ON THE SPECTRA OF CYCLES AND PATHS

F. CELIK ${ }^{1}$, I. N. CANGUL ${ }^{1 *}$, §

Abstract

Energy of a graph was defined by E. Hückel as the sum of absolute values of the eigenvalues of the adjacency matrix during the search for a method to obtain approximate solutions of Schrödinger equation which include the energy of the corresponding system for a class of molecules. The set of eigenvalues is called the spectrum of the graph and the spectral graph theory dealing with spectrums is one of the most interesting subareas of graph theory. There are a lot of results on the energy of many graph types. Two classes, cycles and paths, show serious differences from others as the eigenvalues are trigonometric algebraic numbers. Here, we obtain the polynomials and recurrence relations for the spectral polynomials of these two graph classes. In particular, we prove that one can obtain the spectra of $C_{2 n}$ and $P_{2 n+1}$ without detailed calculations just in terms of the spectra of C_{n} and P_{n}, respectively.

Keywords: Spectrum of a graph, graph energy, recurrence relation, path, cycle
AMS Subject Classification: 05C30, 05C38

1. Introduction

Throughout this paper, let $G=(V, E)$ be a simple connected graph, that is a graph with no loops nor multiple edges. Two vertices u and v of G are called adjacent if there is an edge e of G connecting u to v. Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of G. The $n \times n$ matrix $A=\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0, & \text { otherwise } .\end{cases}
$$

is called the adjacency matrix of the graph G. With slight abuse of language, we shall call the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ of a square $n \times n$ matrix A which are the roots of the equation $\left|A-\lambda I_{n}\right|=0$ as the eigenvalues of the graph G. The polynomial on the left hand side of this equation is called the characteristic (or spectral) polynomial of A (and of the graph G). The set of all eigenvalues of the adjacency matrix A is called the spectrum of the graph G, denoted by $S(G)$. For more detailed information about the fundamental topics on graphs and spectrums of some well-known graphs, see [2], [8], [4], [5], [6], [11],

[^0][13], [14], [16], [17] and [21].
The energy of G defined as the sum of the absolute values of the eigenvalues of G is the basis for the subfield of graph theory called spectral graph theory, see [1], [12], [8], [15], [18], [19], [20].

We shall denote a path graph by P_{n} and a cycle graph by C_{n}. The spectrum of path and cycle graphs are known in literature, [18], [8]. These two spectra show differences with the other graph types as these two are the only ones the elements of which can be stated in terms of the roots of unity. The authors, in [10], found the characteristic polynomials of some graph types including path and cycle graphs, and also gave the recurrence formulae for these graphs. In this paper, we shall consider the spectrum of path and cycle graphs and find these spectra in terms of spectra of some smaller graphs. In particular, we give the spectrum of $P_{2 n+1}$ in terms of the spectrum of P_{n}, and the spectrum of $C_{2 n}$ in terms of the spectrum of C_{n}.

2. Spectrum of Cycle Graphs and Their Recurrences

It is known that the spectrum of a cycle graph C_{n} is given by

$$
S\left(C_{n}\right)=\left\{\lambda_{i}: \lambda_{i}=2 \cos \left(\frac{2 \pi i}{n}\right), \quad i=0,1,2, \cdots, n-1\right\}
$$

see [8], [10], [18]. If we note that the elements of $S\left(C_{n}\right)$ are all algebraic numbers defined by means of trigonometrical functions, then we can obtain the eigenvalues of some cycle graph in terms of the eigenvalues of a smaller cycle graph. We first need the following result:

Lemma 2.1. Let C_{n} be a cycle graph. Then

$$
\lambda_{k}=\lambda_{n-k}
$$

for every $k=1,2, \cdots, n-1$.
Proof. Using the properties of cosine function, we have

$$
\begin{aligned}
\lambda_{n-k} & =2 \cos \left(\frac{2 \pi(n-k)}{n}\right) \\
& =2 \cos \left(2 \pi-\frac{2 \pi k}{n}\right) \\
& =2 \cos \left(\frac{2 \pi k}{n}\right) \\
& =\lambda_{k}
\end{aligned}
$$

Lemma 2.1 enables one to calculate only $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{\lfloor n / 2\rfloor}$ instead of calculating all $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ as follows:

Let the spectrum of C_{n} be

$$
S\left(C_{n}\right)=\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-2}, \lambda_{n-1}\right\}
$$

and the spectrum of $C_{2 n}$ be

$$
S\left(C_{2 n}\right)=\left\{\mu_{0}, \mu_{1}, \cdots, \mu_{2 n-2}, \mu_{2 n-1}\right\}
$$

where $n \geq 3$. Then the relations between λ_{i} 's and μ_{j} 's are given below:
Theorem 2.1. For $j=0,1, \cdots, n-1$, the spectrum of $C_{2 n}$ can be given as below using the spectrum of C_{n} :

- if $n \equiv 0(\bmod 4)$, then

$$
\mu_{2 j}=\lambda_{j}, \mu_{n}=-2, \mu_{\frac{n}{2}}=\mu_{\frac{3 n}{2}}=0 ;
$$

$$
\mu_{2 j+1}=\left\{\begin{aligned}
\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=0,1, \cdots, \frac{n-4}{4} \text { or } \frac{3 n}{4}, \frac{3 n+4}{4}, \cdots, n-1 \\
-\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=\frac{n}{4}, \frac{n+4}{4}, \cdots, \frac{3 n-4}{4},
\end{aligned}\right.
$$

- if $n \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
& \mu_{2 j}=\lambda_{j}, \mu_{n}=-2, \\
& \quad \mu_{2 j+1}=\left\{\begin{aligned}
\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=0,1, \cdots, \frac{n-5}{4} \text { or } \frac{3 n+1}{4}, \frac{3 n+5}{4}, \ldots, n-1 \\
-\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=\frac{n-1}{4}, \frac{n+3}{4}, \cdots, \frac{3 n-3}{4},
\end{aligned}\right.
\end{aligned}
$$

- if $n \equiv 2(\bmod 4)$, then

$$
\begin{aligned}
& \mu_{2 j}=\lambda_{j}, \mu_{n}=-2, \mu_{\frac{n}{2}}=\mu \frac{3 n}{2}=0, \\
& \quad \mu_{2 j+1}=\left\{\begin{aligned}
\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=0,1, \cdots, \frac{n-6}{4} \\
-\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=\frac{n+2}{4}, \frac{3 n+6}{4}, \cdots, \frac{3 n-6}{4},
\end{aligned}\right.
\end{aligned}
$$

and

- if $n \equiv 3(\bmod 4)$, then

$$
\mu_{2 j}=\lambda_{j}, \mu_{n}=-2,
$$

$$
\mu_{2 j+1}=\left\{\begin{aligned}
\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=0,1, \cdots, \frac{n-3}{4} \text { or } \frac{3 n-1}{4}, \frac{3 n+5}{4}, \cdots, n-1 \\
-\sqrt{\lambda_{2 j+1}+2}, & \text { for } j=\frac{n+1}{4}, \frac{n+5}{4}, \cdots, \frac{3 n-5}{4} .
\end{aligned}\right.
$$

Proof. Recall that $S\left(C_{n}\right)=\left\{\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-2}, \lambda_{n-1}\right\}$. Further we know that

$$
\lambda_{i}=2 \cos \left(\frac{2 \pi i}{n}\right) \text { for } i=0,1, \cdots, n-1 .
$$

As $S\left(C_{2 n}\right)=\left\{\mu_{0}, \mu_{1}, \cdots, \mu_{2 n-2}, \mu_{2 n-1}\right\}$, we similarly know that

$$
\mu_{2 j}=2 \cos \left(\frac{2 \pi 2 j}{2 n}\right)=2 \cos \left(\frac{2 \pi j}{n}\right) \text { for } j=0,1, \cdots, 2 n-1 .
$$

Now it is clear that

$$
\mu_{2 j}=2 \cos \left(\frac{2 \pi j}{n}\right)=\lambda_{j}
$$

for $j=0,1, \cdots, n-1$. Also, using double angle formulae, we have

$$
\mu_{k}=\mp \sqrt{\lambda_{k}+2}
$$

as

$$
\begin{aligned}
& \cos \left(\frac{2 \pi k}{n}\right)=2 \cos ^{2}\left(\frac{2 \pi k}{2 n}\right)-1 \\
& \cos \left(\frac{2 \pi k}{n}\right)+1=2 \cos ^{2}\left(\frac{2 \pi k}{2 n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cos \left(\frac{2 \pi k}{n}\right)+2=4 \cos ^{2}\left(\frac{2 \pi k}{2 n}\right) \\
\mp & \sqrt{2 \cos \left(\frac{2 \pi k}{n}\right)+2}=2 \cos \left(\frac{2 \pi k}{2 n}\right)
\end{aligned}
$$

where $k=2 j+1$ with

$$
j= \begin{cases}0,1,2, \cdots, \frac{n-2}{2} & \text { if } n \text { is even } \\ 0,1,2, \cdots, \frac{n-3}{2} & \text { if } n \text { is odd. }\end{cases}
$$

There are four possible cases:
If $n \equiv 0(\bmod 4)$, then we have the distribution of μ_{j} 's as follows:

$$
\begin{aligned}
& \begin{array}{llllllllll}
\mu_{1} & \mu_{3} & \cdots & \mu_{n-2} & \mu_{n+2} & \cdots & \mu_{n-1} & \mu_{n+1} & \cdots & \mu_{3 n-2} \\
\mu_{3 n+2} & \cdots & \mu_{2 n-1}^{2} \\
\end{array}
\end{aligned}
$$

Figure 1.1 The case $n \equiv 0(\bmod 4)$ for cycle graph $C_{2 n}$
Then we have $\mu_{2 j+1}$ as asserted.
If $n \equiv 1(\bmod 4)$, then we have the distribution of μ_{j} 's as follows:

Figure 1.2 The case $n \equiv 1(\bmod 4)$ for cycle graph $C_{2 n}$
Then we have the required values.
If $n \equiv 2(\bmod 4)$, then we have the distribution of μ_{j} 's as follows:

Figure 1.3 The case $n \equiv 2(\bmod 4)$ for cycle graph $C_{2 n}$
Then we have the asserted values for $\mu_{2 j+1}$.
If $n \equiv 3(\bmod 4)$, then we have the distribution of μ_{j} 's as follows:

Figure 1.4 The case $n \equiv 3(\bmod 4)$ for cycle graph $C_{2 n}$
similarly giving the result.

Example 2.1. For $n=4$, the spectrum of C_{4} is shown by $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ and the spectrum of C_{8} is shown by $\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}\right\}$. By using the spectrum of C_{4}, we can find the spectrum of C_{8} :

By Lemma 2.1, we can write

$$
\mu_{1}=\mu_{7}, \mu_{2}=\mu_{6}, \mu_{3}=\mu_{5}
$$

and we can also say that $\lambda_{1}=\lambda_{3}$. By Theorem 2.1, we have $\mu_{4}=\lambda_{2}=-2$.

$$
\begin{aligned}
S\left(C_{8}\right) & =\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}\right\} \\
& =\left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1},-\sqrt{\lambda_{3}+2}, \lambda_{2},-\sqrt{\lambda_{3}+2}, \lambda_{3}, \sqrt{\lambda_{1}+2}\right\} \\
& =\left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1},-\sqrt{\lambda_{1}+2}, \lambda_{2},-\sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{1}+2}\right\} \\
& =\left\{2,{\sqrt{\lambda_{1}+2}}^{(2)}, \lambda_{1}^{(2)},-{\sqrt{\lambda_{1}+2}}^{(2)},-2\right\} \\
& =\left\{2, \sqrt{2}^{(2)}, 0^{(2)},-\sqrt{2}^{(2)},-2\right\} .
\end{aligned}
$$

Example 2.2. For $n=5$, the spectrum of C_{5} is shown by $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ and the spectrum of C_{10} is shown by $\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}\right\}$. By using the spectrum of C_{5}, we find the spectrum of C_{10} as follows. By Lemma 2.1, $\mu_{1}=\mu_{9}, \mu_{2}=\mu_{8}, \mu_{3}=$ $\mu_{7}, \mu_{4}=\mu_{6}$ and also we can say that $\lambda_{1}=\lambda_{4}, \lambda_{2}=\lambda_{3}$. By Theorem 2.1, we get $\mu_{5}=-2$. Therefore

$$
\begin{aligned}
S\left(C_{10}\right) & =\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}\right\} \\
& =\left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1},-\sqrt{\lambda_{3}+2}, \lambda_{2},-2, \lambda_{3},-\sqrt{\lambda_{3}+2}, \lambda_{4}, \sqrt{\lambda_{1}+2}\right\} \\
& =\left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1},-\sqrt{\lambda_{2}+2}, \lambda_{2},-2, \lambda_{2},-\sqrt{\lambda_{2}+2}, \lambda_{1}, \sqrt{\lambda_{1}+2}\right\} \\
& =\left\{2,{\sqrt{\lambda_{1}+2}}^{(2)}, \lambda_{1}^{(2)},-{\sqrt{\lambda_{2}+2}}^{(2)}, \lambda_{2}^{(2)},-2\right\} .
\end{aligned}
$$

Example 2.3. For $n=6$, let the spectrum of C_{6} be $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\}$ and the spectrum of C_{12} be $\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}, \mu_{10}, \mu_{11}\right\}$. By using the spectrum of C_{6}, find
the spectrum of C_{12}. By Lemma 2.1 and Theorem 2.1,

$$
\begin{aligned}
S\left(C_{12}\right)= & \left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}, \mu_{10}, \mu_{11}\right\} \\
= & \left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1}, 0, \lambda_{2},-\sqrt{\lambda_{1}+2},-2,-\sqrt{\lambda_{1}+2}\right. \\
& \left.\lambda_{2}, 0, \lambda_{1}, \sqrt{\lambda_{1}+2}\right\} \\
= & \left\{2,{\sqrt{\lambda_{1}+2}}^{(2)}, \lambda_{1}^{(2)}, 0^{(2)}, \lambda_{2}^{(2)},-{\sqrt{\lambda_{1}+2}}^{(2)},-2\right\} .
\end{aligned}
$$

Example 2.4. For $n=7$, the spectrum of C_{7} is shown by

$$
\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right\}
$$

and the spectrum of C_{14} is shown by

$$
\left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}, \mu_{10}, \mu_{11}, \mu_{12}, \mu_{13}\right\}
$$

By using the spectrum of C_{7}, we find the spectrum of C_{14}.
By Lemma 2.1 and Theorem 2.1

$$
\begin{aligned}
S\left(C_{14}\right)= & \left\{\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}, \mu_{10}, \mu_{11}, \mu_{12}, \mu_{13}\right\} \\
= & \left\{2, \sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{3}+2}, \lambda_{2},-\sqrt{\lambda_{2}+2}, \lambda_{3},-2, \lambda_{3}\right. \\
& \left.-\sqrt{\lambda_{2}+2}, \lambda_{2}, \sqrt{\lambda_{3}+2}, \lambda_{1}, \sqrt{\lambda_{1}+2}\right\} \\
= & \left\{2,{\sqrt{\lambda_{1}+2}}^{(2)}, \lambda_{1}^{(2)},{\sqrt{\lambda_{3}+2}}^{(2)}, \lambda_{2}^{(2)},-{\sqrt{\lambda_{2}+2}}^{(2)}, \lambda_{3}^{(2)},-2\right\} .
\end{aligned}
$$

3. Spectrum of Path Graphs and Their Recurrences

It is known that the spectrum of a path graph P_{n} is given by

$$
S\left(P_{n}\right)=\left\{\lambda_{i}: \lambda_{i}=2 \cos \left(\frac{\pi i}{n+1}\right), \quad i=1,2, \ldots, n\right\}
$$

see [8], [10], [18]. Like $S\left(C_{n}\right)$, the elements of $S\left(P_{n}\right)$ are all algebraic numbers defined by means of cosine function. We shall now obtain the eigenvalues of the path graph $P_{2 n+1}$ in terms of the eigenvalues of the smaller path graph P_{n}. We first have

Lemma 3.1. Let P_{n} be a path graph. Then

$$
\lambda_{k}=-\lambda_{n+1-k}
$$

for every $k=1,2, \ldots, n$.
Proof. Using the properties of cosine function, we have

$$
\begin{aligned}
\lambda_{n+1-k} & =2 \cos \left(\frac{\pi(n+1-k)}{n+1}\right) \\
& =2 \cos \left(\pi-\frac{\pi k}{n+1}\right) \\
& =-2 \cos \left(\frac{\pi k}{n+1}\right) \\
& =-\lambda_{k} .
\end{aligned}
$$

Lemma 3.1 enables one to calculate only $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{\lfloor(n+1) / 2\rfloor}$ instead of calculating all $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{2 n+1}$.

Let the spectrum of P_{n} be

$$
S\left(P_{n}\right)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}
$$

and the spectrum of $P_{2 n+1}$ be

$$
S\left(P_{2 n+1}\right)=\left\{\mu_{1}, \mu_{2}, \cdots, \mu_{2 n}, \mu_{2 n+1}\right\}
$$

where $n \geq 3$. Then the relation between λ_{i} 's and μ_{j} 's is given below:
Theorem 3.1. For $j=1,2, \ldots, n$, the spectrum of $P_{2 n+1}$ can be given as below using the spectrum of P_{n} :

- if n is odd, then

$$
\begin{gathered}
\mu_{2 j}=\lambda_{j} ; \\
\mu_{2 j-1}=\left\{\begin{array}{cl}
\sqrt{\lambda_{2 j-1}+2}, & \text { for } j=1,2, \cdots, \frac{n+1}{2}, \\
-\sqrt{\lambda_{2 n-2 j+3}+2}, & \text { for } j=\frac{n+3}{2}, \frac{n+5}{2}, \cdots, n+1 .
\end{array}\right.
\end{gathered}
$$

- if n is even, then

$$
\mu_{2 j-1}=\left\{\begin{array}{cl}
\mu_{2 j}=\lambda_{j}, & \mu_{n+1}=0 ; \\
\sqrt{\lambda_{2 j-1}+2}, & \text { for } j=1,2, \cdots, \frac{n}{2}, \\
-\sqrt{\lambda_{2 n-2 j+3}+2}, & \text { for } j=\frac{n+4}{2}, \frac{n+6}{2}, \cdots, n+1 .
\end{array}\right.
$$

Proof. Let $S\left(P_{n}\right)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$. Further we know that

$$
\lambda_{i}=2 \cos \left(\frac{\pi i}{n+1}\right) \text { for } i=1,2, \cdots, n .
$$

If $S\left(P_{2 n+1}\right)=\left\{\mu_{1}, \mu_{2}, \cdots, \mu_{2 n}, \mu_{2 n+1}\right\}$, we similarly know that

$$
\mu_{2 j}=2 \cos \left(\frac{\pi 2 j}{2 n+1+1}\right)=2 \cos \left(\frac{\pi j}{n+1}\right)
$$

for $j=1,2, \cdots, 2 n+1$. Now it is clear that

$$
\mu_{2 j}=2 \cos \left(\frac{\pi j}{n+1}\right)=\lambda_{j}
$$

for $j=1,2, \cdots, n$. Also using double angle formulae, we have

$$
\mu_{k}=\mp \sqrt{\lambda_{k}+2}
$$

as

$$
\begin{gathered}
\cos \left(\frac{\pi k}{n+1}\right)=2 \cos ^{2}\left(\frac{\pi k}{2 n+2}\right)-1 \\
\cos \left(\frac{\pi k}{n+1}\right)+1=2 \cos ^{2}\left(\frac{\pi k}{2 n+2}\right) \\
2 \cos \left(\frac{\pi k}{n+1}\right)+2=4 \cos ^{2}\left(\frac{\pi k}{2 n+2}\right) \\
\mp \sqrt{2 \cos \left(\frac{\pi k}{n+1}\right)+2}=2 \cos \left(\frac{\pi k}{2 n+2}\right)
\end{gathered}
$$

where $k=2 j-1$ with

$$
j= \begin{cases}1,2, \cdots, \frac{n}{2} & \text { if } n \text { is even } \\ 1,2, \cdots, \frac{n+1}{2} & \text { if } n \text { is odd. }\end{cases}
$$

There are two possible cases:
If n is odd, then we have the distribution of μ_{j} 's as follows:

Figure 3.1 The case n is odd for path graph $P_{2 n+1}$
Then we have

$$
\mu_{2 j-1}=\left\{\begin{array}{cl}
\sqrt{\lambda_{2 j-1}+2}, & \text { for } j=1,2, \cdots, \frac{n+1}{2} \\
-\sqrt{\lambda_{2 n-2 j+3}+2}, & \text { for } j=\frac{n+3}{2}, \frac{n+5}{2}, \cdots, n+1
\end{array}\right.
$$

and

$$
\mu_{2 j}=\lambda_{j}
$$

If n is even, then we have the distribution of μ_{j} 's as follows:

Figure 3.2 The case n even for path graph $P_{2 n+1}$
Then we have

$$
\mu_{2 j-1}=\left\{\begin{array}{cl}
\sqrt{\lambda_{2 j-1}+2}, & \text { for } j=1,2, \cdots, \frac{n}{2} \\
-\sqrt{\lambda_{2 n-2 j+3}+2}, & \text { for } j=\frac{n+4}{2}, \frac{n+6}{2}, \cdots, n+1
\end{array}\right.
$$

and

$$
\mu_{2 j}=\lambda_{j}, \quad \mu_{n+1}=0
$$

Example 3.1. For $n=7$, the spectrum of P_{7} is shown by $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{7}\right\}$ and the spectrum of P_{15} is shown by $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \cdots, \mu_{15}\right\}$. By using the spectrum of P_{7}, we can find the spectrum of P_{15} as follows:

By Theorem 3.1, we get

$$
\begin{aligned}
S\left(P_{15}\right)= & \left\{\sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{3}+2}, \lambda_{2}, \sqrt{\lambda_{5}+2}, \lambda_{3}, \sqrt{\lambda_{7}+2}, \lambda_{4},-\sqrt{\lambda_{7}+2}, \lambda_{5}\right. \\
& \left.-\sqrt{\lambda_{5}+2}, \lambda_{6},-\sqrt{\lambda_{3}+2}, \lambda_{7},-\sqrt{\lambda_{1}+2}\right\}
\end{aligned}
$$

Also by Lemma 3.1,

$$
\lambda_{1}=-\lambda_{7}, \quad \lambda_{2}=-\lambda_{6}, \quad \lambda_{3}=-\lambda_{5}, \quad \lambda_{4}=0
$$

and then

$$
\begin{aligned}
S\left(P_{15}\right)= & \left\{\sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{3}+2}, \lambda_{2}, \sqrt{-\lambda_{3}+2}, \lambda_{3}, \sqrt{-\lambda_{1}+2}, 0,-\sqrt{-\lambda_{1}+2}\right. \\
& \left.-\lambda_{3},-\sqrt{-\lambda_{3}+2},-\lambda_{2},-\sqrt{\lambda_{3}+2},-\lambda_{1},-\sqrt{\lambda_{1}+2}\right\}
\end{aligned}
$$

Example 3.2. For $n=8$, the spectrum of P_{8} is shown by $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{8}\right\}$ and the spectrum of P_{17} is shown by $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \cdots, \mu_{17}\right\}$. By using the spectrum of P_{8}, we can obtain the spectrum of P_{17}.

By Theorem 3.1, one has

$$
\begin{aligned}
S\left(P_{17}\right)= & \left\{\sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{3}+2}, \lambda_{2}, \sqrt{\lambda_{5}+2}, \lambda_{3}, \sqrt{\lambda_{7}+2}, \lambda_{4}, 0, \lambda_{5},-\sqrt{\lambda_{7}+2},\right. \\
& \left.\lambda_{6},-\sqrt{\lambda_{5}+2}, \lambda_{7},-\sqrt{\lambda_{3}+2}, \lambda_{8},-\sqrt{\lambda_{1}+2}\right\}
\end{aligned}
$$

Also by Lemma 3.1,

$$
\lambda_{1}=-\lambda_{8}, \quad \lambda_{2}=-\lambda_{7}, \quad \lambda_{3}=-\lambda_{6}, \quad \lambda_{4}=-\lambda_{5}
$$

and then

$$
\begin{aligned}
S\left(P_{17}\right)= & \left\{\sqrt{\lambda_{1}+2}, \lambda_{1}, \sqrt{\lambda_{3}+2}, \lambda_{2}, \sqrt{-\lambda_{4}+2}, \lambda_{3}, \sqrt{-\lambda_{2}+2}, \lambda_{4}, 0,-\lambda_{4}\right. \\
& \left.-\sqrt{-\lambda_{2}+2},-\lambda_{3},-\sqrt{-\lambda_{4}+2},-\lambda_{2},-\sqrt{\lambda_{3}+2},-\lambda_{1},-\sqrt{\lambda_{1}+2}\right\}
\end{aligned}
$$

4. Acknowledgement

The second author is supported by Uludag University Research Fund, Project number F-2015/17.

References

[1] C. Adiga, Z. Khoshbakht, I. Gutman, (2007), More graphs whose energy exceeds the number of vertices. Iranian Journal of Mathematical Sciences and Informatics, 2 (2), (2007), 57-62.
[2] J. M. Aldous, R. J. Wilson, (2004), Graphs and Applications, The Open University, UK.
[3] R. Balakrishnan, K. Ranganathan, (2012), A Textbook of Graph Theory. (Second edn.), Springer, New York.
[4] C. Berge, (2001), The Theory of Graphs, Fletcher and Son Ltd., UK.
[5] N. L. Biggs, E. K. Lloyd, R. J. Wilson, (2001), Graph Theory, pp. 1736-1936, Oxford University Press, London.
[6] B. Bollobas,(1998), Graduate Texts in Mathematics, Modern Graph Theory, Springer, New York.
[7] J. A. Bondy, U. S. R. Murty, (1998), Graph Theory, Springer, New York.
[8] A. E. Brouwer, W. H. Haemers, (2012), Spectra of Graphs, Springer, New York.
[9] F. Celik, (2016), Graphs and Graph Energy, PhD Thesis, pp. 65, Uludag University, Bursa.
[10] F. Celik, I. N. Cangul, (2017), Recurrence Relations on Spectral Polynomials of Some Graphs and Graph Energy, Adv. Stud. Contemp. Maths, 27, 1, (preprint).
[11] W. Chen, (1976), Applied Graph Theory, North-Holland Publishing Company, New York.
[12] D. Cvetkovic, M. Doob, H. Sachs, (1995), Spectra of GraphsTheory and Applications, (Third edn.), Academic Press, Heidelberg.
[13] L. R. Foulds, (1992), Graph Theory Applications, Springer, New York.
[14] M. C. Golumbic, I. B. Hartman, (2012), Graph Theory, Combinatorics and Algorithms, Springer, New York.
[15] I. Gutman, (1978), The Energy of a Graph, Ber. Math. Statist. Sekt. Forshungsz. Graz, 103, pp. 1-22.
[16] F. Harary, (1994), Graph Theory, Addison-Wesley, USA.
[17] J. M. Harris, J. L. Hirst, M. J. Mossinghoff, (2008), Combinatorics and Graph Theory, Springer, New York.
[18] X. Li, Y. Shi, I. Gutman, (2012), Graph Energy, Springer, New York.
[19] V. Nikiforov, (2007), The energy of graphs and matrices, J. Math. Anal. Appl. 326, pp. 1472-1475.
[20] H. B. Walikar, H. S. Ramane, P. R. Hampiholi, On the energy of a graph in: R. Balakrishnan, H. M.
Mulder, A. Vijayakumar (Eds.), (1999), Graph Connections, Allied Publishers, New Delhi, pp. 120-123.
[21] D. B. West, (1996), Introduction to Graph Theory, Upper Saddle River, Prentice Hall.

F. Celik had her undergraduate degree at Mathematics Department of Uludag University and has recently been working as a Mathematics Teacher in Istanbul, and continuing her PhD at the Mathematics Department at Uludag University, studying spectral graph theory.

Prof. Dr. I. N. Cangul for the photography and short autobiography, see TWMS J. App. Eng. Math., V.6, N.2, 2016.

[^0]: ${ }^{1}$ Uludag University, Faculty of Arts \& Science, Mathematics Department, Gorukle 16059 Bursa, Turkey. e-mail: feriha_celik@hotmail.com; ORCID: https://orcid.org/0000-0002-0791-9293.
 e-mail: ncangul@gmail.com; ORCID: https://orcid.org/0000-0002-0700-5774.
 *Corresponding author.
 § Manuscript received: May 7, 2017; accepted: August 21, 2017.
 TWMS Journal of Applied and Engineering Mathematics, Vol.9, No. 3 © Işık University, Department of Mathematics, 2019; all rights reserved.

