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ANALYTIC APPROACH FOR LOVE WAVE DISPERSION IN AN

INHOMOGENEOUS LAYER LYING OVER AN IRREGULAR POROUS

HALF-SPACE

S. GUPTA1, S. PRAMANIK1,∗, SMITA1, A. PRAMANIK1, §

Abstract. The present work examines the possibility of Love wave dispersion in an
irregular interface of two different media expressively as an inhomogeneous layer and
porous half-space. Dispersion equation has been computed in a compact form following
the expansion of transformation method, perturbation technique, Whittaker equation
and its derivative. The dispersion equation coincides with the classical equation of Love
type wave which agrees with the pre-established results. The graphs are sketched to
show the effect of porosity, irregularity and inhomogeneous parameters.
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1. Introduction

Seismology is essentially accomplished on the solicitation of theory of mechanics in a
continuous as well as discontinuous medium. In general, Seismologist applies the supposi-
tion and possible conditions of physics, mathematics, geology and engineering to examine
the substantial characteristics beneath the earth’s surface. The exploring area of seismol-
ogists is the earth’s interior and its vibration applying mechanics of physics. Standing
on the above concepts, this attempt will certainly help us to represent the earth’s several
characteristics. Love waves are transverse waves that vibrate the ground in the horizontal
direction perpendicular to the direction in which the waves are traveling.

The concepts of propagation of waves during an earthquake is a very common issue for
seismologist. It is well-known fact that in the earth’s crust, pores plays an important role
in some special type of rocks like igneous, metamorphic and sedimentary rocks. Seismic
waves are the waves of energy that travel through the earth’s crust, mantle and core. It is
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directly or indirectly a result of an earthquake and other natural phenomena. Earthquakes
create distinct type of waves with different velocities.

A porous medium is specified by the division of total volume into a solid matrix and
porous space which is usually completed by the different types of fluids. The porous
medium occurs not only in sedimental rocks but also in oil reservoirs including fouling of
the membrane. The understanding of effect of porosity and inhomogeneity is compulsory
for the solution of the problem in geophysics, rock dynamics, rock sediments including
earthquake engineering. The earth contains fluid saturated porous rocks on or below
its surface in the form of sandstone and other sediments permeated by groundwater or
oil. Therefore, the analysis of Love wave propagation in a porous medium has found a
central interest for seismologist. Kundu et al.[9] discussed the propagation of Love wave
a porous layer overlying an initially stressed half-space. L.L. ke et al.[10] discussed the
propagation of Love wave in an inhomogeneous fluid saturated porous half-space. Son
and Kang[11] studied the propagation of shear waves in a poroelastic layer constrained
between two elastic layers. Seismic waves are usually generated by movements of earth’s
tectonic plates but may be caused by explosions and volcanoes Tuncay and Corapcioglu[13]
investigated the body waves in a poroelastic media saturated by two immiscible Newtonian
fluids. Biot’s[2] theory of wave propagation in linear, elastic, saturated porous media are
the basis of many velocities and attenuation analysis. Chattaraj and Samal[5] studied the
propagation of Love waves in the fibre reinforced layer over a gravitating porous half-space.
Gupta et al.[6] studied the torsional wave in an inhomogeneous layer over a fluid saturated
porous half- space.

The study of effect of irregular boundaries on the propagation of Love waves in a porous
medium has a prominent effect because of some natural phenomenon like an earthquake.
Earthquake generated seismic wave confronts mountain basins, mountain roots and salt.
Chattopadhyay et al.[4] studied the shear waves propagation in a viscoelastic medium
with irregular boundaries. Singh et al.[12] contemplated the propagation of Love wave on
an irregular surface under the effect of a rigid boundary. Ahmed and Dahab[1] studied
the propagation of Love waves in an orthotropic granular layer under initial stress lying
over a semi infinite granular medium. The study of surface wave in an inhomogeneous
layer is not only of the hypothetical importance but also for a practical reason. The study
of propagation of Love wave will assist us to understand the earth’s interior during an
earthquake and explosion. This analysis will be beneficial in oil exploration and mining.
Wang and Zhang[15] derived the dispersion equation for propagating Love wave resting
over a transversely isotropic half-space consisting of fluid saturation. Kundu et al.[14]
examined the propagation of Love type wave with irregular rectangular boundaries lying
over an orthotropic semi infinite medium. Gharoi et al.[8] examined the propagation of
Love wave in a fluid saturated porous half-space which is influenced by rigid boundary
and gravity.

In the present paper, the propagation of Love wave in an inhomogeneous layer lying
over an irregular porous half-space is discussed carefully. The irregularity for propagation
of Love wave is taken in the following manner

z = εf(x), f(x) =

{
0 |x| > a1
2a1 |x| ≤ a1

, ε = h
2a1

<< 1 (1)
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Figure 1. Geometry of the Problem

2. Formulation of the Problem

An inhomogeneous elastic layer of width H lying over a water saturated porous half-
space with an irregular interface is introduced. It is considered that the shape of irregu-
larity is rectangular whose length is 2a1 and depth h. For the propagation of Love wave,
z axis is assumed vertically downwards and x axis is considered along the propagation of
wave as exhibited in Figure 1. Origin O is considered at the interface of porous half- space
and inhomogeneous layer. A source at depth h1 from the origin is considered.

3. Solution for the upper layer

The fundamental equation of motion for inhomogeneous layer along x axis[3] is consid-
ered as follows

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= ρ1
∂2u1
∂t2

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= ρ1
∂2v1
∂t2

,
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

= ρ1
∂2w1

∂t2

(2)

where σxx, σxy, σyz, σyx, σyy, σyz, σzx, σzy and σzz are used to denote the incremental stress
components. u1, v1 and w1 are the displacement components along x, y and z axis respec-
tively and ρ1 symbolizes for density in the assumed inhomogeneous layer. Applying con-
ventional condition of Love wave propagation, u1 = w1 = 0, v1 = v1 (x, z, t), the equation
(2) becomes

∂σyx
∂x

+
∂σyz
∂z

= ρ1
∂2v1
∂t2

(3)

The stress-strain relations are defined as

σxx = σyy = σxz = σzz = 0, σyx = 2µ1exy = µ1

(
∂u1

∂y
+
∂v1
∂x

)
, σyz = 2µ1eyz = µ1

(
∂v1
∂z

+
∂w1

∂y

)
The inhomogeneity in rigidity and density are considered as

µ1 = µ0 (1 + az) , ρ1 = ρ0 (1 + bz)

where µ0, ρ0 denote the rigidity and density respectively at z = 0 and a, b are constants
having dimensions inverse of its length. Using stress-strain relation and inhomogeneity
parameter in equation (3), we get

∂2v1
∂x2

+
∂2v1
∂z2

+
a

1 + az

∂v1
∂z

=
ρ0 (1 + bz)

µ0 (1 + az)

∂2v1
∂t2

(4)
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The following analytical solution is considered for equation (4)

v1 (x, z, t) = V1 (x, z) eiωt (5)

The Fourier transformation for V1 (x, z) is expressed as

V̄1 (s, z) =

∫ ∞
−∞

V1 (x, z) eixsds (6)

Therefore, the inverse Fourier transformation is defined as

V1 (x, z) =
1

2π

∫ ∞
−∞

V̄1 (s, z) e−ixsds (7)

Using equations (5) and (6) in equation (4), we get

d2V̄1

dz2
+

a

1 + az

dV̄1

dz
+

(
ω2ρ0 (1 + bz)

µ0 (1 + az)
− s2

)
V̄1 = 0 (8)

Substituting V̄1 = φ(z,s)

(1+az)
1
2

in equation (8), we get

φ′′ (z, s) +
[a2

4

1

(1 + az)2
+
ω2ρ0 (1 + bz)

µ0 (1 + az)

]
φ (z, s) = 0 (9)

Using φ (z, s) = ψ (η, s) in equation (9), where η = 2p
a (1 + az), p =

√(
s2 − b

a
ω2

c20

)
ψ′′ (η, s) +

[ 1

4η2
+
R

η
− 1

4

]
ψ (η, s) = 0 (10)

where R = ω2

2pc20

a−b
a2

, and c0 =
√

µ0
ρ0

, which is a Whittaker equation. From equation (10),

the following equation is taken as

ψ (η, s) = B1WR,0 (η) + C1W−R,0 (−η) (11)

Therefore, the solution for equation (8) is expressed as

V̄1 (z, s) =
B1WR,0 (η) + C1W−R,0 (−η)(

aη
2p

) 1
2

Now the solution of equation (7) is

V1 (x, z) =
1

2π

∫ ∞
−∞

B1WR,0 (η) + C1W−R,0 (−η)√
aη
2p

e−ixsds (12)

where B1 and C1 are arbitrary constants.

4. Solution for the lower half-space

The constitutive equation of porous medium in absence of fluid and body force is con-
sidered as [2]

∂τ11
∂x

+
∂τ12
∂y

+
∂τ13
∂z

+
∂ω2

∂z
=

∂2

∂t2
(ρ11u2 + ρ12U1)

∂τ21
∂x

+
∂τ22
∂y

+
∂τ23
∂z

=
∂2

∂t2
(ρ11v2 + ρ12U2) ,

∂τ31
∂x

+
∂τ32
∂y

+
∂τ33
∂z

=
∂2

∂t2
(ρ11v2 + ρ12U3)

∂τ

∂x
=

∂2

∂t2
(ρ12u2 + ρ22U1) ,

∂τ

∂y
=

∂2

∂t2
(ρ12v2 + ρ22U2) ,

∂τ

∂z
=

∂2

∂t2
(ρ12v2 + ρ22U3)

(13)

where τij (i, j = 1, 2, 3) and τ are used to denote the incremental stress component of
the solid and liquid respectively. The terms u = (u2, v2, w2) and U = (U1, U2, U3) denote
the displacement component vector of the solid and liquid part of the porous respectively.
The symbols ρ11, ρ12 and ρ22 denote the mass coefficient density for solid, liquid and their
inertia coupling parameter while ωj (j = 2) denotes the angular displacement vectors.
Let us suppose that there is no relative motion between liquid and solid in the porous
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media. The mass coefficients ρ11, ρ12 and ρ22 are related to the total mass density of solid
with liquid ρ and mass densities ρs and ρf for solid and liquid respectively in the following
manner as shown by Biot [3]

ρ11 + ρ12 = (1− f) ρs, ρ12 + ρ22 = fρf , ρ = ρs + f (ρf − ρs) (14)

where f denotes porosity of the layer. In an anisotropic layer, the relation between stress
and strain is defined as

τ11 = Ae11 + (A− 2N) (e22 + e33) +Qe

τ22 = Ae22 + (A− 2N) (e11 + e33) +Qe, τ33 = Ae33 + (A− 2N) (e11 + e22) +Qe

s12 = 2Ne12, s31 = 2Le31, s23 = 2Le23, s = Qe+Me′
(15)

where e = ∇× u and e′ = ∇× U are the respective dilation, which are opposite in sign.
The Lame’s coefficients are denoted by A, N and L, M denote the total pressure exerted
on the liquid. Let Q be the measure of coupling between the volume change of the solid
and liquid. Also, the strain component eij is defined as

eij =
(ui,j + uj,i)

2

The angular displacements are given by

ω2 =
1

2

(
∂u2

∂z
− ∂w2

∂x

)
For the Love wave propagation along the x- axis are u2 = 0 = w2, v2 = v2 (x, z, t). Using

the above conventional condition, the equation of motion given by equation (13) can be
expressed as

N
∂2v2
∂x2

+ L
∂2v2
∂z2

=
∂2

∂t2
(ρ11v2 + ρ12U2) ,

∂2

∂t2
(ρ12v2 + ρ22U2) = 0 (16)

Eliminating the component of liquid displacement v2 from equation (16), we get

N
∂2v2
∂x2

+ L
∂2v2
∂z2

= d′
∂2v2
∂t2

(17)

where d′ = ρ11−
(
ρ212
ρ22

)
. Considering the non dimensional parameter γ′11 = ρ11

ρ , γ′12 = ρ12
ρ

and γ′22 = ρ22
ρ , equation (17) reduces to

N

L

∂2v2
∂x2

+
∂2v2
∂z2

=
d

c2β2

∂2v2
∂t2

(18)

where d = γ′11−
(
γ′212
γ′22

)
, cβ =

√
L
ρ . The harmonic solution of equation (18) is assumed as

v2 (x, z, t) = V2 (x, z) eiωt (19)

Imposing Fourier transformation on equation (19), we get

V̄2 (s, z) =

∫ ∞
−∞

V2 (x, z) eixsdx (20)

Now applying inverse Fourier transformation on equation (20), we get

v2 (x, z) =
1

2π

∫ ∞
−∞

V̄2 (s, z) e−ixsds (21)

Using equation (19) and equation (20) in equation (18), it is obtained that

d2V̄2

dz2
= q2V̄2 (22)

where q2 = dν
[
s2

d −
ω2

c2β

]
, ν = N

L . From equation (22), we have

V̄2 = A1e
−qz +A2e

qz
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where A1, A2 are arbitrary constants. The displacement component is bounded as z →∞,
therefore, the second term of displacement component becomes unbounded. Thus, the
approximate solution is taken as

V̄2 = A1e
−qz (23)

Using equation (21) and equation (23), we get

v2 (x, z) =
1

2π

∫ ∞
−∞

A1e
−qze−ixsds (24)

where A1 is an arbitrary constant. Introducing the perturbation method in A1, B1 and
C1 in the following manner such that

A1 ≡ A11 + εA12, B1 ≡ B11 + εB12, C1 ≡ C11 + εC12

e±ενf ≡ 1± ενf, (1± εθ)R
′

= 1± εθR′
(25)

Following equation (12) and equation (25), we get

V1 (x, z) =
1

2π

∫ ∞
−∞

(B11 + εB12)WR,0 (η) + (C11 + εC12)W−R,0 (−η)(
aη
2p

) 1
2

e−ixsds (26)

V2 (x, z) =
1

2π

∫ ∞
−∞

[
(A11 + εA12) e−qz +

2

q
eqze−qh1

]
e−ixsds (27)

where 2nd term in integrand appears for an existence of the source in the half-space.

5. Boundary conditions

(i) The surface is free of stress at z = −H, therefore it requires that

µ0 (1− aH)
∂v1
∂z

= 0

(ii) The displacement component is continuous at z = εf (x), therefore it requires that

v1 = v2

(iii) At z = εf (x)

µ0

(
εf ′

∂v1
∂x
− ∂v1

∂z

)
= εf ′N

∂v2
∂x
− L∂v2

∂z

The Fourier transform of f (x) is acknowledged as

f (α) =

∫ ∞
−∞

f (x) eiαxdx, f (x) =
1

2π

∫ ∞
−∞

f (α) e−iαxdα, f ′ (x) = − i

2π

∫ ∞
−∞

αf (α) e−iαxdα (28)

Using boundary conditions (i) and the equation (26) and (27), we get

B11T1 + C11T2 = 0, B12T1 + C12T2 = 0 (29)

where

T1 = e−
η
2 ηR

[
η

(
−1

2
+
R

η

)(
1− (R− .5)2

η

)
−
(

1

2
− 3

(R− .5)2

η

)]

T2 = e
η
2 (−η)R

[
η

(
−1

2
+
R

η

)(
1− (R− .5)2

η

)
−
(

1

2
− 3

(R− .5)2

η

)]
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Applying boundary conditions (ii) and (iii) in equation (26) and equation (27), it is
expressed as

B11T3 + C11T4 −A11 =
2e−qh1

q
, B12T3 + C12T4 −A12 = R1 (χ) ,

B11T5 + C11T6 + n2A11 =

(
2p

a

)2
Lq

2µ0p

2e−qh1

q
, B12T5 + C12T6 + n2A12 = R2 (χ) , where

R1(χ) =
1

2π

∞∫
−∞

[
− q
a
A11 +B11T7 + C11T8 +

2e−qh1

a

]
s=χ−α

f(α)dα

R2 (χ) =
1

2π

∞∫
−∞

[(2p

a

)2
Lq

2µ0p
{A11

((
q

a
− 5

2

)
+ sαN

)
+

2e−qh1

a

(
1 +

5

2

a

q
(1 + sαN)

)
}

−B11 (T9 − sαµ0)− C11 (T10 − sαµ0)
]
s=χ−α

f(α)dα

(30)

where the values of Ti,(i = 2, ...10) are given in appendices(See Appendix A). Solving
simultaneous equation (30), we get

A11 =
T2D2 − T1D3

∆ (χ)
, B11 =

T2D1

∆ (χ)
, C11 = − T1D1

∆ (χ)
B12 =

T2 (n2R1 (k) +R2 (χ))

∆ (χ)

C12 = −T1 (n2R1 (χ) +R2 (χ))

∆ (χ)
, A12 =

T1

[
R1 (χ)T6 −R2 (χ)T4

]
− T2

[
R1 (χ)T5 −R2 (χ)T2

]
∆ (χ)

where ∆ (χ) = T2D4 − T1D5, the values of Di,(i = 1, ..5) are given in appendix.(See
Appendix A)
Using the above expressions, the displacement component in the inhomogeneous layer is
expressed as

V1 (x, z) =
1

2π

∫ ∞
−∞

(B11 + εB12)WR,0 (η) + (C11 + εC12)W−R,0 (−η)(
aη
2p

) 1
2

e−ixsds (31)

V1 (x, z) =
1

2π

∫ ∞
−∞

[
D1 + (n2R1 (χ)) +R2 (χ)

][
T2WR,0 (η)− T1W−R,0 (−η)

]
(
aη
2p

) 1
2

e−ixsds (32)

Now from equation (1) and equation (28), one may observe that

f (α) = 4a1
sin a1α

α
(33)

Using equation (30) and equation (33), it gives that

n2R1 (χ) +R2 (χ) =

(
2p
a

)2 Lq
µ02p

2e−qh1
q

π

∫ ∞
−∞

[
ψ (k − α) + ψ (k + α)

]
4a1

sin a1α

α
dα (34)

The equation (34) implies that

n2R1 (χ) +R2 (χ) =
4a1

(
2p
a

)2 Lq
µ02p

2e−qh1
q

π

∫ ∞
−∞

[
ψ (k − α) + ψ (k + α)

] sin a1α

α
dα (35)

where ψ (k − α)+ψ (k + α) = T1D6+T2D7
∆χ . D6, D7 are defined in Appendix (See Appendix

A).
The asymptotic formula used by Chattopadhyay et al. [4] as follows∫ ∞

−∞
ψ (k − α) + ψ (k + α)

sin a1α

α
≡ π

2
2g (χ) = πg (χ) (36)

Using equation (36) in equation (35), we get

n2R1 (χ) +R2 (χ) =

(
2p

a

)2
Lq

µ02p

2e−qh1

q

2h

ε
g (χ) (37)



S.GUPTA, S.PRAMANIK, SMITA, A.PRAMANIK: ANALYTIC APPROACH FOR LOVE WAVE ... 633

In light of equation (32) and equation (37), the displacement component in an inhomo-
geneous layer for the small value of ε is given by

V1 (x, z) =
1

2π

∫ ∞
−∞

(
2p
a

)2 Lq
µ02p

2e−qh1
q

(
2p
a

) 1
2

∆ (χ) (1− hg (χ))

T2WR,0 (η)− T1W−R,0 (−η)

n
1
2

e−ixsds (38)

where g (χ) = T1D6+T2D7
∆(χ) . The integral given in equation (38) will depend on the con-

tribution of the poles of the integrand. Thus, the dispersion equation of Love wave is
obtained as

∆ (χ)
[
1− hg (χ)

]
= 0 (39)

Equation (39) implies that
T1

T2
=
D4 − hD7

D5 + hD6
(40)

Using the values of above terms in equation (40), it is obtained as

epH

e−pH
=
NU

DE
(41)

where
NU = (1− aH)−RR22

[
D4 − hD7

]
, DE = (1− aH)RR11

[
D5 + hD6

]
Equating real part from equation (41), it is obtained as

tan
[√( b

a

c2

c20
− 1

)
kH
]

=
L1L3 − L2L4

L2
2 + L2

4

(42)

where

R11 =
2p

a
(1− aH)

(
−1

2
+

R
2p
a

(1− aH)

)(
1−

(
R− 1

2

)2
2p
a

(1− aH)

)
− 1

2

(
1 +

3
(
R+ 1

2

)2
2p
a

(1− aH)

)

R22 =
2p

a
(1− aH)

(
1

2
− R

2p
a

(1− aH)

)(
1−

(
R+ 1

2

)2
2p
a

(1− aH)

)
− 1

2

(
1 +

3
(
R+ 1

2

)2
2p
a

(1− aH)

)
The values of Li,(i = 1, ..4) are given in appendix( See Appendix A).

6. Particular cases

Case 1: When the porous half space has no irregularity, that is, h = 0, then equation
(42) reduces to

epH

e−pH
=

(1− aH)−RR22D4

(1− aH)RR11D5

(43)

The equation (43) represents the dispersion equation of Love wave in an inhomogeneous
layer lying over a porous half-space when there is no irregularity.
Case 2: When irregularity component is absent and neglecting inhomogeneity parameter,
that is, when h = 0 , a→ 0 and b→ 0, then equation (43) reduces to

tan

((√
c2

c20
− 1

)
kH

)
=

L

µ0

q√(
c2

c20
− 1
) (44)

The equation (44) represents the dispersion equation of Love wave in a homogeneous layer
lying over a porous half-space when there is no irregularity at the interface.
Case 3: When irregularity component is absent and neglecting inhomogeneity parameter
in a nonporous half-space, that is, when h = 0, a→ 0, b→ 0 and d→ 1 and N = L = µ1
then equation (44) takes the form

tan

(√(
c2

c20
− 1

)
kH

)
=
µ1

µ0

√
1− c2

c2
β√

c2

c20
− 1

(45)
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The equation (45) represents the dispersion equation of Love wave in a homogeneous layer
lying over a nonporous half-space when there is no irregularity at the interface.

7. Graphical Observation

For graphical observation, the data has been taken from Gubbins [7] that is µ0 = 74.5 ×
109N/m2, ρ0 = 3293Kg/m3, N = 2.774 × 109N/m2, L = 1.318 × 109N/m2 and ρ =
3535Kg/m3.
Figure 2 is sketched to show the effect of the size of irregularity on phase velocity for a
porous half-space. It is observed that the phase velocity increases with a small increment
of h

H . It is noticed that phase velocity decreases when wave number increases.
Figure 3 is designed to express the importance of size of irregularity in nonporous half-
space. Phase velocity increases with increment of h

H . It is examined that in case of
nonporous half-space phase velocity increases for large variation with a comparison of
porous half-space. It is clear that phase velocity decreases when dimensionless wave num-
ber increases.
Figure 4 renders the effect of inhomogeneous parameter aH for porous half-space. When
the value of inhomogeneous parameter increases, phase velocity increases.
Figure 5 represents the effect of inhomogeneous parameter aH for nonporous half-space.The
phase velocity increases when the value of aH increases. But it can be noticed that phase
velocity varies more rapidly in non porous half-space compared to porous half-space.
Figure 6 and Figure 7 signify the effect of inhomogeneous parameter bH in case of
porous and nonporous half-space respectively. When the inhomogeneous parameter in-
creases phase velocity decreases in both the cases. But it is examined that phase velocity
in porous half-space decrease more than nonporous half-space.
Figure 8 indicates the effect of the porosity in respect of wave number and phase velocity.
It is seen that increment of porosity gives the decrements in phase velocity. Also, phase
velocity decreases when wave number increases.
Figure 9 is drawn in respect of porosity parameter and phase velocity to show the vari-
ation of kH. It is verified that phase velocity decreases with the increment of kH. For
stable size of irregularity, an increase of beam of inhomogeneous layer, phase velocity de-
creases.
Finally, it can be concluded from all the figures that
(i) Phase velocity decreases with the increment of wave number and porosity parameter.
(ii) Inhomogeneous parameter, porosity, shape of irregularity have a considerable effect in
phase velocity.
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3. Variation

of phase velocity with
respect to wave num-
ber for different value
of h

H when d = 1
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Figure
4. Variation

of phase velocity with
respect to wave num-
ber for different value
of aH when d = 0.74
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Figure
5. Variation

of phase velocity with
respect to wave num-
ber for different value
of aH when d = 1
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6. Variation

of phase velocity with
respect to wave num-
ber for different value
of bH when d = 0.74
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7. Variation

of phase velocity with
respect to wave num-
ber for different value
of bH when d = 1
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Figure
8. Variation

of phase velocity with
respect to wave num-
ber for different value
of porosity
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8. Conclusion

The propagation of Love wave in an irregular inhomogeneous layer lying over a porous
half-space is analyzed carefully. The dispersion equation and displacement components
are observed mathematically. The numerical results are deliberated through figures by
plotting graphs between phase velocity and dimensionless wave number. Also, it is ob-
served that the phase velocity is highly influenced by porosity, length of irregularity and
inhomogeneous parameter. The analysis of this aspects of propagation of Love wave in
an irregular medium has been introduced in this paper. Hence it contributes valuable
entropy for classification of some structural material that exists in construction sector and
oil exploration which is not only advantageous to seismologist but also to geophysicist,
mathematicians including civil engineers.
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9. Appendix A

L1 = w1w5 +w1w6 +w2w5−w2w6, L2 = w1w6 +w2w5 +w3w8 +w4w7, L3 = w1w5−w1w6−w2w5−w2w6

L4 = w1w6+w2w5−w3w8−w4w7, w1 = k4+aHRk3, w2 = k3−aHRk4, w3 = k2−aHRk1, w4 = k1−aHRk2

w5 = z7−ahk7, w6 = z9−ahk8, w7 = z11−ahk5, w8 = z13−ahk6, k1 =
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