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MULTIPLICITY RESULTS TO A FOURTH-ORDER BOUNDARY

VALUE PROBLEM FOR A STURM-LIOUVILLE TYPE EQUATION

AHMAD GHAZVEHI1, GHASEM A. AFROUZI1∗, §

Abstract. We establish the existence of at least three distinct weak solutions for a
fourth-order Sturm-Liouville type problem under appropriate hypotheses. Our main
tools are based on variational methods and some critical points theorems. Moreover,
when the energy functional is not coercive, an existence result of two distinct solutions
is given. We give some examples to illustrate the obtained results.
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1. Introduction

In this paper, we study the following two-point boundary-value problem of fourth-order
Sturm-Liouville type (p(t)u

′′
(t))′′ − (q(t)u′(t))′ + r(t)u(t) = λf(t, u) + µg(t, u) + h(u) in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(1)

where p, q, r ∈ L∞([0, 1]), with p− := ess inft∈[0,1] p(t) > 0, λ ∈]0,+∞[ and f, g : [0, 1] ×
R→ R are two L2-Carathéodory function and h : R→ R is a Lipschitz continuous function
with the Lipschitz constant L > 0, i.e,

|h(t1)− h(t2)| ≤ L|t1 − t2|,
for every t1, t2 ∈ R, and h(0) = 0.

Boundary value problems arise in several branches of physics as any physical differential
equation will have them. Problems involving the wave equation, such as the determination
of normal modes, are often stated as boundary value problems. A large class of important
boundary value problems is the Sturm-Liouville problem. To establish the existence and
multiplicity of solutions to nonlinear differential problems is very important as well as
the application of such results in the physical reality. For example, the deformations of
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an elastic beam in an equilibrium state, whose two ends are simply supported, can be
described by fourth-order boundary value problems. Due to this, many researchers have
discussed the existence of at least one solution, or multiple solutions, or even infinitely
many solutions for this kind of problems (see, for instance, [1, 2, 4, 6, 10, 15, 16, 17, 18]
and references therein). In [7], the authors, employing a three critical point theorem due
Bonanno and Marano [9, Theorem 2.6], established the existence of at least three distinct
weak solutions to problem, (p(t)u

′′
(t))′′ − (q(t)u′(t))′ + r(t)u(t) = λf(t, u) in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(2)

Later Heidarkhani in [13], using critical point theory due Bonanno, proved the existence
of at least one non-trivial solution for a class of two-point boundary-value problems for
fourth-order Sturm-Liouville type equations.

The aim of this article is to prove the existence of at least three distinct weak solutions
for (1). Moreover, when the energy functional is not coercive, an existence result of two
distinct solutions is given. Our motivation comes from the papers [7, 8]. For basic notation
and definitions, we refer the reader to [7, 11, 12, 14].

The rest of this paper is organized as follows. Section 2 contains some preliminary
notations and our main tools. Section 3 contains our main results and their proofs.

2. Preliminaries and basic notations

Our main tools are the following critical point theorems. The first one due Averna and
Bonanno [3, Theorem B], and the second one due Bonanno [5, Theorem1.1]. In the first
one the coercivity of the functional Φ + λΨ is required.

Theorem 2.1 ([3, Theorem B]). Let X be a reflexive Banach space, Φ : X → R a
continuously Gâteaux differentiable, coercive and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗,Ψ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Put,
for each r > infX Φ,

ϕ1(r) := inf
x∈Φ−1(]−∞,r[)

Ψ(x)− inf
Φ−1(]−∞,r[)

ω Ψ

r − Φ(x)
,

ϕ2(r) := inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1(]r,+∞[)

Ψ(x)−Ψ(y)

Φ(y)− Φ(x)
,

where Φ−1(]−∞, r[)ω is the closure of Φ−1(] −∞, r[) in the weak topology, and assume
that

(i) There is r ∈ R such that infX Φ < r and ϕ1(r) < ϕ2(r).
Further, assume that:

(ii) lim‖x‖→+∞(Φ(x) + λΨ(x)) = +∞ for all λ ∈] 1
ϕ2(r) ,

1
ϕ1(r) [.

Then, for each λ ∈] 1
ϕ2(r) ,

1
ϕ1(r) [ the equation Φ

′
(u)(v) + λΨ

′
(u)(v) = 0, has at least three

solution in X.

Theorem 2.2 ([5, Theorem 1.1]). Let X be a reflexive real Banach space, and let Φ,Ψ :
X −→ R be two sequentially weakly lower semicontinuous and Gâteaux differentiable func-
tional. Assume that Φ is (strongly) continuous and satisfies lim‖x‖→+∞Φ(x) = +∞.
Assume also that there exist two constants r1 and r2 such that
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(j) infX Φ < r1 < r2;
(jj) ϕ1(r1) < ϕ∗2(r1, r2);

(jjj) ϕ1(r2) < ϕ∗2(r1, r2),

where ϕ1 is defined as in Theorem 2.1 and

ϕ∗2(r1, r2) := inf
x∈Φ−1(]−∞,r1[)

sup
y∈Φ−1(]r1,r2[)

Ψ(x)−Ψ(y)

Φ(y)− Φ(x)
.

Then, for each λ ∈] 1
ϕ∗2(r1,r2) ,min{ 1

ϕ1(r1) ,
1

ϕ1(r2
}[, the functional Φ +λΨ admits at least two

critical points which lie in Φ−1(]−∞, r1[) and Φ−1(]r1, r2[) respectively.

Suppose that

min{q
−

π2
,
r−

π4
,
q−

π2
+
r−

π4
} > −p−, (3)

where p− := ess inft∈[0,1] p(t) > 0, q− := ess inft∈[0,1] q(t), r− := ess inft∈[0,1] r(t). More-

over, set σ := min{ q
−

π2 ,
r−

π4 ,
q−

π2 + r−

π4 , 0}, δ :=
√
p− + σ, γ :=

(
‖p‖∞+ 1

π2 ‖q‖∞+ 1
π4 ‖r‖∞

) 1
2

and k := 2π2δ2(2048
27 γ2)−1. A simple computation shows that δ < γ.

Let X := H2([0, 1])∩H1
0 ([0, 1]) be the Sobolev space endowed with the usual norm. We

recall the following Poincaré type inequalities (see, for instance, [16, Lemma 2.3]):

‖u′‖2L2([0,1]) ≤
1

π2
‖u′′‖2L2([0,1]), (4)

‖u‖2L2([0,1]) ≤
1

π4
‖u′′‖2L2([0,1]), (5)

for all u ∈ X. Therefore, taking into account (3)-(5), the norm

‖u‖X =
(∫ 1

0

(
p(x)|u′′(x)|2 + q(x)|u′(t)|2 + r(x)|u(x)|2

)
dx
) 1

2
,

is equivalent to the usual norm and, in particular, one has

‖u′′‖L2([0,1]) ≤
1

δ
‖u‖X . (6)

We needs the following proposition in the proof of Theorems.

Proposition 2.1 ([7, proposition 2.1]). Let u ∈ X. Then

‖u‖∞ ≤
1

2πδ
‖u‖X . (7)

We suppose that the Lipschitz constant L of function h satisfies L < 4π2δ2. For each
(t, ξ) ∈ [0, 1]× R, put

F (t, ξ) =

∫ ξ

0
f(t, x)dx, G(t, ξ) =

∫ ξ

0
g(t, x)dx,

and H(ξ) =
∫ ξ

0 h(x)dx, for each ξ ∈ R. Moreover, set

Gc :=

∫ 1

0
sup
|ξ|<c

G(t, ξ)dt,

for every c > 0, and

Gd := inf
[0,1]×[0,d]

G(t, ξ),

for every d > 0. If g is sign-changing, then Gc ≥ 0 and Gd ≤ 0.



72 TWMS J. APP. ENG. MATH. V.10, N.1, 2020

We say that u ∈ X is a weak solution of problem (1) if for every v ∈ X∫ 1

0

(
p(t)u

′′
(t)v

′′
(t) + q(t)u

′
(t)v

′
(t) + r(t)u(t)v(t)

)
dt

− λ
∫ 1

0
f(t, u(t))v(t)dt− µ

∫ 1

0
g(t, u(t))v(t)dt−

∫ 1

0
h(u(t))v(t)dt = 0.

3. Main results

In order to introduce our first result, fixing two positive constants c, d such that

(1 + L
4π2δ2

)d2

k(
∫ 5

8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c F (t, ξ)dt)
<

(1− L
4π2δ2

)c2∫ 1
0 max|ξ|<c F (t, ξ)dt

,

taking

λ ∈ Λ :=
] 2π2δ2(1 + L

4π2δ2
)d2

k(
∫ 5

8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c F (t, ξ)dt)
,

2π2δ2(1− L
4π2δ2

)c2∫ 1
0 max|ξ|<c F (t, ξ)dt

[
,

and set δλ,g given by

min
{2π2δ2(1− L

4π2δ2
)c2 − λ

∫ 1
0 max|ξ|<c F (t, ξ)dt

Gc
,

2π2δ2

k (1 + L
4π2δ2

)d2 − λ
( ∫ 5

8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c F (t, ξ)dt
)

Gd −Gc

}
, (8)

and

δ̄λ,g := min
{
δλ,g,

1

max
{

0, 1
2π2δ2(1− L

4π2δ2
)c2

lim sup|x|→+∞
supt∈[0,1]G(t,x)

x2

}} (9)

where we read r/0 = +∞, so that, for instance, δ̄λ,g = +∞, when

lim sup
|x|→+∞

supt∈[0,1]G(t, x)

x2
≤ 0,

and Gd = Gc = 0.

Theorem 3.1. Assume that there exist two positive constants c, d, with c < 32
3
√

3π
d, such

that

(A1) F (t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, 3
8 ] ∪ [5

8 , 1])× [0, d],

(A2)
∫ 1
0 max|ξ|≤c F (t,ξ)dt

c2
< k

(1− L
4π2δ2

)

(1+ L
4π2δ2

)

( ∫ 5
8
3
8

F (t,d)dt−
∫ 1
0 max|ξ|≤c F (t,ξ)dt

)
d2

,

(A3) lim sup|ξ|→+∞
supt∈[0,1] F (t,ξ)

ξ2
< 0.

Then, for each λ ∈ Λ, and for every L2-Carathéodory function g : [0, 1]×R→ R satisfying
the condition

lim sup
|x|→+∞

supt∈[0,1]G(t, x)

x2
< +∞,

there exists δ̄λ,g > 0 given by (9) such that, for each µ ∈ [0, δ̄λ,g[, the problem (1) admits
at least three distinct weak solution in X.
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Proof. Our aim is to apply Theorem 2.1 to our problem. To this end, we introduce the
functionals Φ,Ψ : X → R, for each u ∈ X, as follows

Φ(u) =
1

2
‖u‖2 −

∫ 1

0
H(u(x))dx, Ψ(u) = −

( ∫ 1

0
F (t, u(t))dt+

µ

λ

∫ 1

0
G(t, u(t))dt

)
.

It is well known that these functionals are well-defined and satisfy the regularity assump-
tions required in Theorem 2.1. In particular, one has

Φ
′
(u)(v) =

∫ 1

0

(
p(t)u

′′
(t)v

′′
(t) + q(t)u

′
(t)v

′
(t) + r(t)u(t)v(t)

)
dt−

∫ 1

0
h(u(t))v(t)dt,

and

Ψ
′
(u)(v) = −

∫ 1

0
f(t, u(t))v(t)dt− µ

λ

∫ 1

0
g(t, u(t))v(t)dt,

for each u, v ∈ X. Then each critical point for the functional Φ+λΨ is a weak solution for
problem (1). Let us consider ϕ1 and ϕ2 given in Theorem 2.1. We can observe infX Φ =

Φ(0) = 0 and that, for each r > 0, 0 ∈ Φ−1(]−∞, r[) and Φ−1(]−∞, r[)ω = Φ−1(]−∞, r[).
Put r := 2π2δ2(1− L

4π2δ2
)c2. The inequality

1

2
(1− L

4π2δ2
)‖u‖2 ≤ Φ(u), (10)

for each u ∈ X in conjunction with (3) yields

Φ−1(]−∞, r[) ⊆
{
u ∈ X;

1

2
(1− L

4π2δ2
)‖u‖2 ≤ r

}
⊆ {u ∈ X; |u(t)| ≤ c, for each t ∈ [0, 1]} ,

which follows

ϕ1(r) ≤
Ψ(0)− infΦ−1(]−∞,r[) Ψ

r − Φ(0)
,

≤ sup
Φ(u)≤r

∫ 1
0 F (t, u(t))dt+ µ

λ

∫ 1
0 G(t, u(t))dt

r
,

≤
∫ 1

0 max|ξ|<c F (t, ξ)dt+ µ
λG

c

r
. (11)

Since µ < δλ,g one has, µ <
2π2δ2(1− L

4π2δ2
)c2−λ

∫ 1
0 max|ξ|<c F (t,ξ)dt

Gc , this means

ϕ1(r) <
1

λ
. (12)

Now, let ȳ ∈ X be defined by

ȳ(t) =


−64d

9 (t2 − 3
4 t) t ∈ [0, 3

8 ],
d t ∈]3

8 ,
5
8 ],

−64d
9 (t2 − 5

4 t+ 1
4) t ∈]5

8 , 1].

It is easy to verify that

2048

27
δ2(1− L

4π2δ2
)d2 ≤ Φ(ȳ) ≤ 2048

27
γ2(1 +

L

4π2δ2
)d2. (13)
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Taking into account c < 32
3
√

3π
d, we observe that r < Φ(ȳ). On the other hand, in view of

(A1), since 0 ≤ ȳ(t) ≤ d for each t ∈ [0, 1] we have

−Ψ(ȳ) ≥
∫ 5

8

3
8

F (t, ȳ(t))dt+
µ

λ
inf

[0,1]×[0,d]
G(x, t) ≥

∫ 5
8

3
8

F (t, d)dt+
µ

λ
Gd,

so, thanks to (13) we get

ϕ2(r) ≥ inf
x∈Φ−1(]−∞,r[)

Ψ(x)−Ψ(ȳ)

Φ(ȳ)
,

≥

∫ 5
8
3
8

F (t, d)dt+ µ
λGd −

∫ 1
0 max|ξ|<c F (t, ξ)dt− µ

λG
c

2π2δ2

k (1 + L
4π2δ2

)d2
.

Furthermore, µ <

2π2δ2

k
(1+ L

4π2δ2
)d2−λ

( ∫ 5
8
3
8

F (t,d)dt−
∫ 1
0 max|ξ|<c F (t,ξ)dt

)
Gd−Gc , this means

ϕ2(r) >
1

λ
. (14)

Hence from (12) and (14), hypothesis (i) of Theorem 2.1 is fulfilled. Finally, since µ < δ̄λ,g,
we can fix l > 0 such that

lim sup
|x|→+∞

supt∈[0,1]G(t, x)

x2
< l,

and

µl <
4π2δ2 − L

2
.

Therefore, there exists a function hµ ∈ L1([0, 1]) such that

G(t, ξ) < |ξ|2 + hµ(t), (15)

for every t ∈ [0, 1] and every ξ ∈ R. Now, fix

0 < ε <
4π2δ2 − L

2λ
− µl

λ
.

due to A3, there exists a function hε ∈ L1([0, 1]) such that

F (t, ξ) < ε|ξ|2 + hε(t), (16)

for every t ∈ [0, 1] and every ξ ∈ R. Fixed u ∈ X, from (15) and (16), one has

Φ(u) + λΨ(u) =
1

2
‖u‖2 −

∫ 1

0
H(u(x))dx− λ

∫ 1

0
F (t, u(t))dt− µ

∫ 1

0
G(t, u(t))dt,

≥ 1

2
‖u‖2 − L

8π2δ2
‖u‖2 − λε

∫ 1

0
u2(x)dx− λ‖hε‖L1([0,1])

− µl
∫ 1

0
u2(x)dx− µ‖hµ‖L1([0,1]),

≥ 1

2

(
1− L

4π2δ2
− λε

2π2δ2
− µl

2π2δ2

)
‖u‖2 − λ‖hε‖L1([0,1]) − µ‖hµ‖L1([0,1]).

So, the functional Φ + λΨ is coercive, and the condition (ii) of Theorem 2.1 is verified.
This completes the proof. �

Now we point out the following consequence of Theorem 3.1:
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Theorem 3.2. Let α : [0, 1] → R be a nonnegative, non-zero and essentially bounded

function, and f : R→ R be a continuous function. Put F (ξ) =
∫ ξ

0 f(t)dt for every ξ ∈ R.

Assume that there exist two positive constants c, d, with c < 32
3
√

3π
d, such that

(A4) F (ξ) ≥ 0 for all ξ ∈ [0, d],

(A5)
‖α‖1 max|ξ|≤c F (ξ)

c2
< k

(1− L
4π2δ2

)

(1+ L
4π2δ2

)

(
F (d)

∫ 5
8
3
8

α(t)dt−‖α‖1 max|ξ|≤c F (ξ)
)

d2
,

(A6) lim sup|ξ|→+∞
F (ξ)
ξ2

< 0.

Then, for each λ, in] 2π2δ2(1 + L
4π2δ2

)d2

k
(
F (d)

∫ 5
8
3
8

α(t)dt− ‖α‖1 max|ξ|≤c F (ξ)
) , 2π2δ2(1− L

4π2δ2
)c2

‖α‖1 max|ξ|≤c F (ξ)

[
,

and for every L2-Carathéodory function g : [0, 1]× R→ R satisfying the condition

lim sup
|x|→+∞

supt∈[0,1]G(t, x)

x2
< +∞,

there exists δλ,g > 0 given by

min

{
2π2δ2(1− L

4π2δ2
)c2 − λ‖α‖1 max|ξ|≤c F (ξ)

Gc
,

2π2δ2

k (1 + L
4π2δ2

)d2 − λ
(
F (d)

∫ 5
8
3
8

α(t)dt− ‖α‖1 max|ξ|≤c F (ξ)
)

Gd −Gc

}
,

such that, for each µ in[
0,min

{
δλ,g,

1

max
{

0, 1
2π2δ2(1− L

4π2δ2
)c2

lim sup|x|→+∞
supt∈[0,1]G(t,x)

x2

}}[,
the problem (p(t)u

′′
(t))′′ − (q(t)u

′
(t))

′
+ r(t)u(t) = λα(t)f(u) + µg(x, u) + h(u) in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(17)

admits at least three distinct weak solution in X.

Proof. It is enough to apply Theorem 3.1, to the function α(t)f(u) instead of f(t, u). �

Example 3.1. Consider the problem (3u
′′
(t))

′′ − ((t2 − π2)u
′
(t))

′
+ (t2 − π4)u(t) = λf(u) + 2µu+ sinu in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(18)

where

f(x) =

 10 x ≤ 1,
10(800x− 799), 1 < x ≤ 2,
8010 x > 2.
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Note that p− = 3, q− = −π2, and r− = −π4, we have σ = −2, and so δ = 1. Also we
have γ =

√
5. Our aim is to apply Theorem 3.2. Let c = 1, and d = 2. (A4) is clearly

true. One has,
max|ξ|≤c F (ξ)

c2
= 10, and

k
(1− L

4π2δ2
)

(1 + L
4π2δ2

)

(
F (d)

∫ 5
8
3
8

dt−max|ξ|≤c F (ξ)
)

d2
=

27π2

5120

(1− 1
4π2 )

(1 + 1
4π2 )

(
4020

4 − 10
)

4
> 12,

then, (A5) is verified. And since, lim|ξ|→+∞
F (ξ)
ξ2

= 0, (A6) is satisfied too. Finally, G1 =

1, G2 = 0, lim sup|x|→+∞
supt∈[0,1]G(t,x)

x2
= 1, and

2π2(1 + 1
4π2 )4

27π2

5120 (4020
4 − 10)

< 1.57,

2π2(1− 1
4π2 )

10
> 1.92,

so for every λ ∈
]
1.57, 1.92

[
, and for every µ ∈

[
0, 19.2[ the problem (18) admits at least

three distinct weak solution in X.

Here is another multiplicity result in which assumption (A3) is not required.

Theorem 3.3. Let f : [0, 1] × R → R be a L2- Carathéodory function and assume that
there exist three positive constants c1, c2, and d, with c1 <

32
3
√

3π
d < δ

γ c2, such that

(B1) F (t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, 3
8 ] ∪ [5

8 , 1])× [0, d],

(B2)
∫ 1
0 max|ξ|≤c1 F (t,ξ)dt

c21
< k

∫ 5
8
3
8

F (t,d)dt−
∫ 1
0 max|ξ|≤c1 F (t,ξ)dt

d2
,

(B3)
∫ 1
0 max|ξ|≤c2 F (t,ξ)dt

c22
< k

∫ 5
8
3
8

F (t,d)dt−
∫ 1
0 max|ξ|≤c1 F (t,ξ)dt

d2
.

Then, for every

λ ∈
]2π2δ2

k

d2∫ 5
8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c1 F (t, ξ)dt
,

2π2δ2 min{ c2
1∫ 1

0 max|ξ|<c1 F (t, ξ)dt
,

c2
2∫ 1

0 max|ξ|<c2 F (t, ξ)dt
}
[

the problem  (p(t)u
′′
(t))′′ − (q(t)u′(t))′ + r(t)u(t) = λf(x, u) in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(19)

has admits at least two solution u1,λ and u2,λ such that ‖u1,λ‖∞ < c1 and ‖u2,λ‖∞ < c2.

Proof. Our aim is to apply Theorem 2.2 to our problem. Let us introduce two functionals
Φ,Ψ : X → R, for each u ∈ X, as follows

Φ(u) =
1

2
‖u‖2, Ψ(u) = −

∫ 1

0
F (t, u(t))dt.

It is known that these functionals are well-defined and satisfy the regularity assumptions
required in Theorem 2.2, and each critical point for the functional Φ+λΨ is a weak solution
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for problem (19). Put r1 = 2π2δ2c2
1, and r2 = 2π2δ2c2

2. Obviously infX Φ = Φ(0) = 0, and
infX Φ < r1 < r2. Let v ∈ X be defined by

v(t) =


−64d

9 (t2 − 3
4 t) t ∈ [0, 3

8 ],
d t ∈]3

8 ,
5
8 ],

−64d
9 (t2 − 5

4 t+ 1
4) t ∈]5

8 , 1].

We know that
2048

27
δ2d2 ≤ Φ(v) ≤ 2048

27
γ2d2, (20)

then from c1 < 32
3
√

3π
d < δ

γ c2, we have r1 < Φ(v) < r2. Similar to the proof of the

Theorem 3.1, we have Φ−1(]−∞, ri[) ⊆ {u ∈ X; |u(t)| ≤ ci, for each t ∈ [0, 1]} , i = 1, 2.
Consequently

sup
Φ(u)≤ri

∫ 1

0
F (t, u(t))dt ≤

∫ 1

0
max
|ξ|≤ci

F (t, ξ)dt, i = 1, 2. (21)

Due to (B1), one has that

−Ψ(v) =

∫ 1

0
F (t, v(t))dt ≥

∫ 5
8

3
8

F (t, v(t))dt =

∫ 5
8

3
8

F (t, d)dt,

so, thanks to (20) we get

ϕ∗2(r1, r2) ≥ inf
x∈Φ−1(]−∞,r1[)

Ψ(x)−Ψ(v)

Φ(v)

≥

∫ 5
8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c1 F (t, ξ)dt

2π2δ2

k d2
. (22)

Moreover, as we saw in Theorem 3.1,

ϕ1(r1) ≤
∫ 1

0 max|ξ|<c1 F (t, ξ)dt

2π2δ2c2
1

, (23)

ϕ1(r2) ≤
∫ 1

0 max|ξ|<c2 F (t, ξ)dt

2π2δ2c2
2

. (24)

At this point, combining (22)-(24), assumption (B2) and (B3) we obtain

ϕ1(r1) ≤ ϕ∗2(r1, r2), (25)

ϕ1(r2) ≤ ϕ∗2(r1, r2). (26)

Therefore all assumption of Theorem 2.2 are satisfied. Hence, since one has

1

ϕ∗2(r1, r2)
≤

2π2δ2

k d2∫ 5
8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|<c1 F (t, ξ)dt

≤ 2π2δ2 min{ c2
1∫ 1

0 max|ξ|<c1 F (t, ξ)dt
,

c2
2∫ 1

0 max|ξ|<c2 F (t, ξ)dt
}

≤ min{ 1

ϕ1(r1)
,

1

ϕ2(r2)
},
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for each λ ∈
]

2π2δ2

k
d2∫ 5

8
3
8

F (t,d)dt−
∫ 1
0 max|ξ|<c1 F (t,ξ)dt

,

2π2δ2min{ c21∫ 1
0 max|ξ|<c1 F (t,ξ)dt

,
c22∫ 1

0 max|ξ|<c2 F (t,ξ)dt
}
[

problem (19) admits at least two solu-

tion u1,λ and u2,λ such that ‖u1,λ‖2 < 4π2δ2c2
1 < ‖u2,λ‖2 < 4π2δ2c2

2, and we can complete
the proof. �

Now, we deduce the following straightforward consequence of Theorem 3.3.

Theorem 3.4. Let f : [0, 1] × R → R be a L2- Carathéodory function and assume that
there exist three positive constants e1, e2, and d, with e1 <

32
3
√

3π
d < δ

γ e2, such that

(B4) F (t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, 3
8 ] ∪ [5

8 , 1])× [0, d],

(B5)
∫ 1
0 max|ξ|≤e1 F (t,ξ)dt

e21
< k

k+1

∫ 5
8
3
8

F (t,d)dt

d2
,

(B6)
∫ 1
0 max|ξ|≤e2 F (t,ξ)dt

e22
< k

k+1

∫ 5
8
3
8

F (t,d)dt

d2
.

Then, for every

λ ∈
]2π2(k + 1)δ2

k

d2∫ 5
8
3
8

F (t, d)dt
, 2π2δ2 min{ e2

1∫ 1
0 max|ξ|<e1 F (t, ξ)dt

,
e2

2∫ 1
0 max|ξ|<e2 F (t, ξ)dt

}
[

the problem  (p(t)u
′′
(t))′′ − (q(t)u′(t))′ + r(t)u(t) = λf(x, u), in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(27)

has admits at least two solution u1,λ and u2,λ such that ‖u1,λ‖∞ < e1 and ‖u2,λ‖∞ < e2.

Proof. Put c1 = e1 and c2 = e2. Taking into account that c1 = e1 < d, from (B5) we get

k

( ∫ 5
8
3
8

F (t, d)dt−
∫ 1

0 max|ξ|≤c1 F (t, ξ)dt
)

d2
> k

∫ 5
8
3
8

F (t, d)dt

d2
−
∫ 1

0 max|ξ|≤c1 F (t, ξ)dt

c2
1

> k

∫ 5
8
3
8

F (t, d)dt

d2
− k k

k + 1

∫ 5
8
3
8

F (t, d)dt

d2

=
k

k + 1

∫ 5
8
3
8

F (t, d)dt

d2
.

Hence, using (B5), (B6) hypotheses (B2), (B3) of Theorem 3.3 are fulfilled. �

Now, we present a consequence of Theorem 3.4.

Theorem 3.5. Let α : [0, 1] → R be a nonnegative, non-zero and essentially bounded

function, and f : R→ R be a continuous function. Put F (ξ) =
∫ ξ

0 f(t)dt for every ξ ∈ R.

Assume that there exist three positive constants e1, e2, and d, with e1 <
32

3
√

3π
d < δ

γ e2,

such that

(B7) F (ξ) ≥ 0 for all ξ ∈ [0, d],

(B8)
‖α‖1 max|ξ|≤e1 F (ξ)

e21
< k

k+1

F (d)
∫ 5

8
3
8

α(t)dt

d2
,
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(B9)
‖α‖1 max|ξ|≤e2 F (ξ)

e22
< k

k+1

F (d)
∫ 5

8
3
8

α(t)dt

d2
.

Then, for every

λ ∈
]2π2(k + 1)δ2

k

d2

F (d)
∫ 5

8
3
8

α(t)dt
,
2π2δ2

‖α‖1
min{ e2

1

max|ξ|≤e1 F (ξ)
,

e2
2

max|ξ|≤e2 F (ξ)
}
[

the problem  (p(t)u
′′
(t))′′ − (q(t)u′(t))′ + r(t)u(t) = λα(t)f(u), in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(28)

has admits at least two solutions u1,λ and u2,λ such that ‖u1,λ‖∞ < e1, and ‖u2,λ‖∞ < e2.

Example 3.2. Consider the problem uiν − π2u
′
+ (t− π)u = λtf(u) in [0, 1],

u(0) = u(1) = 0,

u
′′
(0) = u

′′
(1) = 0,

(29)

where

f(x) =


1 x ≤ 1,
800x− 799 1 < x ≤ 2,
−800x+ 2401 2 < x ≤ 3,
1 3 < x ≤ 20,
f∗(x) x > 20,

and f∗ : (20,+∞)→ R is an arbitrary function such that f be a continuous function. By
choosing, for instance, e1 = 1, d = 2, and e2 = 20, all assumptions of Theorem 3.5 are

satisfied. In fact, Note that min{1,− 1
π2 , 1 − 1

π3 } > −1, and one has, δ = (1 − 1
π3 )

1
2 , γ =

(2 + 1
π3 )

1
2 . Moreover, F (2)

∫ 5
8
3
8

α(t)dt = 402
8 ,

k

k + 1
=

27π2(1− 1
π3 )

1024(2 + 1
π3 ) + 27π2(1− 1

π3 )
>

1

10
,

‖α‖1 max|ξ|≤e1 F (ξ)

e2
1

=
1

2
, and

‖α‖1 max|ξ|≤e2 F (ξ)

e2
2

=
820

800
,

so, our claim is proved. Since 2π2(k+1)δ2

k
d2

F (d)
∫ 5

8
3
8

α(t)dt
= 2(k+1)(π3−1)

kπ
32
402 ≤ 15,

2π2δ2

‖α‖1
e2

1

max|ξ|≤e1 F (ξ)
= 4(π2 − 1

π
) > 38, and

2π2δ2

‖α‖1
e2

2

max|ξ|≤e2 F (ξ)
=

1600

820
(π2 − 1

π
) > 18,

owing to Theorem 3.5 for each λ ∈]15, 18[ the problem (29) admits at least two distinct
weak solutions u1,λ and u2,λ such that ‖u1,λ‖∞ < 1, and ‖u2,λ‖∞ < 20.
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