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INEQUALITIES VIA STRONGLY (p, h)-HARMONIC CONVEX

FUNCTIONS

M. A. NOOR1, K. I. NOOR2, S. IFTIKHAR3, §

Abstract. The main aim of this paper is to consider a new class of harmonic convex
functions with respect to an arbitrary non-negative function, which is called strongly
(p, h)-harmonic convex function. We establish Hermite-Hadamard like integral inequal-
ities via these new classes of convex functions. Some special cases are discussed, which
can be obtained from our main results. The ideas and techniques of this paper may
stimulate further research.
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1. Introduction

The theory of convexity has been subject to extensive research during the past few
years due to its utility in various branches of pure and applied mathematics. It is known
that the function is a convex function, if and only if, it satisfies the integral inequality,
which is known as the Hermite-Hadamard inequality. The Hermite-Hadamard type inte-
gral inequalities are useful in physics, where upper and lower bounds for natural phe-
nomena are described by integrals. For recent developments and generalizations, see
[6, 9, 10, 11, 12, 13, 18]. Varosanec [20] introduced the notion of h-convexity, which
unifies various classes of convex functions. With appropriate and suitable choice of the
arbitrary function, one can obtain a wide class of convex functions, which are being in-
vestigated. Polyak [19] considered strongly convex functions which include the convex
functions as special cases. In recent years, strongly convex are being used to discuss the
convergence analysis of the iterative methods for solving variational inequalities and re-
lated optimization problems. The harmonic convex functions were introduced and studied
by Anderson et al. [1] and Iscan [6]. Noor et al[11] introduced the concept of p-harmonic
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means, which includes the harmonic means and arithmetic means as special cases. Us-
ing this concept, they introduced and investigated the properties of p-harmonic convex
sets and the p- harmonic convex functions. It have been proved that the p-hramonic con-
vex functions include the harmonic convex functions and convex functions as special cases.

The concepts of strongly convex functions have been generalized in various directions
using novel and innovative ideas. Noor et. al [14] have introduced a class of strongly har-
monic convex functions and established some Hermite-Hadamard type integral inequali-
ties. For recent developments, see [14, 15, 16]. Inspired and motivated by the ongoing re-
search, we introduce the concept of strongly (p, h)-harmonic convex functions with respect
to an arbitrary non-negative function h. This class is more general and contains several
known and new classes of convex functions as special cases. We discuss some properties of
strongly (p, h)-harmonic convex functions. We also derive several new Hermite-Hadamard
inequalities. Ideas and techniques of this paper may motivate further research in this field.

2. Preliminaries

In this section, we introduce some new classes of harmonic convex functions.

Definition 2.1. [11]. A set I = [a, b] ⊆ R \ {0} is said to be a p-harmonic convex set, if[
xpyp

txp + (1− t)yp

] 1
p

∈ I, ∀x, y ∈ I, t ∈ [0, 1], p 6= 0.

We would like to point out that if p = 1, then p-harmonic convex set becomes harmonic
convex set and if If p = −1, then p-harmonic convex set becomes convex set. This shows
that the concept of p-harmonic convex set is quite general and unifying one.

Definition 2.2. [11]. A function f : I = [a, b] ⊆ R \ {0} → R is said to p-harmonic
convex, where p 6= 0, if

f

([
xpyp

txp + (1− t)yp

] 1
p
)
≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

Noor et. al [11] have obtained the Hermite-Hadamard inequality for p-harmonic convex
functions, which may be regarded as a refinement of the concept of convexity, see [16, 12].

We now consider a new class of harmonic convex functions, which was introduced in
[16].

Definition 2.3. [16]. Let h : J = [0, 1] → R be an arbitrary nonnegative function. A
function f : I = [a, b] ⊆ R\{0} → R is said to be strongly (p, h)-harmonic convex function
with respect to an arbitrary non-negative function h with modulus c > 0, if

f

([
xpyp

txp + (1− t)yp

] 1
p
)
≤ h(1− t)f(x) + h(t)f(y)− ct(1− t)

(
xp − yp

xpyp

)2

. (1)

The function f is said to be strongly (p, h)-harmonic concave function, if and only if, -f
is strongly (p, h)-harmonic convex function.

For t = 1
2 in (1), we have

f

(
2xpyp

xp + yp

) 1
p

≤ h
(

1

2

)
[f(x) + f(y)]− c

4

(
xp − yp

xpyp

)2

, x, y ∈ I. (2)
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The function f is called strongly Jensen (p, h)-harmonic convex function.

Remark 2.1. (i). If p = 1 in Definition 2.3, then it reduces to strongly harmonic h-
convex functions introduced by Noor et. al [17].
(ii). If p = −1 in Definition 2.3, then it reduces to strongly h-convex functions [2].

For different and appropriate choice of non-negative function h, one can obtain several
new classes of harmonic convex functions and their variant forms.

The Euler Beta function is a special function defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, ∀x, y > 0,

where Γ(·) is a Gamma function.

3. Main Results

In this section, we obtain Hermite-Hadamard inequalities for strongly (p, h)-harmonic
convex functions.

Theorem 3.1. Let f : I = [a, b] ⊆ R \ {0} −→ R be a strongly (p, h)-harmonic convex
function with modulus c > 0. If f ∈ L[a, b], then

1

2h
(
1
2

)[f([ 2apbp

ap + bp

] 1
p
)

+
c

12

(
ap − bp

apbp

)2]
≤ papbp

bp − ap

∫ b

a

f(x)

x1+p
dx

≤ [f(a) + f(b)]

∫ 1

0

h(t)dt− c

6

(
ap − bp

apbp

)2

. (3)

Proof. Let f be strongly (p, h)-harmonic convex function with modulus c > 0. Let x =[
apbp

tap+(1−t)bp
] 1
p and y =

[
apbp

(1−t)ap+tbp

] 1
p in (2). Then

f

([
2apbp

ap + bp

] 1
p
)
≤ h

(
1

2

)[
f

([
apbp

tap + (1− t)bp

] 1
p
)

+ f

([
apbp

(1− t)ap + tbp

] 1
p
)]

− c
4

(1− 2t)2
(
ap − bp

apbp

)2

= h

(
1

2

)[∫ 1

0
f

([
apbp

tap + (1− t)bp

] 1
p
)

dt+

∫ 1

0
f

([
apbp

(1− t)ap + tbp

] 1
p
)

dt

]
− c

4

(
ap − bp

apbp

)2 ∫ 1

0
(1− 2t)2dt

= 2h

(
1

2

)
papbp

bp − ap

∫ b

a

f(x)

x1+p
dx− c

12

(
ap − bp

apbp

)2

,
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from which, we have

1

2h
(
1
2

)[f([ 2apbp

ap + bp

] 1
p
)

+
c

12

(
ap − bp

apbp

)2]
≤ papbp

bp − ap

∫ b

a

f(x)

x1+p
dx

=

∫ 1

0
f

([
apbp

tap + (1− t)bp

] 1
p
)

dt

≤ [h(1− t)f(a) + h(t)f(b)]

−ct(1− t)
(
ap − bp

apbp

)2

= [f(a) + f(b)]

∫ 1

0
h(t)dt− c

6

(
ap − bp

apbp

)2

.

This completes the proof. �

Corollary 3.1. Under the assumptions of Theorem 3.1 and h(t) = t, we have

f

([
2apbp

ap + bp

] 1
p
)

+
c

12

(
ap − bp

apbp

)2

≤ papbp

bp − ap

∫ b

a

f(x)

x1+p
dx

≤ f(a) + f(b)

2
− c

6

(
ap − bp

apbp

)2

. (4)

The above inequality (4) is the Hermite-Hadamard inequality for strongly p-harmonic
convex functions, which appears to be a new one.

Theorem 3.2. Let f : I = [a, b] ⊆ R \ {0} −→ R be a strongly (p, h)-harmonic convex
function with modulus c > 0 on the interval [a, b]. Then

1

4h
(
1
2

)[f([ 4apbp

ap + 3bp

] 1
p

+ f

([
4apbp

3ap + bp

] 1
p
)]

+
c

48

(
ap − bp

apbp

)2

≤ papbp

bp − ap

∫ b

a

f(x)

x1+p
dx

≤
[
f(a) + f(b)

2
+ f

([
2apbp

ap + bp

] 1
p
)]∫ 1

0
h(t)dt− c

24

(
ap − bp

apbp

)2

. (5)

Proof. By applying (3) on each of the interval [a, [ 2a
pbp

ap+bp ]
1
p ] and [[ 2a

pbp

ap+bp ]
1
p , b], we have

1

2h
(
1
2

)[f([ 4apbp

ap + 3bp

] 1
p
)

+
c

48

(
ap − bp

apbp

)2]
≤ 2papbp

bp − ap

∫ [ 2a
pbp

ap+bp
]
1
p

a

f(x)

x1+p
dx

≤
[
f(a) + f

([
2apbp

ap + bp

] 1
p
)]∫ 1

0
h(t)dt− c

24

(
ap − bp

apbp

)2

,(6)

and

1

2h
(
1
2

)[f([ 4apbp

3ap + bp

] 1
p
)

+
c

48

(
ap − bp

apbp

)2]
≤ 2papbp

bp − ap

∫ b

[ 2a
pbp

ap+bp
]
1
p

f(x)

x1+p
dx

≤
[
f

([
2apbp

ap + bp

] 1
p

+ f(b)

)]∫ 1

0
h(t)dt− c

24

(
ap − bp

apbp

)2

.(7)
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Summing up (6) and (7) side by side, we obtain

1

4h
(
1
2

)[f([ 4apbp

ap + 3bp

] 1
p

+ f

([
4apbp

3ap + bp

] 1
p
)]

+
c

48

(
ap − bp

apbp

)2

≤ papbp

bp − ap

∫ b

a

f(x)

x1+p
dx

≤
[
f(a) + f(b)

2
+ f

([
2apbp

ap + bp

] 1
p
)]∫ 1

0
h(t)dt− c

24

(
ap − bp

apbp

)2

,

which is the required result. �

Theorem 3.3. Let f, g : I ⊂ R \ {0} −→ R be strongly (p, h)-harmonic convex functions
with modulus c > 0. If f, g ∈ L[a, b], then

papbp

bp − ap

∫ b

a

f(x)g
(

apbpxp

(ap+bp)xp−apbp
)

x1+p
dx

≤ M(a, b)

∫ 1

0
h(t)h(1− t)dt+N(a, b)

∫ 1

0
[h(t)]2dt

−c
(
ap − bp

apbp

)2

S(a, b)

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

,

where

M(a, b) = f(a)g(a) + f(b)g(b) (8)

N(a, b) = f(a)g(b) + f(b)g(a) (9)

S(a, b) = f(a) + f(b) + g(a) + g(b). (10)

Proof. Let f, g be strongly (p, h)-harmonic convex functions with modulus c > 0. Then

papbp

bp − ap

∫ b

a

f(x)g
(

apbpxp

(ap+bp)xp−apbp
)

x1+p
dx

=

∫ 1

0
f

([
apbp

tap + (1− t)bp

] 1
p
)
g

([
apbp

(1− t)ap + tbp

] 1
p
)

dt

≤
∫ 1

0
[h(1− t)f(a) + h(t)f(b)− ct(1− t)

(
ap − bp

apbp

)2

]

×[h(t)g(a) + h(1− t)g(b)− ct(1− t)
(
ap − bp

apbp

)2

]dt
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= f(a)g(b)

∫ 1

0
[h(1− t)]2dt+ f(b)g(a)

∫ 1

0
[h(t)]2dt

+[f(a)g(a) + f(b)g(b)]

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(a) + g(b)]

∫ 1

0
t(1− t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(b) + g(a)]

∫ 1

0
t(1− t)h(t)dt

+c2
(
ap − bp

apbp

)4 ∫ 1

0
t2(1− t)2dt

= [f(a)g(b) + f(b)g(a)]

∫ 1

0
[h(t)]2dt+ [f(a)g(a) + f(b)g(b)]

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(a) + f(b) + g(a) + g(b)]

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

= M(a, b)

∫ 1

0
h(t)h(1− t)dt+N(a, b)

∫ 1

0
[h(t)]2dt

−c
(
ap − bp

apbp

)2

S(a, b)

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

,

which is the required result. �

Theorem 3.4. Let f, g : I ⊂ R \ {0} −→ R be strongly (p, h)-harmonic convex functions
with modulus c > 0. If f, g ∈ L[a, b], then

papbp

bp − ap

∫ b

a

f(x)g(x)

x1+p
dx ≤M(a, b)

∫ 1

0
[h(t)]2dt+N(a, b)

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

S(a, b)

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

,

where M(a, b), N(a, b) and S(a, b) are given by (8), (9) and (10), respectively.

Proof. Let f, g be strongly (p, h)-harmonic convex functions with modulus c > 0. Then

papbp

bp − ap

∫ b

a

f(x)g(x)

x1+p
dx

=

∫ 1

0
f

([
apbp

tap + (1− t)bp

] 1
p
)
g

([
apbp

tap + (1− t)bp

] 1
p
)

dt

≤
∫ 1

0
[h(1− t)f(a) + h(t)f(b)− ct(1− t)

(
ap − bp

apbp

)2

]

×[h(1− t)g(a) + h(t)g(b)− ct(1− t)
(
ap − bp

apbp

)2

]dt
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= f(a)g(a)

∫ 1

0
[h(1− t)]2dt+ f(b)g(b)

∫ 1

0
[h(t)]2dt

+[f(a)g(b) + f(b)g(a)]

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(a) + g(a)]

∫ 1

0
t(1− t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(b) + g(b)]

∫ 1

0
t(1− t)h(t)dt

+c2
(
ap − bp

apbp

)4 ∫ 1

0
t2(1− t)2dt

= [f(a)g(a) + f(b)g(b)]

∫ 1

0
[h(t)]2dt+ [f(a)g(b) + f(b)g(a)]

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

[f(a) + f(b) + g(a) + g(b)]

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

= M(a, b)

∫ 1

0
[h(t)]2dt+N(a, b)

∫ 1

0
h(t)h(1− t)dt

−c
(
ap − bp

apbp

)2

S(a, b)

∫ 1

0
t(1− t)h(t)dt+

c2

30

(
ap − bp

apbp

)4

,

which is the required result. �

4. Integral Inequalities

In this section, we are going to obtain midpoint, Simpson’s and Trapezoidal like inte-
gral inequalities via relative strongly p-harmonic convex function. We need the following
Lemma in order to prove our main results.

Lemma 4.1. [12]. Let f : I = [a, b] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, b] and λ ∈ [0, 1], then

(1− λ)f

([
2apbp

ap + bp

] 1
p
)

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

=
(bp − ap)
2p(apbp)

[ ∫ 1
2

0
(2t− λ)

(
apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)

dt

+

∫ 1

1
2

(2t− 2 + λ)

(
apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)

dt

]
.

Theorem 4.1. Let f : I = [a, b] ⊆ R\{0} −→ R be a differentiable function on the interior
Io of I. If f ′ ∈ L[a, b] and |f ′|q is strongly (p, h)-harmonic convex function on I, q ≥ 1
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and λ ∈ [0, 1], then∣∣∣∣(1− λ)f

(
2apbp

ap + bp

) 1
p

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ bp − ap

2p(apbp)

[
(µ1(p, a, b))

1− 1
q [µ2(p, a, b)|f ′(a)|q + µ3(p, a, b)|f ′(b)|q − cµ4(p, a, b)

(
ap − bp

apbp

)2

]
1
q

+(µ5(p, a, b))
1− 1

q [µ6(p, a, b)|f ′(a)|q + µ7(p, a, b)|f ′(b)|q − cµ8(p, a, b)
(
ap − bp

apbp

)2

]
1
q

]
,

where

µ1(p, a, b) =

∫ 1
2

0

∣∣2t− λ∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt,

µ2(p, a, b) =

∫ 1
2

0
h(1− t)

∣∣2t− λ∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (11)

µ3(p, a, b) =

∫ 1
2

0
h(t)

∣∣2t− λ∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (12)

µ4(p, a, b) =

∫ 1

1
2

t(1− t)
∣∣2t− λ∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (13)

µ5(p, a, b) =

∫ 1
2

0

∣∣2t− 2 + λ
∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt,

µ6(p, a, b) =

∫ 1
2

0
h(1− t)

∣∣2t− 2 + λ
∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (14)

µ7(p, a, b) =

∫ 1
2

0
h(t)

∣∣2t− 2 + λ
∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (15)

µ8(p, a, b) =

∫ 1

1
2

t(1− t)
∣∣2t− 2 + λ

∣∣[ apbp

tap + (1− t)bp

]1+ 1
p

dt, (16)

Proof. Using Lemma 4.1, power mean inequality and strongly (p, h)-harmonic convexity
of |f |q, we have∣∣∣∣(1− λ)f

([
2apbp

ap + bp

] 1
p
)

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ bp − ap

2p(apbp)

[ ∫ 1
2

0

∣∣∣∣(2t− λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt

+

∫ 1

1
2

∣∣∣∣(2t− 2 + λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt]
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≤ bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p

dt

)1− 1
q

(∫ 1
2

0

∣∣(2t− λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p

dt

)1− 1
q

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q
]

≤ bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p

dt

)1− 1
q

(∫ 1
2

0

∣∣(2t− λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p [
h(1− t)|f ′(a)|q + h(t)|f ′(b)|q

−ct(1− t)
(
ap − bp

apbp

)2]
dt

) 1
q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p

dt

)1− 1
q

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣( apbp

tap + (1− t)bp

)1+ 1
p [
h(1− t)|f ′(a)|q + h(t)|f ′(b)|q

−ct(1− t)
(
ap − bp

apbp

)2]
dt

) 1
q
]

=
bp − ap

2p(apbp)

[
(µ1(p, a, b))

1− 1
q [µ2(p, a, b)|f ′(a)|q + µ3(p, a, b)|f ′(b)|q

−cµ4(p, a, b)
(
ap − bp

apbp

)2

]
1
q + (µ5(p, a, b))

1− 1
q [µ6(p, a, b)|f ′(a)|q

+µ7(p, a, b)|f ′(b)|q − cµ8(p, a, b)
(
ap − bp

apbp

)2

]
1
q

]
,

which is the required result. �

Theorem 4.2. Let f : I = [a, b] ⊆ R\{0} −→ R be a differentiable function on the interior
Io of I. If f ′ ∈ L[a, b] and |f ′|q is strongly (p, h)-harmonic convex function on I, r, q > 1,
1
r + 1

q = 1 and λ ∈ [0, 1], then∣∣∣∣(1− λ)f

(
2apbp

ap + bp

) 1
p

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ (bp − ap)

2apbp

[
(µ9(r, p; a, b))

1
r

(
f(a) + f

([
2apbp

ap+bp

] 1
p
)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q

+(µ10(r, p; b, a))
1
r

(
f
([

2apbp

ap+bp

] 1
p
)

+ f(b)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q
]
,

where

µ9(r, p; a, b) =

∫ 1
2

0
|2t− λ|r

(
apbp

tap + (1− t)bp

)r+ r
p

dt, (17)
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µ10(r, p; b, a) =

∫ 1

1
2

|2t− 2 + λ|r
(

apbp

tap + (1− t)bp

)r+ r
p

dt. (18)

Proof. Using Lemma 4.1 and the Holder’s integral inequality, we have∣∣∣∣(1− λ)f

([
2apbp

ap + bp

] 1
p
)

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ bp − ap

2p(apbp)

[ ∫ 1
2

0

∣∣∣∣(2t− λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt

+

∫ 1

1
2

∣∣∣∣(2t− 2 + λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt]

≤ bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣∣∣(2t− λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣rdt) 1

r
(∫ 1

2

0

∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q

+

(∫ 1

1
2

∣∣∣∣(2t− 2 + λ)

(
apbp

tap + (1− t)bp

)1+ 1
p
∣∣∣∣rdt) 1

r
(∫ 1

1
2

∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q
]

=
bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣r( apbp

tap + (1− t)bp

)r+ r
p

dt

) 1
r
(
papbp

bp − ap

∫ [ 2a
pbp

ap+bp
]
1
p

a

|f ′(x)|q

x1+p
dx

) 1
q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣r( apbp

tap + (1− t)bp

)r+ r
p

dt

) 1
r
(
papbp

bp − ap

∫ b

[ 2a
pbp

ap+bp
]
1
p

|f ′(x)|q

x1+p
dt

) 1
q
]

Using the the inequalities (6) and (7), we obtained the required result. �

Theorem 4.3. Let f : I = [a, b] ⊆ R\{0} −→ R be a differentiable function on the interior
Io of I. If f ′ ∈ L[a, b] and |f ′|q is strongly (p, h)-harmonic convex function on I, r, q > 1,
1
r + 1

q = 1 and λ ∈ [0, 1], then∣∣∣∣(1− λ)f

(
2apbp

ap + bp

) 1
p

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ bp − ap

2p(apbp)
×
(
λr+1 + (1− λ)r+1

2(r + 1)

) 1
r [(

µ11(q, p; a, b)|f ′(a)|q + µ12(q, p; a, b)|f ′(b)|q

−cµ13(q, p; a, b)
(
ap − bp

apbp

() 1
q +

(
µ14(q, p; a, b)|f ′(a)|q + µ15(q, p; a, b)|f ′(b)|q

−cµ16(q, p; a, b)
(
ap − bp

apbp

() 1
q
]
, (19)

where

µ11(q, p; a, b) =

∫ 1
2

0
h(1− t)

[
apbp

tap + (1− t)bp

] q
p
+q

dt,

µ12(q, p; b, a) =

∫ 1
2

0
h(t)

[
apbp

tap + (1− t)bp

] q
p
+q

dt,

µ13(q, p; b, a) =

∫ 1
2

0
t(1− t)

[
apbp

tap + (1− t)bp

] q
p
+q

dt,
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µ14(q, p; a, b) =

∫ 1

1
2

h(1− t)
[

apbp

tap + (1− t)bp

] q
p
+q

dt,

µ15(q, p; b, a) =

∫ 1

1
2

h(t)

[
apbp

tap + (1− t)bp

] q
p
+q

dt

µ16(q, p; b, a) =

∫ 1

1
2

t(1− t)
[

apbp

tap + (1− t)bp

] q
p
+q

dt.

Proof. Using Lemma 4.1 and the Holder’s integral inequality, we have∣∣∣∣(1− λ)f

([
2apbp

ap + bp

] 1
p
)

+ λ

(
f(a) + f(b)

2

)
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ bp − ap

2p(apbp)

[ ∫ 1
2

0

∣∣(2t− λ)
∣∣∣∣∣∣( apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt

+

∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣∣∣∣∣( apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣dt]

≤ bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣rdt) 1

r
(∫ 1

2

0

∣∣∣∣( apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣rdt) 1

r
(∫ 1

1
2

∣∣∣∣( apbp

tap + (1− t)bp

)1+ 1
p

f ′
([

apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q
]

=
bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣rdt) 1

r
(∫ 1

2

0

(
apbp

tap + (1− t)bp

) q
p
+q∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣rdt) 1

r
(∫ 1

1
2

(
apbp

tap + (1− t)bp

) q
p
+q∣∣∣∣f ′([ apbp

tap + (1− t)bp

] 1
p
)∣∣∣∣qdt) 1

q
]

≤ bp − ap

2p(apbp)

[(∫ 1
2

0

∣∣(2t− λ)
∣∣rdt) 1

r
(∫ 1

2

0

(
apbp

tap + (1− t)bp

) q
p
+q[

h(1− t)|f ′(a)|q

+h(t)|f ′(b)|q − ct(1− t)
(
ap − bp

apbp

)2]
dt

) 1
q

+

(∫ 1

1
2

∣∣(2t− 2 + λ)
∣∣rdt) 1

r

(∫ 1

1
2

(
apbp

tap + (1− t)bp

) q
p
+q[

h(1− t)|f ′(a)|q + h(t)|f ′(b)|q − ct(1− t)
(
ap − bp

apbp

)2]
dt

) 1
q
]

=
bp − ap

2p(apbp)
×
(
λr+1 + (1− λ)r+1

2(r + 1)

) 1
r [(

µ11(q, p; a, b)|f ′(a)|q + µ12(q, p; a, b)|f ′(b)|q

−cµ13(q, p; a, b)
(
ap − bp

apbp

() 1
q +

(
µ14(q, p; a, b)|f ′(a)|q + µ15(q, p; a, b)|f ′(b)|q

−cµ16(q, p; a, b)
(
ap − bp

apbp

() 1
q
]
,

which is the required result. �

We now discuss some applications of our results.

I. For λ = 0, Theorem 4.2 reduces to:
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Corollary 4.1. Let f : I = [a, b] ⊆ R\{0} −→ R be a differentiable function on the interior
Io of I. If f ′ ∈ L[a, b] and |f ′|q is strongly (p, h)-harmonic convex function on I, r, q > 1,
1
r + 1

q = 1, then∣∣∣∣f( 2apbp

ap + bp

) 1
p

− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ (bp − ap)

2apbp

[
(µ9(r, p; a, b))

1
r

(
f(a) + f

([
2apbp

ap+bp

] 1
p
)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q

+(µ10(r, p; b, a))
1
r

(
f
([

2apbp

ap+bp

] 1
p
)

+ f(b)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q
]
,

where µ9(r, p; b, a) and µ10(r, p; b, a) are given by (17) and (18), respectively.

II. For λ = 1, Theorem 4.2 reduces to:

Corollary 4.2. Let f : I = [a, b] ⊆ R\{0} −→ R be a differentiable function on the interior
Io of I. If f ′ ∈ L[a, b] and |f ′|q is strongly (p, h)-harmonic convex function on I, r, q > 1,
1
r + 1

q = 1, then∣∣∣∣f(a) + f(b)

2
− p(apbp)

bp − ap

∫ b

a

f(x)

x1+p
dx

∣∣∣∣
≤ (bp − ap)

2apbp

[
(µ9(r, p; a, b))

1
r

(
f(a) + f

([
2apbp

ap+bp

] 1
p
)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q

+(µ10(r, p; b, a))
1
r

(
f
([

2apbp

ap+bp

] 1
p
)

+ f(b)

2

∫ 1

0
h(t)dt− c

48

(
ap − bp

apbp

)2) 1
q
]
,

where µ9(r, p; b, a) and µ10(r, p; b, a) are given by (17) and (18), respectively.

Remark 4.1. (i). For appropriate and suitable choice of p, q, r and h, one can obtain
several new and known results as special cases for various classes of convex functions and
their variant forms.
(ii). For c 6= 0 and h(t) = t, one can obtain new results for strongly p-harmonic convex
functions.
(iii). For c = 0 and h(t) = t, all the results in this paper reduces to [11, 12]. This shows
that our newly introduced class is more general and unifying one.
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