 2n+ 1

6 n+ 4 n+ 6, n+ 7 n+ 8, ..., 2n+ 1

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
n− 1 2n− 3 2n− 1, 2n 2n+ 1

n 2n− 2 2n, 2n+ 1 · · ·

n+ 1 2n− 3 2n+ 1, 2n+ 2 2n

n+ 2 2n− 3 2n+ 2, 2n+ 3 2n+ 1

n+ 3 2n− 4 2n+ 3, 2n+ 4 2n+ 1, 1

n+ 4 2n− 4 2n+ 4, 2n+ 5 1, 2

n+ 5 2n− 5 2n+ 5, 2n+ 6 1, 2, 3

n+ 6 2n− 6 2n+ 6, 2n+ 7 1, · · · , 4

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

2n− 1 n+ 1 n− 2, n− 1 1, 2, · · · , n− 3

2n n n− 1, n n+ 1, 2, · · · , n− 2

2n+ 1 n n, n+ 1 n+ 2, n+ 3, 4, ..., n− 1
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Illustration 1.1. : For H16,19 with specified edges removed, χ = 10. Every positive
integral value in [9, 16] is realized as the degree of the vertices.
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Fig 5: H16,19

Vertex Degree Non-adjacent vertices Other end of the edges
1 10 10, 11 12, 13, 14, 15, 16, 17
2 10 11, 12 13, 14, 15, 16, 17, 18
3 11 12, 13 14, 15, 16, 17, 18
4 11 13, 14 15, 16, 17, 18, 19
5 12 14, 15 16, 17, 18, 19
6 13 15, 16 17, 18, 19
7 14 16, 17 18, 19
8 15 17, 18 19
9 16 18, 19 −−−−−−−−−
10 15 19, 1 18
11 15 1, 2 19
12 14 2, 3 19, 1
13 14 3, 4 1, 2
14 13 4, 5 1, 2, 3
15 12 5, 6 1, 2, 3, 4
16 11 6, 7 1, 2, 3, 4, 5
17 10 7, 8 1, 2, 3, 4, 5, 6
18 9 8, 9 2, 3, 4, 5, 6, 7, 10
19 9 9, 10 4, 5, 6, 7, 8, 11, 12
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Case 2: n is even.

Vertex degree Non-adjacent vertices Other end of the Edges

1 n+ 2 n+ 1, n+ 2 n+ 3, n+ 4, ..., 2n− 2

2 n+ 2 n+ 2, n+ 3 n+ 4, ..., 2n− 1

3 n+ 2 n+ 3, n+ 4 n+ 5, ..., 2n

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
n+2
2 n+ 2 3n+2

2 , 3n+2
2 + 1 3n+2

2 + 2, · · · , 2n+ 1,
1, · · · , n−6

2

n+2
2 + 1 n+ 3 3n+2

2 + 1, 3n+2
2 + 2 3n+2

2 + 3, · · · , 2n+ 1,
1, · · · , n−6

2

n+2
2 + 2 n+ 4 3n+2

2 + 2, 3n+2
2 + 3 3n+2

2 + 4, · · · , 2n+ 1,
1, 2, · · · , n−8

2

. · · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

3n+2
2 − 4 2n− 2 5n+2

2 − 4, 5n+2
2 − 3 · · ·

3n+2
2 − 3 n+ 2 3n+2

2 + n− 3, 3n+2
2 + n− 2 2n, 2n− 1, · · · , 2n− (n− 5)

3n+2
2 − 2 n+ 2 3n+2

2 + n− 2, 3n+2
2 + n− 1 2n+ 1, 2n, · · · , 2n+ 1− (n− 5)

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

2n− 2 n+ 2 3n− 2, 3n− 1 n+2
2 − 2, n+2

2 − 3, · · · , 1, 2n+ 1,
2n, · · · , 2n+ 1− (n−8

2 )

2n− 1 n+ 1 3n− 1, 3n 2n+ 3, 2n+ 4, · · · , 3n− 2, 2n− 5

2n n 3n, 3n+ 1 2n+ 4, · · · , 3n− 1, 2n− 5, 2n− 4

2n+ 1 n 3n+ 1, 3n+ 2 2n+ 5, · · · , 3n, 2n− 4, 2n− 3
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Illustration 1.2. For H10,13 with specified edges removed, χ = 7. Every positive integral
value in [6, 10] is realized as the degree of the vertices.
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Fig 6: H10,13

Vertex Degree Non-adjacent vertices Other end of the edges
1 8 7,8 9,10
2 8 8,9 10,11
3 8 9,10 11,12
4 8 10,11 12,13
5 9 11,12 13
6 10 12,13 ———-
7 8 13,1 11,12
8 8 1,2 12,13
9 8 2,3 13
10 8 3,4 1,2
11 7 4,5 2,3,7
12 6 5,6 3,4,7,8
13 6 6,7 4,5,8,9

Proposition 1.4. The Kneser graph K(n, 2) is not χ-excellent for n ≥ 3.

Proof. χ(K(n, 2)) = n− 2. χ(K(n, 2)− {u}) = χ(K(n, 2)) for any u ∈ V (K(n, 2)).
Therefore K(n, 2) is not χ-critical and hence not χ-excellent. �

Proposition 1.5. The Kneser graph K(n, k) (k ≤
⌊
n
2

⌋
) is not χ-excellent for n ≥ 3.

Proof. Let u = {1, 2, ..., k}. Then χ(G − u) = χ(G) = n − 2k + 2. Therefore G is not
χ-excellent. �

Observation 1.3. C2n+1 is just χ-excellent. It is not tight just χ-excellent if n ≥ 1.
Further there exists a chromatic partition in which every vertex of the cycle is colourful if
and only if 2n+ 1 ≡ 0(mod 3).

Proof. Consider C3n where n is odd. The chromatic number is 3. The partition π =
{{u1, u4, · · · , u3n−2},
{u2, u5, · · · , u3n−1}, {u3, u6, · · · , u3n}} is a chromatic partition in which every vertex is
colourful. Consider C3n+1 where n is even. A chromatic partition giving 3n− 1 colourful
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vertices is {{u1, u4, u7, u10, · · · , u3n−2},
{u2, u5, · · · , u3n−1, u3n+1}, {u3, u6, · · · , u3n}}.
Here u1 and u3n+1 are not colourful and all other vertices are colourful.
Let π = {V1, V2, V3} be a chromatic partition of C3n+1 (n even). In any Vi, if ui ∈ Vi
then ui−2 and ui+2 can not be in Vi. Therefore V1 = {u1, u4, · · · }, V2 = {u2, u5, · · · }, V3 =
{u3, u6, · · · }. Since total number of vertices is 3n + 1, there exists at least one Vi such
that |Vi| ≥ n + 1. Suppose |V1| ≥ n + 1. If |V1| = n + 1, then the (n + 1)th term in V1
is u3n+1 which is adjacent to u1 in V1, a contradiction. A similar contradiction arises if
|V1| > n + 1. Therefore |V1| ≤ n. Similarly |V2| ≤ n and |V3| ≤ n, a contradiction since
|V | = 3n+ 1.
Further if V1 = {u1, u4, · · · , u3n−2}, V2 = {u2, u5, · · · , u3n−1}, and
V3 = {u3, u6, · · · , u3n}, then u3n+1 cannot be accomodated in V1 and V3, since they contain
the adjacent vertices u1 and u3n respectively. Therefore u3n+1 has to be included in V2. In
this case u3n and u1 will not be colourful. Hence the number of colourful vertices is at most
3n − 1. Since we have already shown that there exists a chromatic partition containing
3n − 1 colourful vertices, we get that the maximum number of colourful vertices in any
chromatic partition of C3n+1 (n even) is 3n− 1.
Similar proof can be given for C3n+2 where n is odd to show that the maximum number
of colourful vertices in any chromatic partition is 3n. Hence the observation. �

Remark 1.4. In a tight just χ-excellent graph of order n, the maximum number of colour-
ful vertices in any chromatic partition is n− 2. For:
In any tight just χ-excellent graph of order n every chromatic partition contains exactly
one singleton class and the maximum degree of a vertex is 2χ − 4 where n = 2χ − 1.
The number of colourful vertices in any chromatic partition is equal to 1 + deg(v) where
{v} appears as a colour class in that partition. Therefore maximum number of colourful
vertices in any chromatic partition is equal to 1 + 2χ− 4 = 2χ− 3 = n− 2. Thus there is
a vertex of degree n− 3 in that graph.

Remark 1.5. H2r,2r+3 is tight just χ-excellent, in which every colour partition has n−2 (=
2r + 1) colourful vertices.

Remark 1.6. There are tight just excellent graphs of order n in which the maximum
number of colourful vertices is less than n− 2.

Example 1.5.
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Fig 7: G



R. SUNDARESWARAN ET AL: TIGHT JUST EXCELLENT GRAPHS 303

The χ-partitions of G are:
π1 = {{1}, {2, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 11}}
π2 = {{2}, {1, 7}, {3, 8}, {4, 9}, {5, 10}, {6, 11}}
π3 = {{3}, {1, 7}, {2, 8}, {4, 9}, {5, 10}, {6, 11}}
π4 = {{4}, {1, 7}, {2, 8}, {3, 9}, {5, 10}, {6, 11}}
π5 = {{5}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {6, 11}}
π6 = {{6}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}}
π7 = {{7}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}}
π8 = {{8}, {1, 6}, {2, 7}, {3, 9}, {4, 10}, {5, 11}}
π9 = {{6}, {1, 6}, {2, 7}, {3, 8}, {4, 10}, {5, 11}}
π10 = {{10}, {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 11}}
π11 = {{11}, {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}}
The colourful vertices with respect to
π1 are: 1, 2, 3, 4, 5, 10, 11; π2 are: 1, 2, 3, 4, 5, 6, 11;
π3 are: 1, 2, 3, 5, 6, 7; π4 are: 1, 2, 3, 4, 5, 6, 7;
π5 are: 1, 2, 3, 4, 5, 6, 7, 8; π6 are: 2, 4, 5, 6, 7, 8, 9;
π7 are: 3, 4, 5, 6, 7, 9; π8 are: 5, 6, 7, 8, 9, 10, 11;
π9 are: 6, 7, 8, 9, 10, 11; π10 are: 1, 7, 8, 9, 10, 11;
π11 are: 1, 2, 7, 8, 9, 10, 11.
Hence maximum number of colourful vertices is 8 and this is realized in the partition

π5. Here n = 11 and 8 < 9 = n− 2

Proposition 1.6. Consider C3n. There is no chromatic partition containing exactly (n−
1) colourful vertices.

Proof. Let V (C3n) = {u1, u2, · · · , u3n}. Suppose there exists a chromatic partition say π,
containing exactly n− 1 colourful vertices. Let π = {V1, V2, V3}. Since exactly one vertex
say ui is not colourful, ui−1 and ui+1 belong to the same colour class of π say V1. Every
element of V2 and V3 is colourful. Let V2 = {ui1, ui2, · · · , uir} and V3 = {uj1, uj2, · · · , ujs},
where (i1 < i2 < · · · < ir and j1 < j2 < · · · < js). Further in V2 and V3 ik and ik+1

must have difference at least 3 and so also jk and jk+1. The maximum cardinality of V2
satisfying the above property is n. The same condition holds in V3. Moreover no Vi can
have cardinality more than n since β0(C3n) = n. If |V1| or |V2| or |V3| is less than n, then
one or two of the remaining elements of the partition will have more than n elements a
contradiction. Therefore |V1| = n = |V2| = |V3|. Since V2 and V3 satisfy the property
that the difference between any two suffixes is 3, V1 also satisfies the same condition, a
contradiction. Therefore exactly n − 1 colourful vertices in a chromatic partition is not
possible. �

Observation 1.4. Every tight just χ-excellent graph is of odd order. But a just χ-excellent
graph may be of even order. For example, H5,10 is 5-regular and is just χ-excellent with
χ = 4, n = 2χ+ 2.r r
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Fig 8: H5,10
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The partitions are:
π1 = {{1}, {2, 5, 8}, {3, 6, 9}, {4, 7, 10}}; π2 = {{2}, {1, 5, 8}, {3, 6, 9}, {4, 7, 10}}
π3 = {{3}, {1, 5, 8}, {2, 6, 9}, {4, 7, 10}}; π4 = {{4}, {1, 5, 8}, {2, 6, 9}, {3, 7, 10}}
π5 = {{5}, {1, 4, 8}, {2, 6, 9}, {3, 7, 10}}; π6 = {{6}, {1, 4, 8}, {2, 5, 9}, {3, 7, 10}}
π7 = {{7}, {1, 4, 8}, {2, 5, 9}, {3, 6, 10}}; π8 = {{8}, {1, 4, 7}, {2, 5, 9}, {3, 6, 10}}
π9 = {{9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 10}}; π10 = {{10}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}}
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