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A FIXED POINT PROBLEM VIA SIMULATION FUNCTIONS IN

INCOMPLETE METRIC SPACES WITH ITS APPLICATION

R. LASHKARIPOUR1, H. BAGHANI1, Z. AHMADI1, §

Abstract. In this paper, firstly, we review the notion of the SO-complete metric spaces.
This notion let us to consider some fixed point theorems for single-valued mappings in
incomplete metric spaces. Secondly, as motivated by the recent work of A.H. Ansari et
al. [J. Fixed Point Theory Appl. (2017), 1145–1163], we obtain that an existence and
uniqueness result for the following problem: finding x ∈ X such that x = Tx, Ax R1 Bx
and Cx R2 Dx, where (X, d) is an incomplete metric space equipped with the two binary
relations R1 and R2, A,B,C,D : X → X are discontinuous mappings and T : X → X
satisfies in a new contractive condition. This result is a real generalization of main
theorem of A.H. Ansari’s. Finally, we provide some examples for our results and as an
application, we find that the solutions of a differential equation.
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1. Introduction

The Banach contraction Theorem is the basis of the theory of metric fixed points which
is used in many practical problems [1, 3, 11, 13, 15, 16]. In recent decades, theorem
conditions dropped by a large number of researchers(see [4, 9, 12, 14]). Among them, in
2015, F. Khojasteh et al. introduced in [12] the concept of simulation function in order
to express different contractive in a simple, unified way. Thus, it is possible to tread
some fixed point theorems from a unique, common point of view. However, in [14], the
authors slightly modified the definition of simulation function and enlarged the family of
all simulation functions as follows.

Definition 1.1. [14] Let ζ : [0,∞) × [0,∞) −→ R be a mapping. Then ζ is called a
simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
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(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 and

tn < sn for all n ∈ N, then lim supn→∞ ζ(tn, sn) < 0.

Let Z be the family of all simulation functions ζ in Definition 1.1.

Example 1.1. Let τ ∈ (0,∞) and ζ : [0,∞)× [0,∞) −→ R be a function as follow:

ζ(t, s) =


(t− 2)s 0 ≤ t ≤ s < 1

(s− 2)t 0 ≤ s ≤ t < 1

s− t− τ t, s ≥ 1.

Clearly, ζ is a simulation function.

Recently, Jleli and Samet [10] provided conditions for finding x ∈ X such that
x = Tx,

Ax �1 Bx,

Cx �2 Dx,

(1)

where X is complete matric space, T,A,B,C,D : X → X and ” �1 ” and ” �2 ” are
partial orders. Ansari, Kumam and Samet in [2] proved that this problem has a unique
solution without continuity of C and D.

Definition 1.2. [10] Let (X, d) be a metric space. A partial order ”� ” on X is d-regular
if for any two sequences {un} and {vn} in X, we have

lim
n→∞

d(un, u) = lim
n→∞

d(vn, v) = 0, un � vn for all n =⇒ u � v, (u, v) ∈ X ×X.

Definition 1.3. [10] Let ” �1 ” and ” �2 ” be two partial orders on X and operators
T,A,B,C,D : X → X be given. The operator T is called (A,B,C,D,�1,�2)-stable if
x ∈ X, Ax �1 Bx =⇒ CTx �2 DTx.

Let Φ be the set of all functions ϕ : R+ → R+ such that ϕ is a lower semi-continuous
function and ϕ−1({0}) = {0}.

The main theorem presented in [2] is given by the following result.

Theorem 1.1. Let (X, d) be a complete metric space endowed with two partial orders
” �1 ” and ” �2 ”. Let operators T,A,B,C,D : X → X be given. Suppose that the
following conditions are satisfied:

(i) ” �i ” is d-regular, i = 1, 2;
(ii) A,B are continuous;
(iii) there exists x0 ∈ X such that Ax0 �1 Bx0;
(iv) T is (A,B,C,D,�1,�2)-stable;
(v) T is (C,D,A,B,�2,�1)-stable;
(vi) there exists ϕ ∈ Φ such that

Ax �1 Bx,Cy �2 Dy =⇒ d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)).

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1). Moreover,
x∗ is the unique solution to (1).

In this paper, we explain sufficient conditions for the existence and uniqueness of a fixed
point of T satisfying the two constraint inequalities: Ax R1 Bx and Cx R2 Dx, where
T : X → X defined on an incomplete metric space equipped with two binary relations(not
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necessarily two partial orders) ”R1” and ”R2” and A,B,C,D : X → X are non necessary
continuous self-operators. That is, this problem contains: finding x ∈ X such that

x = Tx,

Ax R1 Bx,

Cx R2 Dx.

(2)

Also, we introduct the notation of ⊥-Z-contraction and give a real generalization of Banach
fixed point theorem in incomplete metric spaces. In the rest of this section, we recall the
notation of orthogonal set that first obtained in [8]. This notion let us to consider some
fixed point theorems for single-valued mappings in incomplete metric spaces. For the
depth of the subject, one can see [3, 5, 6, 7].

Definition 1.4. [5, 8] Let X 6= ∅, and ⊥ ⊆ X ×X be a binary relation. If there exists
x0 such that (∀y, y⊥x0) or (∀y, x0⊥y), then ” ⊥ ” is called an orthogonality relation and
pair (X,⊥) an orthogonal set(briefly, O-set). We say that x0 is an orthogonal element and
elements x, y ∈ X are ⊥-comparable either x ⊥ y or y ⊥ x. Let ”d” be a metric on X,
(X,⊥, d) is called an orthogonal metric space.

Definition 1.5. [7] Let (X,⊥) be an O-set. A sequence {xn} is called a strongly orthogonal
sequence(briefly, SO-sequence) if (∀n, k; xn⊥xn+k) or (∀n, k; xn+k⊥xn).

Definition 1.6. [7] Let (X,⊥, d) be an orthogonal metric space. X is called:

(1) strongly orthogonal complete(briefly, SO-complete) if every Cauchy SO-sequence is
convergent.

(2) ⊥-regular if for each SO-sequence {xn} with xn → x for some x ∈ X, we conclude
that (∀n; xn⊥x) or (∀n; x⊥xn).

Definition 1.7. [7] Let (X,⊥, d) be an orthogonal metric space. A mapping f : X → X is
strongly orthogonal continuous(briefly, SO-continuous) in a ∈ X if for each SO-sequence
{an} in X, an → a, then f(an) → f(a). Also, f is SO-continuous on X if f is SO-
continuous in each a ∈ X.

Definition 1.8. [5, 8] Let (X,⊥) be an O-set. A mapping T : X → X is said to be
⊥-preserving if x⊥y implies T (x)⊥T (y).

Definition 1.9. Let (X,⊥, d) be an orthogonal metric space and ζ ∈ Z. Then a mapping
T : X −→ X is called a ⊥-Z-contraction with respect to ζ if the following condition is
satisfied: ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X with x ⊥ y.

Example 1.2. Let X = R, d(x, y) = |x− y|, for all x, y ∈ X. Define x ⊥ y iff xy ≤ 0 for
all x, y ∈ X. Let T : X → X be a mapping defined by

T (x) =


x

2
x ≥ 0

−x
2

x < 0.

Then T is a ⊥-Z-contraction with respect to ζ(t, s) =
1

2
s− t.

Definition 1.10. Let (X, d) be a metric space. An arbitrary binary relation(not neces-
sarily partial order) ”R” on X is dR-regular if for any two sequences {un} and {vn} in X,
we have

lim
n→∞

d(un, u) = lim
n→∞

d(vn, v) = 0, un R vn for all n =⇒ u R v, (u, v) ∈ X ×X.
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Example 1.3. Let X = R, d(x, y) = |x − y|, x, y ∈ R. Define xR y ⇔ y ≤ 3x on X.
Clearly, the binary relation(not partial order) ”R” is a dR-regular.

Definition 1.11. Let ”R1” and ”R2” be two arbitrary binary relations on X and operators
T,A,B,C,D : X → X be given. The operator T is called (A,B,C,D,R1, R2)-stable if
x ∈ X, Ax R1 Bx =⇒ CTx R2 DTx.

Example 1.4. Let X = {(0, 0), (1, 1), (3, 1), (3, 2)} and two binary relations(not necessar-
ily partial orders) on X be defined by

(x, y) R1 (z, w) ⇔ yz > 1 and (x, y) R2 (z, w) ⇔ xw > 1.

Consider the operators T,A,B,C,D : X −→ X as follow:

T (x, y) = (3, 2), A(x, y) = (3, 1), C(x, y) = (1, 1),

B(0, 0) = (1, 1), B(1, 1) = (3, 1), B(3, 1) = (3, 2), B(3, 2) = (3, 1)

D(0, 0) = (0, 0), D(1, 1) = (3, 1), D(3, 1) = (1, 1), D(3, 2) = (3, 2).

If A(x, y) R1 B(x, y), then (x, y) ∈ {(3, 1), (3, 2), (1, 1)}, which yields T (x, y) = (3, 2).
Therefore CT (x, y) = C(3, 2) = (1, 1) R2 (3, 2) = D(3, 2) = DT (x, y).
Thus T is (A,B,C,D,R1, R2)-stable.

2. fixed point problem via simulation functions

Theorem 2.1. Let (X,⊥, d) be a SO-complete(not necessarily complete) metric space with
orthogonal element x0. Let ”R1” and ”R2” be two binary relations over X and operators
T,A,B,C,D : X → X be given. Suppose that the following conditions are satisfied:

(i) ”Ri” is dR-regular, i = 1, 2 and T is ⊥-preserving;
(ii) A,B are SO-continuous;
(iii) Ax0 R1 Bx0 and X is ⊥-regular;
(iv) T is (A,B,C,D,R1, R2)-stable;
(v) T is (C,D,A,B,R2, R1)-stable;
(vi) there exits ζ ∈ Z such that for each ⊥-comparable elements x, y ∈ X

(Ax R1 Bx and Cy R2 Dy) =⇒ ζ(d(Tx, Ty), d(x, y)) ≥ 0.

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (2). Moreover,
x∗ is the unique solution of (2).

Proof. Consider the sequence {xn} defined by xn = Tnx0, n = 0, 1, 2, · · · . From the
definition of orthogonal element x0, we have

(∀n ∈ N, x0 ⊥ Tnx0 = xn) or (∀n ∈ N, xn = Tnx0 ⊥ x0).
Also, since T is ⊥-preserving, we have

(∀n, k ∈ N, xn = Tnx0 ⊥ Tn+kx0 = xn+k) or (∀n, k ∈ N, xn+k = Tn+kx0 ⊥ Tnx0 = xn).

Therefore {xn} is a SO-sequence.
On the other hand, since T is (A,B,C,D,R1, R2)-stable and (C,D,A,B,R2, R1)-stable,
applying (iii), we have

Ax2n R1 Bx2n and Cx2n+1 R2 Dx2n+1, n = 0, 1, 2, · · · . (3)

By settiing an = d(xn, xn+1), n = 0, 1, 2, · · · , we have the following results:
(1) If there exists n0 such that an0 = 0, then Txn0 = xn0 , and the proof is finished.
(2) If for all n, an 6= 0, since {xn} is SO-sequence, applying (3), (vi) and symmetry for all
n ∈ N, we have ζ(d(Txn, Txn−1), d(xn, xn−1)) ≥ 0.
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Applying (ζ2), we deduce that

d(xn+1, xn) < d(xn, xn−1) n = 1, 2, · · · . (4)

Therefor there exists r ≥ 0 such that limn→∞ d(xn+1, xn) = r. Let r > 0. Since xn = Tnx0,
applying (3), (4) and (ζ3), we have

0 ≤ lim sup
n→∞

ζ(d(Txn, Txn−1), d(xn, xn−1)) = lim sup
n→∞

ζ(d(xn+1, xn)), d(xn, xn−1)) < 0.

This is a contradiction and so r = 0, that is

lim
n→∞

d(xn+1, xn) = 0. (5)

We shall prove that {xn} is a Cauchy SO-sequence. Suppose that {xn} is not a Cauchy
SO-sequence. Then, there exists some ε > 0 and two sequences of positive integers {mk}
and {nk} such that, for all positive integers k, we have nk > mk > k, d(xmk

, xnk
) ≥ ε and

d(xmk
, xnk−1) < ε. Applying triangular inequality, we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

) ≤ ε+ d(xnk−1, xnk
).

Letting k →∞, we obtain

lim
k→∞

d(xmk
, xnk

) = ε. (6)

Triangle inequality, implies that |d(xmk
, xnk+1) − d(xmk

, xnk
)| ≤ d(xnk

, xnk+1). Applying
(6) and (5), as k →∞, we have

lim
k→∞

d(xmk
, xnk+1) = ε. (7)

Similarly,

lim
k→∞

d(xnk+1, xmk+1) = ε, (8)

and so

lim
k→∞

d(xnk
, xmk−1) = ε. (9)

Obviously, for all k, there exists i(k) ∈ {0, 1} such that nk − mk + i(k) ≡ 1(2). Now,
applying (3), for k ∈ N, we conclude that

Axnk
R1Bxnk

and Cxmk−i(k) R2 Dxmk−i(k),

or

Axmk−i(k)R1Bxmk−i(k) and Cxnk
R2Dxnk

.

Applying (iv), for all k ∈ N, we deduce that

0 ≤ ζ(d(xnk+1, xmk−i(k)+1), d(xnk
, xmk−i(k))). (10)

Define Λ = {k ∈ N : i(k) = 0} and ∆ = {k ∈ N : i(k) = 1}, and investigate two cases:
Cace1. |Λ| =∞. Applying (10), for k ∈ Λ, we have

0 ≤ ζ(d(xnk+1, xmk+1), d(xnk
, xmk

)).

Applying (6), (8) and (ζ3), then 0 ≤ lim supk→∞ ζ(d(xnk+1, xmk+1), d(xnk
, xmk

)) < 0. This
is a contradiction. Hence ε = 0.

Cace2. |Λ| <∞. Therefore, |∆| =∞. Applying (10), we have

0 ≤ ζ(d(xnk+1, xmk
), d(xnk

, xmk−1)).

Applying (7), (9) and (ζ3), we deduce that

0 ≤ lim sup
k→∞

ζ(d(xnk+1, xmk
), d(xnk

, xmk−1)) < 0.
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This is a contradiction. Thus ε = 0 and {xn} is a Cauchy SO-sequence in (X,⊥, d). Since
(X,⊥, d) is SO-complete, there exists x∗ ∈ X such that limn→∞ d(xn, x

∗) = 0.
Since {xn} is SO-sequence, we deduce that {x2n} is also SO-sequence. Applying the SO-
continuity of A and B, we deduce that limn→∞ d(Ax2n, Ax

∗) = limn→∞ d(Bx2n, Bx
∗) = 0.

Since ”R1” is dR-regular, (3) imply that

Ax∗ R1 Bx
∗. (11)

Since X is ⊥-regular, then x2n+1 ⊥ x∗ or x∗ ⊥ x2n+1, for all n ∈ N. Applying (3), (11) and
(vi), we deduce that ζ(d(Tx∗, Tx2n+1), d(x∗, x2n+1)) ≥ 0. If d(Tx∗, x∗) > 0, clearly, there
exists n0 ∈ N such that for all n ≥ n0, we deduce that d(Tx∗, Tx2n+1) > 0. Applying (ζ2),
for all n ≥ n0, we have

0 ≤ lim sup
n→∞

ζ(d(Tx∗, Tx2n+1), d(x∗, x2n+1))

≤ lim sup
n→∞

[d(x∗, x2n+1)− d(Tx∗, x2n+2)] = −d(Tx∗, x∗).

This is a contradiction. Therefore d(Tx∗, x∗) = 0, that is

Tx∗ = x∗. (12)

Since T is (A,B,C,D,R1, R2)-stable, applying (11), we have CTx∗ R2 DTx
∗. Therefore,

(12) implies that
Cx∗ R2 Dx

∗. (13)

Applying (11), (12) and (13), we deduce that x∗ is a solution of (2). We show that x∗ is
a unique solution. For this purpose, let y∗ ∈ X be another solution of (2), that is

Ty∗ = y∗, Ay∗ R1 By
∗, Cy∗ R2 Dy

∗. (14)

Since x0 is an orthogonal element, then x0 ⊥ y∗ or y∗ ⊥ x0. Since T is ⊥-preserving, then

x2n = T 2nx0 ⊥ T 2ny∗ = y∗ or y∗ = T 2ny∗ ⊥ T 2nx0 = x2n. (15)

Applying (3), (14), (15) and (vi), for all n ∈ N, ζ(d(Tx2n, T y
∗), d(x2n, y

∗)) ≥ 0. With-
out loss of generality, let d(xn, y

∗) > 0 for all n ∈ N. Therefore d(x2n, y
∗) > 0, and

d(Tx2n, T y
∗) > 0 for all n ∈ N. Applying (ζ2), we deduce that

0 ≤ ζ(d(x2n+1, Ty
∗), d(x2n, y

∗)) < d(x2n, y
∗)− d(x2n+1, Ty

∗).

Therefore d(x2n+1, T y
∗) < d(x2n, y

∗) for all n ∈ N. Applying (ζ3), we deduce that

0 ≤ lim sup
n→∞

ζ(d(x2n+1, T y
∗), d(x2n, y

∗)) < 0.

This is a contradiction, and so d(x∗, y∗) = 0. Therefore x∗ is a unique solution of (2). �

3. Some consequences

Now, we consider some special cases, where in our result deduce several well-known
fixed point theorems of the existing literature.
Setting R1 = R2 = ≤, C = B and D = A in Theorem 2.1, we get a generalization of
Corollary 3.1 in [10].

Corollary 3.1. Let (X,⊥, d) be a SO-complete(not necessarily complete) metric space
with orthogonal element x0. Also, let operators T,A,B : X → X be given. Suppose that
the following conditions are satisfied:

(i) T is ⊥-preserving;
(ii) A,B are SO-continuous;
(iii) Ax0 ≤ Bx0 and X is SO-regular;
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(iv) for all x ∈ X, we have Ax ≤ Bx =⇒ BTx ≤ ATx;
(v) for all x ∈ X, we have Bx ≤ Ax =⇒ ATx ≤ BTx;
(vi) there exits ζ ∈ Z such that for each ⊥-comparable elements x, y ∈ X

(Ax ≤ Bx and By ≤ Ay) =⇒ ζ(d(Tx, Ty), d(x, y)) ≥ 0.

Then the sequence {Tnx0} converges to x∗ ∈ X satisfying Ax∗ = Bx∗. Also, the point

x∗ ∈ X is a unique solution to the problem

{
x = Tx,

Ax = Bx.

Setting A = D = IX and C = B, we get a generalization of Corollary 3.2 in [10].

Corollary 3.2. Let (X,⊥, d) be a SO-complete(not necessarily complete) metric space
with orthogonal element x0. Also, let operators T,B : X → X be given. Suppose that the
following conditions are satisfied:

(i) T is ⊥-preserving;
(ii) B is SO-continuous;
(iii) x0 ≤ Bx0 and X is SO-regular;
(iv) for all x ∈ X, we have x ≤ Bx =⇒ BTx ≤ Tx;
(v) for all x ∈ X, we have Bx ≤ x =⇒ Tx ≤ BTx;
(vi) there exits ζ ∈ Z such that for each ⊥-comparable elements x, y ∈ X

(x ≤ Bx and By ≤ y) =⇒ ζ(d(Tx, Ty), d(x, y)) ≥ 0.

Then the sequence {Tnx0} converges to x∗ ∈ X satisfying x∗ = Tx∗. Also, tThe point

x∗ ∈ X is a unique solution of the problem

{
x = Tx,

x = Bx.

By setting C = B = T and A = D = IX , we obtain a generalization of Corollary 3.4 in
[10]. Through the following we give an extension of Theorem 2.8 [12].

Corollary 3.3. Let (X,⊥, d) be a SO-complete metric space with orthogonal element x0
and T : X → X be a ⊥-preserving and ⊥-Z-contraction with respect to ζ. Let X is SO-
regular. Then T has a unique fixed point x∗. Also, T is a Picard operator, that is, for all
x ∈ X, the sequence {Tn(x)} is convergent to x∗.

Proof: Now we only show that T is a Picard operator. Let x ∈ X be arbitrary. We
have [x0⊥x∗ and x0⊥x] or [x∗⊥x0 and x⊥x0].
Now, since T is ⊥-preserving, then

[Tn(x0)⊥Tn(x∗) and Tn(x0)⊥Tn(x)] or [Tn(x∗)⊥Tn(x0) and Tn(x)⊥Tn(x0)]

for all n ∈ N. Hence, for all n ∈ N, we get

0 ≤ ζ(d(Tn(x), Tn(x0)), d(Tn−1(x), Tn−1(x0)))

< d(Tn−1(x), Tn−1(x0))− d(Tn(x), Tn(x0)).

Then {d(Tn(x), Tn(x0))} is a decreasing sequence and bounded below. Thus there exists
r ≥ 0 such that limn→∞ d(Tn(x), Tn(x0)) = r. Let r > 0, applying (ζ3), we have

0 ≤ lim sup
n→∞

ζ(d(Tn(x), Tn(x0)), d(Tn−1(x), Tn−1(x0))) < 0.

This is a contraction. Thus r = limn→∞ d(Tn(x), Tn(x0)) = 0.
Hence x∗ = limn→∞ T

n(x0) = limn→∞ T
n(x). This completes the proof.
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4. Some exampels

Example 4.1. Let X = (−2, 2]. Define x ⊥ y ⇐⇒ 0 ≤ x ≤ y ≤ 1 or x = 0.
Then (X,⊥) is an O-set with orthogonal element x0 = 0. Clearly, X with the Euclidean
metric is not a complete metric space, but it is SO-complete. We see that X is ⊥-regular.
Now, define relation ”R” as x R y ⇐⇒ x+ y ∈ [−1, 2]. Clearly, ”R” is not partial order.
We take R1 = R2 := R. Let T : X → X be the mapping defined by

T (x) =


0 x ≤ 1

−x 1 < x < 2

1 x = 2.

If x = 0, then Tx = 0, and if x 6= 0, we have 0 < x ≤ y ≤ 1, and so Tx = 0. Hence
Tx ⊥ Ty and T is ⊥-preserving. Consider the mappings A,B,C,D : X → X defined by
Ax = x,

B(x) =

{x
2

+ 2 x < 0

2 x ≥ 0,
C(x) =

{
0 x ≤ 1

x− 1 x > 1,
D(x) =

{
−x x ≤ 1

2 x > 1.

Obviously, ”R” is dR-regular. Moreover, A and B are SO-continuous mappings. If
for some x ∈ X, we have Ax R Bx, then x ≤ 0, which yields that Tx = 0. Thus
CT (x) R DT (x). If for some x ∈ X, we have Cx R Dx, then x ≤ 1, and so Tx = 0.
Hence AT (x) R BT (x). Thus T is (A,B,C,D,R1, R2)-stable and (C,D,A,B,R2, R1)-
stable. For all (x, y) ∈ X ×X, we have

Ax R1 Bx, Cy R2 Dy =⇒ (x ≤ 0 and y ≤ 1).

Set ζ(t, s) =
1

2
s−t for all t, s ∈ [0,∞). We show that condition (vi) of Theorem 2.1 is satis-

fied. We have x ≤ 0 and y ≤ 1 =⇒ Tx = Ty = 0. This implies that ζ(d(Tx, Ty), d(x, y)) =
1

2
d(x, y)−d(Tx, Ty) =

1

2
d(x, y) ≥ 0. Therefore there exists ζ ∈ Z such that for all x, y ∈ X

with x ⊥ y and (Ax R1 Bx and Cy R2 Dy), ζ(d(Tx, Ty), d(x, y)) ≥ 0. Applying Theorem
2.1, (2) has unique solution x∗ = 0.

Example 4.2. Let X = (−1,∞). Suppose that x ⊥ y ⇐⇒ xy = 0.
Then (X,⊥) is an O-set with orthogonal element x0 = 0. Clearly, X with the Euclidean
metric is not a complete metric space, but it is SO-complete. We see that X is ⊥-regular.
We take R1 = R2 := ≤ . Set T : X → X defined by

T (x) =


x

2
x < 1

3

2x
x ≥ 1.

If x = 0, then Tx = 0, and if x 6= 0, we have y = 0. Hence Ty = 0, and so Tx ⊥ Ty. Then
T is ⊥-preserving. Consider the mappings A,B,C,D : X → X defined by Ax = x+ 1,

B(x) =

{
1 x ≥ 1

x+ 2 x < 1,
C(x) =

2
1

2
< x ≤ 3

x o.w.,
D(x) =


1

2

1

2
< x ≤ 3

x2 + 1 o.w..

Obviously, ”Ri” is dR-regular, i = 1, 2. Moreover, A and B are SO-continuous mappings.

If for some x ∈ X, we have Ax ≤ Bx, then x < 1, which yields Tx =
x

2
. Thus CT (x) ≤

DT (x). Therefore T is (A,B,C,D,R1, R2)-stable. If for some x ∈ X, we have Cx ≤ Dx,
then x ≤ 1

2
or x > 3. We consider two caces:
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(1) If x ≤ 1

2
, then Tx =

x

2
, and so AT (x) ≤ BT (x).

(2) If x > 3, then Tx =
3

2x
, and so AT (x) ≤ BT (x).

Thus T is (C,D,A,B,R2, R1)-stable. For all (x, y) ∈ X ×X, we have

Ax R1 Bx, Cy R2 Dy =⇒ (x < 1 and (y ≤ 1

2
or y > 3)).

Set ζ(t, s) = sϕ(s)− t for all t, s ∈ [0,∞), where ϕ : [0,∞)→ [0, 1) define by

ϕ(s) =


s

s+ 1
s > 2

1

2
s ≤ 2.

Since lim sup
t→→r+

ϕ(t) < 1 for all r > 0, then ζ(x, y) is a simulation function. We show
that condition (vi) of Theorem 2.1 is satisfied. We have two cases:

(1) If x < 1 and y ≤ 1

2
, then d(x, y) ≤ 2, and so

ζ(d(Tx, Ty), d(x, y)) = d(x, y)ϕ(d(x, y))− d(Tx, Ty) =
1

2
d(x, y)− 1

2
d(x, y) = 0.

(2) If x < 1 and y > 3, then d(x, y) > 2, and so

ζ(d(Tx, Ty), d(x, y)) = d(x, y)ϕ(d(x, y))− d(Tx, Ty) = d(x, y)
d(x, y)

d(x, y) + 1
− d(

x

2
,

3

2y
).

Then there exists ζ ∈ Z such that for all x, y ∈ X with x ⊥ y, Ax R1 Bx, Cy R2 Dy and
ζ(d(Tx, Ty), d(x, y)) ≥ 0. Applying Theorem 2.1, Problem (2) has unique solution x∗ = 0.

5. Application to solve system of fractional hybrid differential equations

Let X = C(J,R) be the class of continuous functions f : J → R that J = (t0, t0 + a)
denote a bounded interval in R for some a, t0 ∈ R with a > 0. Consider the following
system of fractional hybrid differential equations(in short FHDE) of order 0 < q < 1

Dq[x(t)− f(t, x(t))] = h(t, x(t)), t ∈ J,
Dq[x(t)− g(t, x(t))] = k(t, x(t)), t ∈ J,
x(t0) = x0 = 0,

(16)

where f, g, h, k : J × R→ R are continuous functions for which:

(C1) The functions x→ x− f(t, x) and x→ x− g(t, x) are increasing in R for all t ∈ J .
(C2) There exist two continuous functions s, u : J → R such that |h(t, x)| ≤ s(t) and

|k(t, x)| ≤ u(t), t ∈ J for all x ∈ R.
(C3) f(t, 0) = h(t, 0) = 0 for all t ∈ J and g(t0, 0) = 0.
(C4) (i) For all x ∈ X, we have

x(t) ≤ g(t, x(t)) +
1

Γ(q)

∫ t

0
(t− s)q−1k(s, x(s))ds, ∀t ∈ J,

⇒ g(t, x) ≤ f(t, x) and k(t, x) ≤ h(t, x), ∀t ∈ J.
(ii) For all x ∈ X, we have

g(t, x(t)) +
1

Γ(q)

∫ t

0
(t− s)q−1k(s, x(s))ds ≤ x(t), ∀t ∈ J,
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⇒ f(t, x) ≤ g(t, x) and h(t, x) ≤ k(t, x), ∀t ∈ J.
(C5) g(t, x) and k(t, x) are decreasing related to the second variable.

(C6) There exist 0 < λ < 1 such that for all x ∈ X

|f(t, x(t))| ≤ λ

2
‖x‖ and |h(t, x(t))| ≤ λΓ(q + 1)

2(t− t0)q
‖x‖.

Theorem 5.1. Let the above conditions are satisfied. Then the system of fractional hybrid
differential equations (16) has a unique solution.

Proof. We define two operator equations T,B : X → X as follow:

Tx(t) = f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds,

Bx(t) = g(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, x(s))ds.

Now, using the hypotheses (C1) and (C2) it can be shown that the FHDE (16) has a unique
solution if and only if T and B have a unique common fixed point in X. We consider the
following orthogonality relation in X:

x ⊥ y ⇔ x = 0 or y = 0 ∀x, y ∈ X. (17)

Since (X, d) is a complete metric space, then (X,⊥, d) is SO-complete. We take�1=�2=≤.
From definition, ” ≤ ” is dR-regular and X is ⊥-regular. Clearly, B is SO-continuous.
Now, we prove the following four steps to complete the proof.

Step 1: T is ⊥-preserving. Let x ⊥ y that is x = 0 or y = 0. Let x = 0. Applying (C3),
we have f(t, x) = 0 and h(t, x) = 0. Furthermore Tx = 0. Similarly, if y = 0, we have
Ty = 0. Then T is ⊥-preserving.

Step 2: Prove that x ∈ X, x(t) ≤ Bx(t), ∀t ∈ J =⇒ BTx(t) ≤ Tx(t).
Let x ∈ X with x(t) ≤ Tx(t), ∀t ∈ J . Applying part (i) of (C4), we have g(t, x(t)) ≤
f(t, x(t)) and k(t, x(t)) ≤ h(t, x(t)). Then for all t ∈ J ,

x(t) ≤g(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, x(s))ds

≤f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds = Tx(t).

Also, applying (C5), for all t ∈ J , we have

BTx(t) = g(t, Tx(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, Tx(s))ds

≤ g(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, x(s))ds

≤ f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds = Tx(t).

Step 3: Prove that for all x ∈ X, Bx(t) ≤ x(t) =⇒ Tx(t) ≤ BTx(t), ∀t ∈ J.
Let x ∈ X with Bx(t) ≤ x(t). Applying part (ii) of (C4), we have f(t, x(t)) ≤ g(t, x(t))
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and h(t, x(t)) ≤ k(t, x(t)). Then for all t ∈ J ,

x(t) ≥g(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, x(s))ds

≥f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds = Tx(t).

Also, applying (C5), we have

BTx(t) =g(t, Tx(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, Tx(s))ds

≥g(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1k(s, x(s))ds

≥f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds = Tx(t).

Step 4: Prove that there exits ζ ∈ Z such that for each ⊥-comparable elements x, y ∈ X,
(Ax R1 Bx and Cy R2 Dy) =⇒ ζ(d(Tx, Ty), d(x, y)) ≥ 0.
Since x⊥y, therefore x = 0 or y = 0. Let y = 0 and so Ty(t) = 0. Applying (C6), we have

|Tx(t)− Ty(t)| = |Tx(t)| = |f(t, x(t)) +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s, x(s))ds|

≤ |f(t, x(t))|+ 1

Γ(q)

∫ t

t0

(t− s)q−1|h(s, x(s))|ds

≤ λ

2
‖x‖+

λΓ(q + 1)

2(t− t0)q
‖x‖ 1

Γ(q)

∫ t

t0

(t− s)q−1ds

≤ λ‖x‖ = λ‖x− y‖.
Set ξ(t, s) = λs− t for all t, s ∈ [0,∞). Therefore

ξ(d(Tx(t), T y(t)), d(x(t), y(t))) = λ|x(t)− y(t)| − |Tx(t)− Ty(t)| ≥ 0.

Finally, applying Corollary 3.2, T and B have a unique solution in X which is a unique
solution of system of fractional hybrid differential equations (16). �

Remark 5.1. By Corollary 3.2 in [10] we can not guarantee the establishment of Theorem
5.1 unless we put the following condition in place of condition (C6):

There exist 0 < λ < 1 such that for all x, y ∈ X

|f(t, x(t))− f(t, y(t))| ≤ λ

2
‖x− y‖ and |h(t, x(t))− h(t, y(t))| ≤ λΓ(q + 1)

2(t− t0)q
‖x− y‖.
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