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BCK/BCI-ALGEBRAS BASED ON NEUTROSOPHIC POINTS

G. MUHIUDDIN1, YOUNG BAE JUN2, §

Abstract. In this paper, we investigate several properties of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra, (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra, (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra, and (q(kT ,kI ,kF ), ∈)-neutrosophic subalgebra.
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1. Introduction

Smarandache [10, 11] introduced the concept of neutrosophic sets which is more gen-
eral platform to extend the notions of the classical set and (intuitionistic, interval val-
ued) fuzzy set. Neutrosophic set theory is applied to several parts which is referred
to the site http://fs.gallup.unm.edu/neutrosophy.htm. Jun [3] introduced the notion of
neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic points. Boru-
mand and Jun [1] studied several properties of (∈, ∈ ∨ q)-neutrosophic subalgebras and
(q, ∈ ∨ q)-neutrosophic subalgebras in BCK/BCI-algebras. Muhiuddin et al. [9] stud-
ied further results on (∈, ∈)-neutrosophic subalgebras and ideals in BCK/BCI-algebras.
Also, Kim et al. [4] considered a general form of neutrosophic points, and then they
discussed generalizations of the papers [3] and [1]. As a generalization of (∈, ∈ ∨ q)-
neutrosophic subalgebras, they introduced the notions of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra, and (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra in BCK/BCI-algebras, and in-
vestigated several properties. They discussed characterizations of (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra, and considered relations between (∈,∈)-neutrosophic subalgebra,
(∈, q(kT ,kI ,kF ))-neutrosophic subalgebra and (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra.
Recently, Muhiuddin et al. applied the neutrosophic set theory to the BCK/BCI-algebras
on various aspects (see for e.g., [6], [7], [8], [9]).
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In this paper, we investigate further properties of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra, (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra, (∈, q(kT ,kI ,kF ))-neutrosophic
subalgebra and (q(kT ,kI ,kF ), ∈)-neutrosophic subalgebra in BCK/BCI-algebras.

2. Preliminaries

By a BCI-algebra we mean a set X with a binary operation ∗ and the special element
0 satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(a2) (x ∗ (x ∗ y)) ∗ y = 0,
(a3) x ∗ x = 0,
(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra X
is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

The collection of all BCK-algebras and all BCI-algebras are denoted by BK(X) and
BI(X), respectively. Also B(X) := BK(X) ∪ BI(X).

We refer the reader to the books [2] and [5] for further information regardingBCK/BCI-
algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [10]) is a structure of the
form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate
membership function, and AF : X → [0, 1] is a false membership function. For the sake
of simplicity, we shall use the symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1), we
consider the following sets (see [3]):

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets; Tq(A;α), Iq(A;β)
and Fq(A; γ) are neutrosophic q-subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are
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neutrosophic ∈ ∨ q-subsets. It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α), (1)

I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β), (2)

F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ). (3)

Given Φ,Ψ ∈ {∈, q,∈ ∨ q}, a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is called
a (Φ, Ψ)-neutrosophic subalgebra of X (see [3]) if the following assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy) ⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy) ⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy) ⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(4)

for all x, y ∈ X, αx, αy, βx, βy,∈ (0, 1] and γx, γy ∈ [0, 1).
In what follows, let kT , kI and kF denote arbitrary elements of [0, 1) unless otherwise

specified. If kT , kI and kF are the same number in [0, 1), then it is denoted by k, i.e.,
k = kT = kI = kF .

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1), we
consider the following sets (see [4]):

TqkT (A;α) := {x ∈ X | AT (x) + α+ kT > 1},
IqkI (A;β) := {x ∈ X | AI(x) + β + kI > 1},
FqkF

(A; γ) := {x ∈ X | AF (x) + γ + kF < 1},
T∈∨ qkT (A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α+ kT > 1},
I∈∨ qkI (A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β + kI > 1},
F∈∨ qkF (A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ + kF < 1}.

We say TqkT (A;α), IqkI (A;β) and FqkF
(A; γ) are neutrosophic qk-subsets; and T∈∨ qkT (A;α),

I∈∨ qkI (A;β) and F∈∨ qkF (A; γ) are neutrosophic ∈ ∨ qk-subsets. For Φ ∈ {∈, q, qk, qkT , qkI ,
qkF , ∈ ∨ q, ∈ ∨ qk, ∈ ∨ qkT , ∈ ∨ qkI , ∈ ∨ qkF }, the element of TΦ(A;α) (resp., IΦ(A;β) and
FΦ(A; γ)) is called a neutrosophic TΦ-point (resp., neutrosophic IΦ-point and neutrosophic
FΦ-point) with value α (resp., β and γ).

It is clear that

T∈∨ qkT (A;α) = T∈(A;α) ∪ TqkT (A;α), (5)

I∈∨ qkI (A;β) = I∈(A;β) ∪ IqkI (A;β), (6)

F∈∨ qkF (A; γ) = F∈(A; γ) ∪ FqkF
(A; γ). (7)

3. Generalizations of neutrosophic subalgebras

Definition 3.1 ([4]). A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is called an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X if

x ∈ T∈(A;αx), y ∈ T∈(A;αy) ⇒ x ∗ y ∈ T∈∨qkT (A;αx ∧ αy),

x ∈ I∈(A;βx), y ∈ I∈(A;βy) ⇒ x ∗ y ∈ I∈∨ qkI (A;βx ∧ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy) ⇒ x ∗ y ∈ F∈∨ qkF (A; γx ∨ γy)

(8)

for all x, y ∈ X, αx, αy, βx, βy,∈ (0, 1] and γx, γy ∈ [0, 1).

An (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra with kT = kI = kF = k is called an (∈,
∈ ∨qk)-neutrosophic subalgebra.
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Lemma 3.1 ([4]). Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), the following
are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X.
(2) A = (AT , AI , AF ) satisfies the following assertion.

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }
AI(x ∗ y) ≥

∧
{AI(x), AI(y), 1−kI

2 }
AF (x ∗ y) ≤

∨
{AF (x), AF (y), 1−kF

2 }

 . (9)

Theorem 3.1. If A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra
of X ∈ B(X), then neutrosophic qk-subsets TqkT (A;α), IqkI (A;β) and FqkF

(A; γ) are

subalgebras of X for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ) whenever they are

nonempty.

Proof. Assume that TqkT (A;α), IqkI (A;β) and FqkF
(A; γ) are nonempty neutrosophic qk-

subsets for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ). Let x, y ∈ TqkT (A;α). Then

AT (x) + α+ kT > 1 and AT (y) + α+ kT > 1. Using Lemma 3.1 implies that

AT (x ∗ y) + α+ kT ≥
∧
{AT (x), AT (y), 1−kT

2 }+ α+ kT

=
∧
{AT (x) + α+ kT , AT (y) + α+ kT ,

1−kT
2 + α+ kT }

> 1

and so that x ∗ y ∈ TqkT (A;α). Hence TqkT (A;α) is a subalgebra of X. Similarly, we can

induce that IqkI (A;β) is a subalgebra of X. Now, let x, y ∈ FqkF
(A; γ). Then AF (x) +

γ + kF < 1 and AF (y) + γ + kF < 1. It follows from Lemma 3.1 that

AF (x ∗ y) + γ + kF ≤
∨
{AF (x), AF (y), 1−kF

2 }+ γ + kF

=
∨
{AF (x) + γ + kF , AF (y) + γ + kF ,

1−kF
2 + γ + kF }

< 1.

Thus x ∗ y ∈ FqkF
(A; γ). Therefore TqkT (A;α), IqkI (A;β) and FqkF

(A; γ) are subalgebras

of X. �

Corollary 3.1 ([3]). If A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of
X ∈ B(X), then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of
X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5) whenever they are nonempty.

Proof. It follows from taking kT = kI = kF = 0 in Theorem 3.1. �

Definition 3.2 ([4]). A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is called a
(q(kT ,kI ,kF ), ∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X if

x ∈ TqkT (A;αx), y ∈ TqkT (A;αy) ⇒ x ∗ y ∈ T∈∨ qkT (A;αx ∧ αy),

x ∈ IqkI (A;βx), y ∈ IqkI (A;βy) ⇒ x ∗ y ∈ I∈∨ qkI (A;βx ∧ βy),

x ∈ FqkF
(A; γx), y ∈ FqkF

(A; γy) ⇒ x ∗ y ∈ F∈∨ qkF (A; γx ∨ γy)

(10)

for all x, y ∈ X, αx, αy, βx, βy,∈ (0, 1] and γx, γy ∈ [0, 1).

Theorem 3.2. If A = (AT , AI , AF ) is a (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra of X ∈ B(X), then the nonempty neutrosophic ∈ ∨ qk-subsets T∈∨ qkT (A;α),

I∈∨ qkI (A;β) and F∈∨ qkF (A; γ) are subalgebras of X for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1]

and γ ∈ [0, 1−kF
2 ).
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Proof. Assume that T∈∨ qkT (A;α), I∈∨ qkI (A;β) and F∈∨ qkF (A; γ) are nonempty neutro-

sophic ∈ ∨ qk-subsets for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ). Let x, y ∈

I∈∨ qkI (A;β). Then

AI(x) ≥ β or AI(x) + β + kI > 1

and

AI(y) ≥ β or AI(y) + β + kI > 1.

If AI(x)+β+kI > 1 and AI(y)+β+kI > 1, then obviously x∗y ∈ I∈∨ qkI (A;β). Assume

that AI(x) ≥ β and AI(y) + β + kI > 1. Then AI(x) + β + kI ≥ 2β + kI > 1. Hence
x∗y ∈ I∈∨ qkI (A;β). By the similar way, if AI(y) ≥ β and AI(x)+β+kI > 1, then x∗y ∈
I∈∨ qkI (A;β). Suppose that AI(x) ≥ β and AI(y) ≥ β. Then AI(x)+β+kI ≥ 2β+kI > 1

and AI(y)+β+kI ≥ 2β+kI > 1. It follows that x∗y ∈ I∈∨ qkI (A;β). Hence I∈∨ qkI (A;β)

is a subalgebra of X. Similarly, we can verify that T∈∨ qkT (A;α) is a subalgebra of X.

Now, let x, y ∈ F∈∨ qkF (A; γ). Then

x ∈ F∈(A; γ) or x ∈ FqkF
(A; γ)

and

y ∈ F∈(A; γ) or y ∈ FqkF
(A; γ).

If x ∈ FqkF
(A; γ) and y ∈ FqkF

(A; γ), then clearly x∗y ∈ F∈∨ qkF (A; γ). If x ∈ F∈(A; γ) and

y ∈ F∈(A; γ), then AF (x)+γ+kF ≤ 2γ+kF < 1 and AF (y)+γ+kF ≤ 2γ+kF < 1, that
is, x, y ∈ FqkF

(A; γ) which implies that x ∗ y ∈ F∈∨ qkF (A; γ). Suppose that x ∈ F∈(A; γ)

and y ∈ FqkF
(A; γ). Then AF (x) + γ + kF ≤ 2γ + kF < 1, i.e., x ∈ FqkF

(A; γ). It

follows that x ∗ y ∈ F∈∨ qkF (A; γ). Similarly, if x ∈ FqkF
(A; γ) and y ∈ F∈(A; γ), then

x ∗ y ∈ F∈∨ qkF (A; γ). Therefore F∈∨ qkF (A; γ) is a subalgebra of X. �

Corollary 3.2 ([3]). If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra of
X ∈ B(X), then the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5).

Given a neutrosophic set A = (AT , AI , AF ) in a set X, consider the following sets:

XkT := {x ∈ X | AT (x) > kT },

XkI := {x ∈ X | AI(x) > kI},

and

XkF := {x ∈ X | AF (x) < kF }.

Theorem 3.3. Let A = (AT , AI , AF ) be an (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra of

X ∈ B(X). If kT ∈ [0, 1−AT (x)∧AT (y)
2 ], kI ∈ [0, 1−AI(x)∧AI(y)

2 ] and kF ∈ (1−AF (x)∨AF (y)
2 , 1),

then the sets XkT , XkI and XkF are subalgebras of X.

Proof. Let x, y ∈ XkT . Then AT (x) > kT and AT (y) > kT . If AT (x ∗ y) ≤ kT , then

AT (x ∗ y) + α+ kT ≤ 2kT + α ≤ 1

where α = AT (x)∧AT (y). Hence x∗y /∈ TqkT (A;α), a contradiction since x ∈ T∈(A;AT (x))

and y ∈ T∈(A;AT (y)). Thus AT (x ∗ y) > kT , that is, x ∗ y ∈ XkT . Similarly, if x, y ∈ XkI ,
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then x ∗ y ∈ XkI . Let x, y ∈ XkF . Then AF (x) < kF and AF (y) < kF . If AF (x ∗ y) ≥ kF ,
then

AF (x ∗ y) + γ + kF ≥ 2kF + γ ≥ 1

where γ = AF (x) ∨ AF (y), and so x ∗ y /∈ FqkF
(A; γ). This is a contradiction, and thus

AF (x ∗ y) < kF , i.e., x ∗ y ∈ XkF . Therefore XkT , XkI and XkF are subalgebras of X. �

Corollary 3.3. Let A = (AT , AI , AF ) be an (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra of

X ∈ B(X). If kT ∈ [0, 1−AT (x)∧AT (y)
2 ], kI ∈ [0, 1−AI(x)∧AI(y)

2 ] and kF ∈ (1−AF (x)∨AF (y)
2 , 1),

then XkT ∩XkI ∩XkF is a subalgebra of X.

Theorem 3.4. If A = (AT , AI , AF ) is a (q(kT ,kI ,kF ),∈)-neutrosophic subalgebra of X ∈
B(X) with kF ∈ (0, 1

2 ], then the sets XkT , XkI and XkF are subalgebras of X.

Proof. Let x, y ∈ XkI . Then AI(x) > kI and AI(y) > kI , which imply that AI(x)+kI+1 >
1 and AI(y) + kI + 1 > 1. Hence x, y ∈ IqkI (A; 1), and so x ∗ y ∈ I∈(A; 1). If x ∗ y /∈ XkI ,

then AI(x ∗ y) ≤ kI < 1 = 1 ∧ 1, that is, x ∗ y /∈ I∈(A; 1 ∧ 1) = I∈(A; 1). This is a
contradiction, and thus x ∗ y ∈ XkI . By the similar way, we can verify that if x, y ∈ XkT ,
then x∗y ∈ XkT . Now, let x, y ∈ XkF . Then AF (x) < kF and AF (y) < kF . Since kF ≤ 1

2 ,
it follows that AF (x) + kF + 0 < 1 and AF (y) + kF + 0 < 1, that is, x, y ∈ FqkF

(A; 0).

Thus x ∗ y ∈ F∈(A; 0), and so AF (x ∗ y) = 0 < kF , i.e., x ∗ y ∈ XkF . Therefore XkT , XkI
and XkF are subalgebras of X. �

Theorem 3.5. Given a a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), the nonempty
neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all α ∈
(1−kT

2 , 1], β ∈ (1−kI
2 , 1] and γ ∈ [0, 1−kF

2 ) if and only if the following assertion is valid.

(∀x, y ∈ X)

 AT (x ∗ y) ∨ 1−kT
2 ≥ AT (x) ∧AT (y)

AI(x ∗ y) ∨ 1−kI
2 ≥ AI(x) ∧AI(y)

AF (x ∗ y) ∧ 1−kF
2 ≤ AF (x) ∨AF (y)

 . (11)

Proof. Suppose that the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ)

are subalgebras of X for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ). If there are

a, b ∈ X such that AT (a ∗ b) ∨ 1−kT
2 < AT (a) ∧ AT (b) := α, then α ∈ (1−kT

2 , 1] and
a, b ∈ T∈(A;α). It follows that a ∗ b ∈ T∈(A;α), that is, AT (a ∗ b) ≥ α since T∈(A;α)

is a subalgebra of X. This is a contradiction, and so AT (x ∗ y) ∨ 1−kT
2 ≥ AT (x) ∧ AT (y)

for all x, y ∈ X. By the similar way, we know that AI(x ∗ y) ∨ 1−kI
2 ≥ AI(x) ∧ AI(y) for

all x, y ∈ X. Now, assume that AF (a ∗ b) ∧ 1−kF
2 > AF (a) ∨ AF (b) for some a, b ∈ X.

Then a, b ∈ F∈(A; γ) and γ ∈ [0, 1−kF
2 ) where γ = AF (a) ∨AF (b). But a ∗ b /∈ F∈(A; γ), a

contradiction. Thus AF (x ∗ y) ∧ 1−kF
2 ≤ AF (x) ∨AF (y) for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X ∈ B(X) which satisfies

the condition (11). Let a, b, x, y ∈ X, α ∈ (1−kT
2 , 1] and β ∈ (1−kI

2 , 1] be such that
x, y ∈ T∈(A;α) and a, b ∈ I∈(A;β). Then

AT (x ∗ y) ∨ 1−kT
2 ≥ AT (x) ∧AT (y) ≥ α > 1−kT

2 ,

AI(a ∗ b) ∨ 1−kI
2 ≥ AI(a) ∧AI(b) ≥ β > 1−kI

2 .

It follows that AT (x∗y) ≥ α and AI(a∗b) ≥ β, that is, x∗y ∈ T∈(A;α) and a∗b ∈ I∈(A;β).

Now, let x, y ∈ F∈(A; γ) for x, y ∈ X and γ ∈ [0, 1−kF
2 ). Then

AF (x ∗ y) ∧ 1−kF
2 ≤ AF (x) ∨AF (y) ≤ γ < 1−kF

2 ,
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and so AF (x ∗ y) ≤ γ. Hence x ∗ y ∈ F∈(A; γ). Therefore T∈(A;α), I∈(A;β) and F∈(A; γ)

are subalgebras of X for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ). �

Theorem 3.6. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the nonempty
neutrosophic qk-subsets TqkT (A;α), IqkI (A;β) and FqkF

(A; γ) are subalgebras of X for all

α ∈ (0, 1−kT
2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [1−kF
2 , 1), then the following assertion is valid.

(∀x, y ∈ X)

 x ∈ TqkT (A;αx), y ∈ TqkT (A;αy) ⇒ x ∗ y ∈ T∈(A;αx ∨ αy)

x ∈ IqkI (A;βx), y ∈ IqkI (A;βy) ⇒ x ∗ y ∈ I∈(A;βx ∨ βy)

x ∈ FqkF
(A; γx), y ∈ FqkF

(A; γy) ⇒ x ∗ y ∈ F∈(A; γx ∧ γy)

 . (12)

for all x, y ∈ X, αx, αy ∈ (0, 1−kT
2 ], βx, βy ∈ (0, 1−kI

2 ] and γx, γy ∈ [1−kF
2 , 1).

Proof. Let x, y ∈ X and αx, αy ∈ (0, 1−kT
2 ] be such that x ∈ TqkT (A;αx) and y ∈

TqkT (A;αy). Then x, y ∈ TqkT (A;αx ∨ αy). Since αx ∨ αy ∈ (0, 1−kT
2 ], it follows from

the hypothesis that x ∗ y ∈ TqkT (A;αx ∨ αy). Hence

AT (x ∗ y) > 1− (αx ∨ αy)− kT ≥ αx ∨ αy,

and so x ∗ y ∈ T∈(A;αx ∨ αy). Similarly, we can verify that if x ∈ IqkI (A;βx) and

y ∈ IqkI (A;βy), then x ∗ y ∈ I∈(A;βx ∨ βy). Now, let x, y ∈ X and γx, γy ∈ [1−kF
2 , 1)

be such that x ∈ FqkF
(A; γx) and y ∈ FqkF

(A; γy). Then x, y ∈ FqkF
(A; γx ∧ γy) since

γx ∧ γy ∈ [1−kF
2 , 1), which implies from hypothesis that x ∗ y ∈ FqkF

(A; γx ∧ γy). Thus

AF (x ∗ y) < 1− (γx ∧ γy)− kF ≤ 1−kF
2 ≤ γx ∧ γy

and hence x ∗ y ∈ F∈(A; γx ∧ γy). �

Corollary 3.4 ([1]). Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the
nonempty neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of X for
all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1), then the following assertion is valid.

(∀x, y ∈ X)

 x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈(A;αx ∨ αy)

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈(A;βx ∨ βy)

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈(A; γx ∧ γy)

 .

for all x, y ∈ X, αx, αy ∈ (0, 0.5] and γx, γy ∈ [0.5, 1).

Theorem 3.7. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the nonempty
neutrosophic ∈ ∨ qk-subsets T∈∨ qkT (A;α), I∈∨ qkI (A;β) and F∈∨ qkF (A; γ) are subalgebras

of X for all α ∈ (0, 1−kT
2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [1−kF
2 , 1), then the following assertion is

valid.

(∀x, y ∈ X)

 x ∈ TqkT (A;αx), y ∈ TqkT (A;αy) ⇒ x ∗ y ∈ T∈∨ qkT (A;αx ∨ αy)

x ∈ IqkI (A;βx), y ∈ IqkI (A;βy) ⇒ x ∗ y ∈ I∈∨ qkI (A;βx ∨ βy)

x ∈ FqkF
(A; γx), y ∈ FqkF

(A; γy) ⇒ x ∗ y ∈ F∈∨ qkF (A; γx ∧ γy)

 . (13)

for all x, y ∈ X, αx, αy ∈ (0, 1−kT
2 ], βx, βy ∈ (0, 1−kI

2 ] and γx, γy ∈ [1−kF
2 , 1).

Proof. Assume that x ∈ IqkI (A;βx) and y ∈ IqkI (A;βy) for x, y ∈ X and βx, βy ∈ (0, 1−kI
2 ].

Then x, y ∈ I∈∨ qkI (A;βx ∨ βy) where βx ∨ βy ∈ (0, 1−kI
2 ]. It follows from the assumption

that x ∗ y ∈ I∈∨ qkI (A;βx ∨ βy). By the similar way, we know that if x ∈ TqkT (A;αx) and

y ∈ TqkT (A;αy), then x ∗ y ∈ T∈∨ qkT (A;αx ∨ αy). Let x, y ∈ X and γx, γy ∈ [1−kF
2 , 1)
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be such that x ∈ FqkF
(A; γx) and y ∈ FqkF

(A; γy). Then x, y ∈ F∈∨ qkF (A; γx ∧ γy) with

γx ∧ γy ∈ [1−kF
2 , 1). Since F∈∨ qkF (A; γx ∧ γy) is a subalgebra of X by hypothesis, we have

x ∗ y ∈ F∈∨ qkF (A; γx ∧ γy). �

Corollary 3.5 ([1]). Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the
nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are subalge-
bras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1), then the following assertion is valid.

(∀x, y ∈ X)

 x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy)

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy)

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

 .

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5] and γx, γy ∈ [0.5, 1).

Theorem 3.8. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the nonempty
neutrosophic ∈ ∨ qk-subsets T∈∨ qkT (A;α), I∈∨ qkI (A;β) and F∈∨ qkF (A; γ) are subalgebras

of X for all α ∈ (1−kT
2 , 1], β ∈ (1−kI

2 , 1] and γ ∈ [0, 1−kF
2 ), then A = (AT , AI , AF ) satisfies

(13) for all αx, αy ∈ (1−kT
2 , 1], βx, βy ∈ (1−kI

2 , 1] and γx, γy ∈ [0, 1−kF
2 ).

Proof. It is similar to the proof of Theorem 3.7. �

Corollary 3.6 ([1]). Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X), if the
nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are subalge-
bras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5), then the following assertion is valid.

(∀x, y ∈ X)

 x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy)

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy)

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

 .

for all x, y ∈ X, αx, αy, βx, βy ∈ (0.5, 1] and γx, γy ∈ [0, 0.5).

4. Conclusion

In this paper, we investigate further properties of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra, (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra, (∈, q(kT ,kI ,kF ))-neutrosophic
subalgebra and (q(kT ,kI ,kF ), ∈)-neutrosophic subalgebra in BCK/BCI-algebras. We hope
that this work will provide a deep impact on the upcoming research in this field and other
related areas to open up new horizons of interest and innovations. Indeed, this work may
serve as a foundation for further study of neutrosophic subalgebras in BCK/BCI-algebras.
To extend these results, one can further study the neutrosophic set theory of different al-
gebras such as MTL-algerbas, BL-algebras, MV-algebras, EQ-algebras, R0-algebras and
Q-algebras etc. One may also apply this concept to study some applications in many fields
like decision making, knowledge base systems, medical diagnosis, data analysis and graph
theory etc.
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