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ON GENERALIZED THE CONFORMABLE FRACTIONAL CALCULUS

M. Z. SARIKAYA1, H. BUDAK1, F. USTA1, §

Abstract. In this paper, we generalize the conformable fractional derivative and inte-
gral and obtain several results such as the product rule, quotient rule, chain rule.

Keywords: Confromable fractional derivative, confromable fractional integrals.

AMS Subject Classification: 23A33, 26A42

1. Introduction

An important point is that the fractional derivative at a point x is a local property only
when a is an integer; in non-integer cases we cannot say that the fractional derivative at x
of a function f depends only on values of f very near x, in the way that integer-power deriva-
tives certainly do. Therefore it is expected that the theory involves some sort of boundary
conditions, involving information on the function further out. To use a metaphor, the
fractional derivative requires some peripheral vision. As far as the existence of such a
theory is concerned, the foundations of the subject were laid by Liouville in a paper from
1832. The fractional derivative of a function to order a is often now defined by means
of the Fourier or Mellin integral transforms. Various types of fractional derivatives were
introduced: Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov,
Marchaud and Riesz are just a few to name [7]-[10]. Recently a new local, limit-based
definition of a so-called conformable derivative has been formulated in [1], [6] as follows

Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε

proved the limits exits. Note that if f is fully differentiable at t, then the derivative is
Dα (f) (t) = t1−αf ′(t). The reader interested on the subject of conformable calculus is
referred to the [1]-[7].

In this paper, we introduce a new fractional derivative which is generalized the results
obtained in [1] and [6]. Then, we establish some basic tools for fractional differentiation
and fractional integration. Furthermore, if α = 1, the definition is equivalent to the
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classical definition of the first order derivative of the function f . Furthermore, it is noted
that there are (α, a)-differentiable functions which are not differentiable.

2. Definitions and properties of a-conformable fractional derivative

In this section, we give a new definition and obtain several results such as the product
rule, quotient rule and chain rule. We start with the following definition which is a
generalization of the conformable fractional derivative.

Definition 2.1 (a-Conformable fractional derivative). Given a function f : [a, b] → R
with 0 ≤ a < b. Then the “a−conformable fractional derivative” of f of order α is defined
by

Da
α (f) (t) = lim

ε→0

f (t+ εt−α (t− a))− f (t)

ε (1− at−α)
, (1)

for all t > a, tα 6= a, α ∈ (0, 1) . If f is (α, a)−differentiable in some (a, b) , a >
0, lim

t→a+
Da
α (f) (t) exist, then define

Da
α (f) (a) = lim

t→a+
Da
α (f) (t) . (2)

If the a-conformable fractional derivative of f of order α exists, then we simply say f is
(α, a)−differentiable.

Theorem 2.1. Let 0 ≤ a < b and α ∈ (0, 1]. If a function f : [a, b] → R with is
(α, a)−differentiable at t0 > a, tα0 6= a, then f is continuous at t0.

Proof. Since f
(
t0 + εt−α0 (t0 − a)

)
− f (t0) =

f(t0+εt−α0 (t0−a))−f(t0)
ε(1−at−α0 )

ε
(
1− at−α0

)
, we have

lim
ε→0

f
(
t0 + εt−α0 (t0 − a)

)
− f (t0) = lim

ε→0

f
(
t0 + εt−α0 (t0 − a)

)
− f (t0)

ε
(
1− at−α0

) lim
ε→0

ε
(
1− at−α0

)
.

Let h = εt−α0 (t0 − a) . Then we get

lim
ε→0

f (t0 + h)− f (t0) = Da
α (f) (t0) .0,

which implies that f is continuous at t0. This completes the proof. �

Having these definitions in hand we can present the following properties for (α, a)-
differentiable functions:

Theorem 2.2. Let α ∈ (0, 1] and f, g be (α, a)−differentiable at a point t > a, tα 6= a.
Then

i. Da
α (λ1f + λ2g) = λ1D

a
α (f) + λ2D

a
α (g) , for all λ1, λ2 ∈ R,

ii. Da
α (tn) = ntn−1(t−a)

(tα−a) for all n ∈ R
iii. Da

α (c) = 0, for all constant functions f (t) = c,
iv. Da

α (fg) = gDa
α (f) + fDa

α (g) ,

v. Da
α

(
f
g

)
= fDaα(g)−gDaα(f)

g2
,

vi. Da
α (f ◦ g) = f ′ (g(t))Da

α (g) (t) for f differentiable at g(t),

vii. If, in addition, f is a differentiable, then Da
α (f) (t) = (t−a)

(tα−a)f
′(t).
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Proof. Parts i and iii follow directly from the definition. Now, we will prove ii, iv, vi and
vii. For fixed and t > a, tα 6= a, we have

Da
α (f) (t) = lim

ε→0

(t+ εt−α (t− a))
n − tn

ε (1− at−α)

= lim
ε→0

tn + nεt−α (t− a) tn−1 +O(ε2)− tn

ε (1− at−α)

=
ntn−1 (t− a)

(tα − a)
.

This completes the proof ii. Then, we will prove iv. For this purpose, since f, g are
(α, a)−differentiable at a point t > a, tα 6= a, we obtain

Da
α (fg) (t) = lim

ε→0

f (t+ εt−α (t− a)) g (t+ εt−α (t− a))− f (t) g(t)

ε (1− at−α)

= lim
ε→0

[
f (t+ εt−α (t− a))− f (t)

ε (1− at−α)
g
(
t+ εt−α (t− a)

)]
+f(t) lim

ε→0

g (t+ εt−α (t− a))− g (t)

ε (1− at−α)

= Da
α (f) (t) lim

ε→0
g
(
t+ εt−α (t− a)

)
+ f(t)Da

α (g) (t) .

Since g is continuous at t, the limε→0 g (t+ εt−α (t− a)) = g(t). This completes the proof
of iv. The proof of the v is similar to iv. Now, we prove the result vi. If the function g is
a constant in a neighbourhood t0, then Da

α (f ◦ g) (t0) = 0. On the other hand, we assume
that g is non-constant function in the neighbourhood of t0. In this case, we can find an
ε0 > 0 such that g(t1) 6= g(t2) for any t1, t2 ∈ (t0 − ε0, t0 + ε0) . Thus, since the function
g is continuous at t0, for t0 > a, tα0 6= a we get

Da
α (f ◦ g) (t0) = lim

ε→0

f
(
g
(
t0 + εt−α0 (t0 − a)

))
− f (g(t0))

ε
(
1− at−α0

)
= lim

ε→0

f
(
g
(
t0 + εt−α0 (t0 − a)

))
− f (g(t0))

g
(
t0 + εt−α0 (t0 − a)

)
− g(t0)

.
g
(
t0 + εt−α0 (t0 − a)

)
− g(t0)

ε
(
1− at−α0

)
= lim

ε1→0

f (g (t0) + ε1)− f (g(t0))

ε1
. lim
ε→0

g
(
t0 + εt−α0 (t0 − a)

)
− g(t0)

ε
(
1− at−α0

)
= f ′ (g(t0))D

a
α (g) (t0) .

This shows the Chain rule is proved.
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To prove part vii, let h = εt−α (t− a) in Definition 2.1 and taking ε = htα

(t−a) . Therefore,
we get

Da
α (f) (t) = lim

ε→0

f (t+ εt−α (t− a))− f (t)

ε (1− at−α)

=
(t− a)

(tα − a)
lim
ε→0

f (t+ h)− f (t)

h

=
(t− a)

(tα − a)
f ′(t)

since, by assumptaion f is differentiable at t > 0. This completes the proof of the theorem.
�

The following theorem lists (α, a)-fractional derivative of several familiar functions.

Theorem 2.3. Let α ∈ (0, 1], t > a, tα 6= a and c, n ∈ R. Then we have the following
results
i. Da

α (tn) = ntn−1(t−a)
(tα−a)

ii. Da
α (1) = 0

iii. Da
α

(
ect
)

= c (t−a)
(tα−a)e

ct

iv. Da
α (sin ct) = c (t−a)

(tα−a) cos ct

v. Da
α (cos ct) = −c (t−a)

(tα−a) sin ct

vi. Da
α

(
tα

α

)
= tα−1(t−a)

(tα−a) .

It is easy to see from part vi of Theorem 2.2 that we have rather unusual results given
in the following theorem.

Theorem 2.4. Let α ∈ (0, 1] and t > a, tα 6= a. Then we have the following results

i. Da
α

(
sin tα

α

)
= tα−1(t−a)

(tα−a) cos t
α

α

v. Da
α

(
cos t

α

α

)
= − tα−1(t−a)

(tα−a) sin tα

α

vi. Da
α

(
e
tα

α

)
= tα−1(t−a)

(tα−a) e
tα

α .

The numerical demonstrations of behaviour of a-Conformable derivative and its com-
parison with the Riemann derivatives for f(t) = t2 and f(t) = sin(πt) have been presented
in Figure 1-(A) and Figure 2-(A) respectively. Similarly in Figure 1-(B) and Figure 2-(B)
represent the a-Conformable derivatives for different α values.

We now begin by proving the Rolle’s theorem, the mean value theorem, and the extended
mean value theorem for a-conformable fractional differentiable functions.

Theorem 2.5 (Rolle’s theorem). Let α ∈ (0, 1] and 0 ≤ a < b. If f : [a, b]→ R be a given
function that satisfies
i. f is continuous on [a, b]
ii. f is (α, a)-differentiable for some α ∈ (0, 1)
iii. f(a) = f(b).
Then , there exist c ∈ (a, b) , such that Da

α (f) (c) = 0.

Proof. The proof is done in a similar way in [6]. �

Theorem 2.6 (Mean Value theorem). Let α ∈ (0, 1] and 0 ≤ a < b. If f : [a, b]→ R be a
given function that satisfies
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Figure 1. (A) a-Conformable derivative, Riemann derivative and function
values versus t when a = 1 and α = 0.25 for f(t) = t2: a-Conformable de-
rivative (red), Riemann derivative (blue), f(t) (green). (B) a-Conformable
derivative of f(t) = t2 for different α: α = 0.25 (black), α = 0.50 (blue),
α = 0.75 (red), α = 1.00 (green).
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Figure 2. (A) a-Conformable derivative, Riemann derivative and function
values versus t when a = 1 and α = 0.25 for f(t) = sin(πt): a-Conformable
derivative (red), Riemann derivative (blue), f(t) (green) (B) a-Conformable
derivative of f(t) = sin(πt) for different α: α = 0.25 (black), α = 0.50
(blue), α = 0.75 (red), α = 1.00 (green).

i. f is continuous on [a, b]
ii. f is (α, a)-differentiable for some α ∈ (0, 1).
Then , there exist c ∈ (a, b) , such that

Da
α (f) (c) =

f(b)− f(a)
bα

α −
aα

α

cα−1 (c− a)

(cα − a)
.

Proof. Let’s now define a new function, as follow

g(x) = f(x)− f(a)− f(b)− f(a)
bα

α −
aα

α

(
xα

α
− aα

α

)
.
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Since g is continuous on [a, b], (α, a)-differentiable, and g(a) = 0 = g(b), then by Rolle’s
theorem, there exist a c ∈ (a, b) such that Da

α (g) (c) = 0 for some α ∈ (0, 1). Using the

fact that Da
α

(
tα

α

)
= tα−1(t−a)

(tα−a) , reach to the desired result. �

Theorem 2.7 (Extended Mean Value theorem). Let α ∈ (0, 1] and 0 ≤ a < b. If f :
[a, b]→ R be a given function that satisfies
i. f, g is continuous on [a, b]
ii. f, g is (α, a)-differentiable for some α ∈ (0, 1)
iii. Da

α (g) (t) 6= 0 for all t ∈ (a, b) .
Then , there exist c ∈ (a, b) such that

Da
α (f) (c)

Da
α (g) (c)

=
f(b)− f(a)

g(b)− g(a)
.

Remark 2.1. If g(t) = tα

α , then this is just the statement of the Mean Value Theorem for
a-conformable fractional differentiable functions.

Proof. Let’s now define a new function, as follow

F (x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)) .

Then the function F satisfies the conditions of Rolle’s theorem. Thus, there exist a
c ∈ (a, b) such that Da

α (F ) (c) = 0 for some α ∈ (0, 1). Using the linearity of Da
α, we have

0 = Da
α (F ) (c) = Da

α (f) (c)− f(b)− f(a)

g(b)− g(a)
Da
α (g) (c) .

Therefore, we get desired result. �

3. Definitions and properties of (α, a)-conformable fractional integral

Now we introduce the (α, a)-conformable fractional integral (or (α, a)-fractional inte-
gral) as follows:

Definition 3.1 ((α, a)-Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A
function f : [a, b]→ R is (α, a)-fractional integrable on [a, b] if the integral∫ b

a
f (x) daαx :=

∫ b

a
f (x)

(xα − a)

x− a
dx (3)

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
(α,a) ([a, b]) .

Remark 3.1.

Ia(α,a) (f) (t) =

∫ t

a
f (x)

(xα − a)

x− a
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Theorem 3.1 (Inverse property). Let α ∈ (0, 1] and 0 ≤ a < b. Also, let f : (a, b) → R
be a continuous function such that Ia(α,a) (f) exists. Then, for all t > a, tα 6= a we have

Da
α

(
Ia(α,a) (f)

)
(t) = f (t) .
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Proof. Since f is continuous, then Ia(α,a) (f) is clearly differentiable. Therefore, by using

vii of Theorem 2.2, we get

Da
α

(
Ia(α,a) (f)

)
(t) =

(t− a)

(tα − a)

d

dt
Ia(α,a) (f) (t)

=
(t− a)

(tα − a)

d

dt

(∫ t

a
f (x)

(xα − a)

x− a
dx

)

=
(t− a)

(tα − a)
f (t)

(tα − a)

t− a
= f (t) .

This completes the proof. �

Theorem 3.2. Let α ∈ (0, 1] and 0 ≤ a < b. Also, let f : (a, b) → R be differentiable
function. Then, for all t > a, tα 6= a we have

Ia(α,a) (Da
α (f)) (t) = f (t)− f (a) .

Proof. Since f is differentiable , then, by using vii of Theorem 2.2, we get

Ia(α,a) (Da
α (f)) (t) =

∫ t

a

(xα − a)

x− a
Da
α (f) (x) dx

=

∫ t

a

(xα − a)

x− a
f ′ (x)

(xα − a)

x− a
dx

= f (t)− f (a) .

�

Theorem 3.3. Let α ∈ (0, 1] and 0 ≤ a < b. Also, let f, g : [a, b] → R be continuous
functions. Then

i.
∫ b
a [f (x) + g(x)] daαx =

∫ b
a f (x) daαx+

∫ b
a g (x) daαx

ii.
∫ b
a λf (x) daαx = λ

∫ b
a f (x) daαx, λ ∈ R

iii.
∫ b
a f (x) daαx = −

∫ a
b f (x) daαx

iv.
∫ b
a f (x) daαx =

∫ c
a f (x) daαx+

∫ b
c f (x) daαx

v.
∫ a
a f (x) daαx = 0

vi. if f(x) ≥ 0 for all x ∈ [a, b] , then
∫ b
a f (x) daαx ≥ 0

vii.
∣∣∣∫ ba f (x) daαx

∣∣∣ ≤ ∫ ba |f (x)| daαx for xα > a.

Proof. The relations follow from Definition 3.1 and Theorem 3.2, analogous properties of
(α, a)-fractional integral, and the properties of section 2 for the a-conformable fractional
derivative. �

4. Concluding Remarks

In this paper a new type of fractional derivatives and integrals is proposed and tested.
Relevant results such as Roll’s theorem, Mean Value theorem and Extended Mean Value
theorem useful for further research are also given subsequent sections. In the light of the
findings above the proposed method have a number of significant implications for future
practice. For instance one can present the a-conformable version of partial differential
equations, Laplace transforms or related theorems.
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