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1. Introduction

Throughout this paper by a graph we mean a finite, simple and undirected one. The
vertex set and the edge set of a graph G are denoted by V (G) and E(G) respectively. A
graph labeling is an assignment of integers to the vertices or edges or both, subject to
certain conditions. Terms and notations not defined here are used in the sense of Harary
[3]. There are several types of labeling. An excellent survey of graph labeling is available
in [2]. The concept of mean labeling was introduced by Somasundaram and Ponraj [5].

A graph G(V,E) with p vertices and q edges is called a mean graph if there is an
injective function f that maps V (G) to {0, 1, 2, ..., q} such that for each edge uv, labeled

with f(u)+f(v)
2 if f(u)+f(v) is even and f(u)+f(v)+1

2 if f(u)+f(v) is odd. Then the resulting
edge labels are distinct. The notion odd mean labeling was introduced by Manickam and
Marudai in [4].
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(transformed tree), T @Pn, T @2Pn and 〈T õK1,n〉 (where T is a Tp-tree), are even vertex
labeling is called an even vertex odd mean graph. In this paper, we prove that Tp-tree

2 is a bijection. A graph that admits even vertex odd meandefined by f∗(uv) = f(u)+f(v)

{0, 2, 4, ..., 2q} satisfying f is 1-1 and the induced map f∗ : E(G) → {1, 3, 5, ..., 2q − 1}
said have an even vertex odd mean labeling if there exists a function f : V (G) →
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Let G(V,E) be a graph with p vertices and q edges. A graph G is said to be odd
mean if there exists a function f : V (G)→ {0, 1, 2, 3, ..., 2q− 1} satisfying f is 1-1 and the
induced map f∗ : E(G)→ {1, 3, 5, ..., 2q − 1} defined by

f∗(uv) =

{
f(u)+f(v)

2 if f(u) + f(v) is even
f(u)+f(v)+1

2 if f(u) + f(v) is odd

The concept of even vertex odd mean labeling was introduced in [6]. Let G(V,E)
be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean
labeling if there exists a function f : V (G) → {0, 2, 4, ..., 2q} satisfying f is 1-1 and the

induced map f∗ : E(G)→ {1, 3, 5, ..., 2q − 1} defined by f∗(uv) = f(u)+f(v)
2 is a bijection.

A graph that admits even vertex odd mean labeling is called an even vertex odd mean
graph. Motivated by the concepts of even vertex odd mean labeling [6] and Tp-tree [1], in
this paper we prove that Tp-tree, T@Pn, T@2Pn 〈T õK1,n〉 admit even vertex odd mean
labeling.

We use the following definitions in the subsequent sequel.

2. Definition

Definition 2.1. Let T be a graph and uo and vo be two adjacent vertices in V (T ). Let
there be two pendant vertices u and v in T such that the length of uo - u path is equal
to the length vo - v path. If the edge uovo is deleted from T and u, v are joined by an
edge uv, then such a transformation of T is called an elemantary parallel transformation
(or an EPT) and the edge uovo is called a transformable edge. If by a sequence of EPT’s
T can be reduced to a path, then T is called a Tp-tree (transformed tree) and any such
sequence regarded as a composition of mappings (EPT’s) denoted by P , is called a parallel
transformation of T . The path, the image of T under P is denoted as P (T ).

Definition 2.2. Let T be a Tp-tree with m vertices. Let T@Pn be the graph obtained from

T and m copies of Pn by identifying one pendant vertex of ith copy of Pn with ith vertex
of T , where Pn is a path of length n − 1. Let T@2Pn be the graph obtained from T by
identifying the pendant vertices of two vertex disjoint paths of equal lengths n− 1 at each
vertex of the Tp-tree T .

Definition 2.3. Let T be a Tp-tree with m vertices. Let 〈T õK1,n〉 be a graph obtained

from T and m copies of K1,n by joining the central vertex of ith copy of K1,n with ith

vertex of T by an edge.

3. Even Vertex Odd Mean Labeling of Transformed Trees

Theorem 3.1. Every Tp-tree T is an even vertex odd mean graph.

Proof. Let T be a Tp-tree with n vertices.
By the definition of Tp-tree there exists a parallel transformation P of T such that for the
path P (T ) we have (i) V (P (T )) = V (T ) and
(ii) E(P (T )) = (E(T )\Ed) ∪ EP ,
where Ed is the set of edges deleted from T and EP is the set of edges newly added through
the sequence P = (P1, P2, ..., PK) of the EPT’s P used to arrive at the path P (T ). Clearly
Ed and Ep have the same number of edges. Now, denote the vertices of P (T ) successively
as v1, v2, v3, ..., vn starting from one pendant vertex of P (T ) right up to the other.
Define f : V (T )→ {0, 2, 4, ..., 2q} as follows:
f(vi) = 2(i− 1) for 1 ≤ i ≤ n.
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Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m and P1 be
the EPT that deletes the edge vivj and adds the edge vi+tvj−t where t is the distance of
vi from vi+t and also the distance of vj from vj−t.
Let P be a parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t which implies j = i + 2t + 1.
The induced label of the edge vivj is given by,

f∗(vivj) = f∗(vivi+2t+1) = f(vi)+f(vi+2t+1)
2 = 2(i + t)− 1 ......(1)

and f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi+t)+f(vi+t+1)
2 = 2(i + t)− 1 .....(2)

Therefore from (1) and (2), f∗(vivj) = f∗(vi+tvj−t).
Let ej = vjvj+1 for 1 ≤ j ≤ n− 1.
For the vertex labeling f , the induced edge label f∗ is defined as follows:
f∗(ej) = 2j − 1 for 1 ≤ j ≤ n− 1.
Therefore, f is an even vertex odd mean labeling of T .
Hence, T is an even vertex odd mean graph.
For example, an even vertex odd mean labeling of a TP -tree with 14 vertices is given in
Figure 1. �

Figure 1. TP -tree with 14 vertices.

Theorem 3.2. Let T be a Tp-tree with m vertices. Then the graph T@Pn is an even
vertex odd mean graph.

Proof. Let T be a Tp-tree with m vertices. By the definition of a Tp-tree there exists a
parallel transformation P of T such that for the path P (T ) we have (i) V (P (T )) = V (T )
and (ii) E(P (T )) = (E(T )\Ed) ∪ Ep, where Ed is the set of edges deleted from T and Ep

is the set of edges newly added through the sequence P = (P1, P2, ..., PK) of the EPT’s
P used to arrive at the path P (T ). Clearly Ed and Ep have the same number of edges.
Now denote the vertices of P (T ) successively as v1, v2, v3, ..., vm starting from one pendant

vertex of P (T ) right up to other. Let uj1, u
j
2, u

j
3, ..., u

j
n (1 ≤ j ≤ m) be the vertices of jth

copy of Pn. Then V (T@Pn) = {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m with ujn = vj}.
Define f : V (T@Pn)→ {0, 2, 4, ..., 2q} as follows:

f(uji ) = 2n(j − 1) + 2(i− 1) if j is odd, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

f(uji ) = 2n(j − 1) + 2(n− i) if j is even, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m and P1 be
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the EPT that deletes the edge vivj and adds the edge vi+tvj−t where t is the distance of
vi from vi+t and also the distance of vj from vj−t.
Let P be a parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t which implies j = i + 2t + 1.
The induced label of the edge vivj is given by,

f∗(vivj) = f∗(vivi+2t+1) = f(vi)+f(vi+2t+1)
2 = 2n(i + t)− 1 ......(3)

f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi)+f(vi+2t+1)
2 = 2n(i + t)− 1......(4)

Therefore from (3) and (4), f∗(vivj) = f∗(vi+tvj−t).

Let eji = ujiu
j
i+1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m and ej = vjvj+1 for 1 ≤ j ≤ m− 1.

For the vertex labeling f , the induced edge label f∗ is defined as follows:

f∗(eji ) = 2n(j − 1) + 2i− 1 if j is odd, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m,

f∗(eji ) = 2(nj − i)− 1 if j is even, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m,
f∗(ej) = 2nj − 1 for 1 ≤ j ≤ m− 1.
Therefore,f is an even vertex odd mean labeling of T@Pn. Hence T@Pn is an even vertex
odd mean graph. For example, an even vertex odd mean labeling of T@P4, where T is a
Tp-tree with 8 vertices, is given in Figure 2. �

Figure 2. T@P4

Theorem 3.3. Let T be a Tp-tree with m vertices. Then the graph T@2Pn is an even
vertex odd mean graph.

Proof. Let T be a Tp-tree with m vertices. By the definition of a Tp-tree there exists a
parallel transformation P of T such that for the path P (T ) we have (i) V (P (T )) = V (T )
and (ii) E(P (T )) = (E(T )\Ed) ∪ Ep, where Ed is the set of edges deleted from T and Ep

is the set of edges newly added through the sequence P = (P1, P2, ..., PK) of the EPT’s P
used to arrive at the path P (T ). Clearly Ed and Ep have the same number of edges.
Now denote the vertices of P (T ) successively as v1, v2, v3, ..., vm starting from one pendant

vertex of P (T ) right up to other. Let uj1,1, u
j
1,2, u

j
1,3, ..., u

j
1,n and uj2,1, u

j
2,2, u

j
2,3, ..., u

j
2,n
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(1 ≤ j ≤ m) be the vertices of the two vertex disjoint paths identified with jth vertex of T

such that vj = uj1,n = uj2,n. Then V (T@2Pn) = {vj , uj1,i, u
j
2,i : 1 ≤ i ≤ n, 1 ≤ j ≤ m with

vj = uj1,n = uj2,n}. Define f : V (T@2Pn)→ {0, 2, 4, ..., 2q} as follows:

f(uj1,i) = 2((2n− 1)j − 2n + i) for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

f(uj2,i) = 2((2n− 1)j − i) for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ m and P1 be
the EPT that deletes the edge vivj and adds the edge vi+tvj−t where t is the distance of
vi from vi+t and also the distance of vj from vj−t.
Let P be a parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t which implies j = i + 2t + 1.
The induced label of the edge vivj is given by,

f∗(vivj) = f∗(vivi+2t+1) = f(vi)+f(vi+2t+1)
2 = 2(2n− 1)(i + t)− 1 ......(5)

f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi)+f(vi+2t+1)
2 = 2(2n− 1)(i + t)− 1......(6)

Therefore from (5) and (6), f∗(vivj) = f∗(vi+tvj−t).

ej1,i = uj1,iu
j
1,i+1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

ej2,i = uj2,iu
j
2,i+1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m and

ej = vjvj+1 for 1 ≤ j ≤ m− 1.
For the vertex labeling f , the induced edge label f∗ is defined as follows:
f∗(vjvj+1) = 2j(2n− 1)− 1 for 1 ≤ j ≤ m− 1,

f∗(ej1,i) = 2(2n− 1)j + 2i− 4n + 1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m,

f∗(ej2,i) = 2(2n− 1)j − 2i− 1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m,
Therefore,f is an even vertex odd mean labeling of T@2Pn.
Hence T@2Pn is an even vertex odd mean graph.
For example, an even vertex odd mean labeling of T@2P3, where T is a Tp-tree with 12
vertices, is given in Figure 3. �

Theorem 3.4. Let T be a Tp-tree with 2m vertices. Then the graph 〈T õK1,n〉 is an even
vertex odd mean graph.

Proof. Let T be a Tp-tree with 2m vertices.
By the definition of Tp-tree there exists a parallel transformation P of T such that for the
path P (T ), we have (i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T )\Ed) ∪ Ep,
where Ed is the set of edges deleted from T and Ep is the set of edges newly added through
the sequence P = (P1, P2, ..., PK) of the EPT’s P used to arrive at the path P (T ).
Clearly Ed and Ep have the same number of edges.
Now denote the vertices of P (T ) successively as v1, v2, v3, ..., v2m starting from one pendant
vertex of P (T ) right up to other.
Let ui0, u

i
1, u

i
2, ..., u

i
n be the vertices of the ith copy of K1,n, attached with vi of T by an

edge.
Define f : V (〈T õK1,n〉)→ {0, 2, 4, ..., 2q} as follows:
f(vj) = 2(n + 2)(j − 1) if j is odd and 1 ≤ j ≤ 2m,
f(vj) = 2(n + 2)(j − 2) + 4n + 6 if j is even and 1 ≤ j ≤ 2m,

f(uj0) = 2(n + 2)(j − 1) + 2 if j is odd and 1 ≤ j ≤ 2m,

f(uj0) = 2(n + 2)(j − 2) + 4n + 4 if j is even and 1 ≤ j ≤ 2m,

f(uji ) = 2(n + 2)(j − 1) + 4i if j is odd and 1 ≤ j ≤ 2m, 1 ≤ i ≤ n,

f(uji ) = 2(n + 2)(j − 2) + 4i + 2 if j is even and 1 ≤ j ≤ 2m, 1 ≤ i ≤ n.
Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i ≤ j ≤ 2m and
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Figure 3. T@2P3

P1 be the EPT that deletes the edge vivj and adds the edge vi+tvj−t

where t is the distance of vi from vi+t and also the distance of vj from vj−t.
Let P be a parallel transformation of T that contains P1 as one of the constituent EPT’s.
Since vi+tvj−t is an edge in the path P (T ), i + t + 1 = j − t which implies j = i + 2t + 1.
The induced label of the edge vivj is given by,

f∗(vivj) = f∗(vivi+2t+1) = f(vi)+f(vi+2t+1)
2 = 2(n + 2)(i + t− 1) + 2n + 3 ......(7)

f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi)+f(vi+2t+1)
2 = 2(n + 2)(i + t − 1) + 2n + 3 ......(8).

Therefore from (7) and (8), f∗(vivj) = f∗(vjvj−t).

Let eji = uj0u
j
i for 1 ≤ j ≤ 2m, 1 ≤ i ≤ n.

For the vertex labeling f , the induced edge label f∗ is defined as follows:
f∗(vjvj+1) = 2(n + 2)(j − 1) + 2n + 3 for 1 ≤ j ≤ 2m− 1,

f∗(vju
j
0) = 2(n + 2)(j − 1) + 1 if j is odd and 1 ≤ j ≤ 2m,

f∗(vju
j
0) = 2(n + 2)j − 3 if j is even and 1 ≤ j ≤ 2m,

f∗(uj0u
j
i ) = 2(n + 2)(j − 1) + 2i + 1 if j is odd and 1 ≤ j ≤ 2m, 1 ≤ i ≤ n,

f∗(uj0u
j
i ) = 2(n + 2)(j − 2) + 2(n + i) + 3 if j is even and 1 ≤ j ≤ 2m,1 ≤ i ≤ n.

Therefore, f is an even vertex odd mean labeling of 〈T õK1,n〉.
Hence 〈T õK1,n〉 is an even vertex odd mean graph.
For example, an even vertex odd mean labeling of 〈T õK1,5〉, where T is a Tp-tree with 8
vertices, is given in Figure 4. �
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Figure 4. 〈T õK1,5〉
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