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MIX-POINT PROPERTY IN QUASI-PSEUDOMETRIC SPACES

YAÉ ULRICH GABA, §

Abstract. In this article, we give new results in the startpoint theory for quasi-pseudometric
spaces. The results we present provide us with the existence of startpoint (endpoint, fixed
point) for multi-valued maps defined on a bicomplete quasi-pseudometric space. We char-
acterise the existence of startpoint and endpoint by the so-called mix-point property. The
present results extend known ones in the area.

Keywords: quasi-pseudometric; bi-completeness; startpoint(endpoint); approximate start-
point(endpoint); approximate mix-point property, fixed point.
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1. Introduction and Preliminaries

The theory of startpoint, first introduced in [1], came to extend the idea of fixed points
for multi-valued mappings defined on quasi-pseudometric spaces. A series of three papers,
see [1, 2, 3] has given a more or less detailed introduction to the subject. the aim of
the present article is to continue this study by introducing the idea of mix-point property,
which is used to characterise the existence of startpoints.

Definition 1.1. Let X be a non empty set. A function d : X × X → [0,∞) is called a
quasi-pseudometric on X if:

i) d(x, x) = 0 ∀ x ∈ X,
ii) d(x, z) ≤ d(x, y) + d(y, z) ∀ x, y, z ∈ X.

Moreover, if d(x, y) = 0 = d(y, x) =⇒ x = y, then d is said to be a T0-quasi-metric.
The latter condition is referred to as the T0-condition.

Remark 1.1.

• Let d be a quasi-pseudometric on X, then the function d−1 defined by d−1(x, y) =
d(y, x) whenever x, y ∈ X is also a quasi-pseudometric on X, called the conjugate
of d. In the literature, d−1 is also denoted dt or d̄.
• It is easy to verify that the function ds defined by ds := d ∨ d−1, i.e. ds(x, y) =

max{d(x, y), d(y, x)} defines a metric on X whenever d is a T0-quasi-metric on
X.
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Definition 1.2. [1] A T0-quasi-metric space (X, d) is called bicomplete provided that the
metric ds on X is complete.

Let (X, d) be a quasi-pseudometric space. We set P0(X) := 2X \{∅} where 2X denotes
the power set of X. For x ∈ X and A ∈P0(X), we define:

d(x,A) = inf{d(x, a), a ∈ A}, d(A, x) = inf{d(a, x), a ∈ A}.
We also define the map H : P0(X)×P0(X)→ [0,∞] by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
whenever A,B,∈P0(X).

Then H is an extended1 quasi-pseudometric on P0(X).

2. Some first results

We briefly recall the idea of a startpoint, as initially intended in [1].

Definition 2.1. (Compare [1]) Let (X, d) be a T0-quasi-metric space.
Let F : X → 2X be a set-valued map. An element x ∈ X is said to be

(i) a fixed point of F if x ∈ Fx,
(ii) a startpoint of F if H({x}, Fx) = 0,

(iii) an endpoint of F if H(Fx, {x}) = 0.

We recall below the main theorem in the startpoint theory that appeared in [1].

Theorem 2.1. [1, Theorem 29] Let (X, d) be a bicomplete quasi-pseudometric space. Let
F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ ψ(d(x, y)), for each x, y ∈ X, (1)

where ψ : [0,∞)→ [0,∞) is upper semicontinuous, ψ(t) < t for each t > 0 and lim inf
t→∞

(t−
ψ(t)) > 0. Then there exists a unique x0 ∈ X which is both a startpoint and an endpoint
of F if and only if F has the approximate mix-point property.

We introduce the following definitions:

Definition 2.2. Let (X, d) be a quasi-pseudometric space, J : X → X be a single valued
mapping and F : X → 2X be a multi-valued mapping. We say that the mappings J and F
have the approximate startpoint property (resp. approximate endpoint property
), if

inf
x∈X

sup
y∈Fx

d(Jx, y) = 0 (resp. inf
x∈X

sup
y∈Fx

d(y, Jx) = 0).

Definition 2.3. Let (X, d) be a T0-quasi-pseudometric space, J : X → X be a single valued
mapping. We say that J and the set-valued map F : X → 2X have the approximate
mix-point property if

inf
x∈X

sup
y∈Fx

ds(Jx, y) = 0.

Definition 2.4. (Compare [1]) Let (X, d) be a quasi-pseudometric space, J : X → X be
a single valued mapping. Let F : X → 2X be a set-valued map. An element x ∈ X is said
to be

(i) a J-fixed point of F if Jx ∈ Fx,
(ii) a startpoint of J and F if H({Jx}, Fx) = 0,

1This means that H can attain the value ∞ as it appears in the definition.
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(iii) an endpoint of J and F if H(Fx, {Jx}) = 0.

The next three results are the first results of this paper. We shall not give any proof,
since the proofs follow the same arguments as the proofs in [1].

Theorem 2.2. (Compare[1, Theorem 29]) Let (X, d) be a bicomplete quasi-pseudometric
space. Assume J : X → X is a continuous single-valued map and let F : X → CB(X) be
a set-valued map that satisfies

H(Fx, Fy) ≤ ψ(d(Jx, Jy)), for each x, y ∈ X, (2)

where ψ : [0,∞)→ [0,∞) is upper semicontinuous, ψ(t) < t for each t > 0 and lim inf
t→∞

(t−
ψ(t)) > 0. Then there exists a unique x0 ∈ X which is both a startpoint and an endpoint
of J and F if and only if J and F have the approximate mix-point property.

Theorem 2.3. (Compare[1, Theorem 31]) Let (X, d) be a bicomplete quasi-pseudometric
space. Assume J : X → X is a continuous single-valued map and let F : X → CB(X) be
a set-valued map that satisfies

H(Fx, Fy) ≤ k(d(Jx, Jy)), for each x, y ∈ X, (3)

where k ∈ [0, 1). Then there exists a unique x0 ∈ X which is both a startpoint and an
endpoint of J and F if and only if J and F have the approximate mix-point property.

Theorem 2.4. (Compare[1, Corollary 30]) Let (X, d) be a bicomplete quasi-pseudometric
space. Assume J : X → X is a continuous single-valued map. Let F : X → CB(X) be a
set-valued map that satisfies

H(Fx, Fy) ≤ ψ(d(Jx, Jy)), for each x, y ∈ X, (4)

where ψ : [0,∞)→ [0,∞) is an upper semicontinuous map that satisfies ψ(t) < t for each
t > 0 and lim inf

t→∞
(t− ψ(t)) > 0. If J and F have the approximate mix-point property then

F has a J-fixed point.

Remark 2.1. Observe that if we put J = IX(identity map on X) in Theorems 2.2, 2.3
and 2.4 respectively, we obtain [1, Theorem 29, Theorem 31, Corollary 30] respectively.

3. More results

In [1], the proof of Theorem 2.1 basically establishes that the sets

Cn =

{
x ∈ X : sup

y∈Fx
ds(x, y) ≤ 1

n

}
6= ∅, for n ∈ N = {1, 2, · · · },

form a non-increasing sequence of bounded and τ(ds)-closed sets. The conclusion follows
from the Cantor intersection theorem. We shall use a similar approach in proving the next
two results, with the difference that we present simpler and shorter arguments.

We now present the first non trivial generalisation of [1, Theorem 29].

Theorem 3.1. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0.
Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy), for each x, y ∈ X, (5)

where α ∈ (0, 1) and rα < 1. Then there exists a unique x0 ∈ X which is both a startpoint
and an endpoint of J and F if and only if J and F have the approximate mix-point
property.
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Proof. It is clear that if J and F admit a point which is both a startpoint and an
endpoint, then J and F have the approximate startpoint property and the approximate
endpoint property, i.e the approximate mix-point property. Conversely, suppose J and F
have the approximate mix-point property. Then

Cn =

{
x ∈ X : sup

y∈Fx
ds(Jx, y) ≤ 1

n

}
6= ∅,

for each n ∈ N. Also it is clear that for each n ∈ N, Cn+1 ⊆ Cn. Since the map x 7→
sup
y∈Fx

ds(Jx, y) is τ(ds)-lower semicontinuous (as supremum of τ(ds)-continuous mappings),

the Cn is τ(ds)-closed.
Next we prove that for each n ∈ N, Cn is bounded. Indeed, for any x, y ∈ Cn,

d(Jx, Jy) = H({Jx}, {Jy})
≤ H({Jx}, Fx) +H(Fx, Fy) +H(Fy, {Jy})

≤ 2

n
+ αd(Jx, Jy).

So

d(Jx, Jy) ≤ 2

n(1− α)
,

and since rd(x, y) ≤ d(Jx, Jy), we have

δ(Cn) ≤ 2

rn(1− α)
.

Therefore lim
n→∞

δ(Cn) = 0. It follows from the Cantor intersection theorem that
⋂

n∈N
Cn =

{x0}.
Thus H({Jx0}, Fx0) = sup

y∈Fx0

d(Jx0, y) = 0 = sup
y∈Fx0

d(y, Jx0) = H(Fx0, {Jx0}). For

uniqueness, if z0 is an arbitrary startpoint and endpoint of J and F , then H({Jz0}, F z0) =
0 = H(Fz0, {Jz0}), and so z0 ∈

⋂
n∈N

Cn = {x0}.

We give the following example to illustrate our result.

Example 3.1.
Indeed, consider the T0-quasi-metric space (X, d) where X = {0, 1} and d defined by

d(0, 1) = 0, d(1, 0) = 1 and d(x, x) = 0 for x = 0, 1. Note that (X, d) is bicomplete. We
define on X the set-valued map F : X → 2X by Fx = {0} and the single-valued continuous
mapping J : X → X by Jx = x2.

It is clear that for all x, y ∈ X,H(Fx, Fy) = 0.
For x = 0, y = 1, d(x, y) = d(0, 1) = 0, and d(Jx, Jy) = d(0, 1) = 0.
For x = 1, y = 0, d(x, y) = d(1, 0) = 1, and d(Jx, Jy) = d(1, 0) = 1.
So if we set r = 1

2 and α = 1
3 , we have that rα = 1

6 < 1 and

rd(x, y) ≤ d(Jx, Jy).

Moreover, the condition (5) is satisfied. Since H({J0}, F0) = 0 = H(F0, {J0}), then
0 is both a startpoint and an endpoint of J and F .

Observe also that:
-for x = 0, Fx = {0}, sup

y∈Fx
ds(Jx, y) = ds(0, 0) = 0,
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-for x = 1, Fx = {0}, sup
y∈Fx

ds(Jx, y) = ds(1, 0) = 0, and hence

inf
x∈X

sup
y∈Fx

ds(Jx, y) = 0.

i.e. J and F have the approximate mix-point property.

Corollary 3.1. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0
and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy), for each x, y ∈ X, (6)

where α ∈ (0, 1) and rα < 1. If J and F have the approximate mix-point property then F
has a J-fixed point.

Proof.
From Theorem 3.1, we conclude that there exists x0 ∈ X which is both a startpoint

and an endpoint for J and F , i.e H({Jx0}, Fx0) = 0 = H(Fx0, {Jx0}). The T0-condition
therefore guarantees the desired result.

Theorem 3.2. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0
and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fx) + d(Jy, Fy)], for each x, y ∈ X, (7)

where α ∈ (0, 1/2). Then there exists a unique x0 ∈ X which is both a startpoint and an
endpoint of J and F if and only if J and F have the approximate mix-point property.

Proof. Once again, only one implication will be of interest to us, since the other one is
trivial. So suppose J and F have the approximate mix-point property. Then we already
know that the sets

Cn =

{
x ∈ X : sup

y∈Fx
ds(Jx, y) ≤ 1

n

}
6= ∅,

for each n ∈ N are τ(ds)-closed and that Cn+1 ⊆ Cn.
Next we prove that for each n ∈ N, Cn is bounded. Indeed, for any x, y ∈ Cn,

d(Jx, Jy) = H({Jx}, {Jy})
≤ H({Jx}, Fx) +H(Fx, Fy) +H(Fy, {Jy})

≤ 2

n
+ α[d(Jx, Fx) + d(Jy, Fy)]

≤ 1

n
(2 + 2α).

So

d(Jx, Jy) ≤ 1

n
(2 + 2α),

and since rd(x, y) ≤ d(Jx, Jy), we have

δ(Cn) ≤ 1

rn
(2 + 2α).
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Therefore lim
n→∞

δ(Cn) = 0. It follows from the Cantor intersection theorem that
⋂

n∈N
Cn =

{x0}. Thus H({Jx0}, Fx0) = sup
y∈Fx0

d(Jx0, y) = 0 = sup
y∈Fx0

d(y, Jx0) = H(Fx0, {Jx0}). For

uniqueness, if z0 is an arbitrary startpoint and endpoint of J and F , then H({Jz0}, F z0) =
0 = H(Fz0, {Jz0}), and so z0 ∈

⋂
n∈N

Cn = {x0}.

Example 3.2. Indeed, consider the T0-quasi-metric space (X, d) where X = {0, 1} and
d defined by d(0, 1) = 0, d(1, 0) = 1 and d(x, x) = 0 for x = 0, 1. Note that (X, d)
is bicomplete. We define on X the set-valued map F : X → 2X by Fx = {0} and the
single valued continuous map J : X → X by Jx = x3. It is clear that for all x, y ∈
X,H(Fx, Fy) = 0.

For x = 0, y = 1, d(x, y) = d(0, 1) = 0, d(Jx, Jy) = d(0, 1) = 0.
For x = 1, y = 0, d(x, y) = d(1, 0) = 1, d(Jx, Jy) = d(1, 0) = 1. So if we set r = 1

2 , we
have that

rd(x, y) ≤ d(Jx, Jy).

So if we set α = 1
3 , we have that 0 < α < 1

2 . Since H({J0}, F0) = 0 = H(F0, {J0}),
then 0 is both a startpoint and an endpoint of J and F .

For x = 0, y = 1, α[d(Jx, Fx) + d(Jy, Fy)] = 1
3 and

for x = 1, y = 0, α[d(Jx, Fx) + d(Jy, Fy)] = 1
3 , so the condition (7) is satisfied.

Observe also that

inf
x∈X

sup
y∈Fx

ds(Jx, y) = 0.

i.e. J and F have the approximate mix-point property.

Corollary 3.2. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0
and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fx) + d(Jy, Fy)], for each x, y ∈ X, (8)

where α ∈ (0, 1/2). If J and F have the approximate mix-point property then F has a
J-fixed point.

Using the same idea as in the proof of Theorem 3.1 and Theorem 3.2, one can establish
the following results:

Theorem 3.3. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0
and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fy) + d(Fx, Jy)], for each x, y ∈ X, (9)

where 0 < α < 1/2 with 2rα < 1. Then there exists a unique x0 ∈ X which is both
a startpoint and an endpoint of J and F if and only if J and F have the approximate
mix-point property.

Theorem 3.4. Let (X, d) be a bicomplete quasi-pseudometric space. Assume J : X → X
is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant r > 0
and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy) + Ld(Fx, Jy), for each x, y ∈ X, (10)
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where α > 0 and L ≥ 0 such that r(α + L) < 1. Then there exists a unique x0 ∈ X
which is both a startpoint and an endpoint of J and F if and only if J and F have the
approximate mix-point property.

4. Concluding remarks

All the above results remain true if instead we consider a quasi-pseudometric type space
(X, d, b) (see [4]). On the other side, the sets Cn considered in the investigation can be
made more general in the sense that we could consider sets of the form Cε where ε > 0.
Hence we write

Cε =

{
x ∈ X : sup

y∈Fx
ds(Jx, y) ≤ ε

}
, for any ε > 0.

Therefore, the Theorem 3.1 could be reformulated as follows:

Theorem 4.1. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy), for each x, y ∈ X, (11)

where α ∈ (0, 1) such that rαb2 < 1. Then there exists a unique x0 ∈ X which is both
a startpoint and an endpoint of J and F if and only if J and F have the approximate
mix-point property.

In proving this theorem, the following lemma the key:

Lemma 4.1. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 such that rαb2 < 1 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued
map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy), for each x, y ∈ X, (12)

where α ∈ (0, 1). Then

δ(Cε) ≤
bε(1 + b)

r(1− α2b)
, for any ε > 0.

Similarly, the Theorem 3.2 could be reformulated as follows:

Theorem 4.2. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fx) + d(Jy, Fy)], for each x, y ∈ X, (13)

where α ∈ (0, 1/2). Then there exists a unique x0 ∈ X which is both a startpoint and an
endpoint of J and F if and only if J and F have the approximate mix-point property.

The key lemma in this case is
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Lemma 4.2. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fx) + d(Jy, Fy)], for each x, y ∈ X, (14)

where α ∈ (0, 1/2). Then

δ(Cε) ≤
bε

r
(1 + b+ 2αb), for any ε > 0.

In a similar manner, the Theorem 3.3 could be reformulated as follows:

Theorem 4.3. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fy) + d(Fx, Jy)], for each x, y ∈ X, (15)

where 0 < α < 1/2 with 2b2rα < 1. Then there exists a unique x0 ∈ X which is both
a startpoint and an endpoint of J and F if and only if J and F have the approximate
mix-point property.

The key lemma is therefore:

Lemma 4.3. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ α[d(Jx, Fy) + d(Fx, Jy)], for each x, y ∈ X, (16)

where 0 < α < 1/2 with 2b2rα < 1. Then

δ(Cε) ≤
bε

r(1− 2b2α)
(1 + b+ 2αb), for any ε > 0.

Finally the Theorem 3.4 could be reformulated as follows:

Theorem 4.4. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy) + Ld(Fx, Jy), for each x, y ∈ X, (17)

where α > 0 and L ≥ 0 such that rb2(α + bL) < 1. Then there exists a unique x0 ∈ X
which is both a startpoint and an endpoint of J and F if and only if J and F have the
approximate mix-point property.

The proof will be done with the use of the following lemma:

Lemma 4.4. Let (X, d, b) be a bicomplete quasi-pseudometric type space. Assume J :
X → X is a continuous single-valued map such that rd(x, y) ≤ d(Jx, Jy) for some constant
r > 0 and for each x, y ∈ X. Let F : X → CB(X) be a set-valued map that satisfies

H(Fx, Fy) ≤ αd(Jx, Jy) + Ld(Fx, Jy), for each x, y ∈ X, (18)

where α > 0 and L ≥ 0 such that rb2(α+ bL) < 1. Then
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δ(Cε) ≤
bε(1 + b+ Lb2)

r(1− b2(α+ bL))
, for any ε > 0.
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