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ABSTRACT 

 

Desirability functions have been one of the most important multiresponse optimization 

technique since the early eighties. Main reasons for this popularity might be counted as the 

convenience of the implementation of the method and the availability of it in many 

experimental design software packages. Technique itself involves somehow subjective 

parameters such as the importance coefficients between response characteristics that are 

used to calculate overall desirability, weights used in determining the shape of each 

individual response and the size of the specification band of the response. However, the 

impact of these sensitive parameters on the solution set is mostly uninvestigated.  This 

paper proposes a procedure to analyze the sensitivity of the important characteristic 

parameters of desirability functions and their impact on pareto-optimal solution set. The 

proposed procedure uses the experimental design tools on the solution space and estimates 

a prediction equation on the overall desirability to identify the sensitive parameters. For 

illustration, a classical desirability example is selected from the literature and results are 

given along with the discussion. 
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1.  Introduction 

A typical product or process development problem involves determining the desired values 

of multiple responses of interest by finding the optimum settings of input variables in a 

defined solution space. These responses might be the quality characteristics of a product or 

observed outputs of a manufacturing process. In either case, practitioners face an obvious 

dilemma of simultaneous optimization of all these response variables. In rare cases, 

responses of interest do not compete with each other and the problem at hand can be solved 

by deducting it into a univariate problem. But most of the time an improvement in the 

desired value of one response variable can only be achieved by the setback in the value(s) 

of one or more responses. The solution of this dilemma has become one of the most 

interesting fields of various engineering disciplines since the early seventies under the title 

of “multiresponse optimization problem”. 

 By the evolution of Response Surface Methodology (RSM), many optimization 

schemes have been used to solve the Multiresponse Optimization (MO) problem. Some of 

these approaches are modelled by optimizing one response subject to other responses set at 

certain bound values as constraints. Hartmann and Beaumont (1968) involve linear form of 

this kind of approach where Myers and Montgomery (1995) formulated the problem in a 

nonlinear manner. Khuri and Conlon (1981) introduced a distance approach, based on the 

overall closeness of the response variables to their optimal values. Quadratic loss functions 

of Taguchi (1979) also proved to be effective by many authors such as Pignatiello (1995) 

and Spiring (1998), in MO.  

Desirability functions, originally introduced by Harrington (1965), found extensive 

use in multiresponse problems in the form proposed by Derringer and Suich (1980). 



Applications from the recent literature can be found on various areas including 

semiconductor scheduling by Dabbas et al. (2003), on the optical performance of the 

broadband tap coupler by Hsu et al. (2004) and on the optimization of micellar liquid 

chromatography by Safa and Hadjmohammadi (2005). Later on, Del Castillo et al. (1996) 

modified these functions in order to make them differentiable in the whole defined space so 

that modern optimization techniques such as gradient based methods can be applied to 

solve the problem more efficiently. Today, many popular statistical software packages such 

as Design-Expert® use desirability functions in their response surface optimization 

modules.  

On the other hand, none of these studies or solver packages focuses on the 

sensitivity analysis of the optimum results generated. Such an analysis is especially 

important when using the desirability functions as the preferred method for MO since these 

functions consist of somehow subjective parameters more than any other optimization 

method. Thus this paper proposes a sensitivity algorithm to fill this gap in the desirability 

literature, which can be directly incorporated to the desirability functions methodology 

without manipulating the solution procedure. Furthermore, utilization of the very same 

experimental design methods that we use in RSM creates a sequential optimization as well 

as a flexible sensitivity method and eliminates the implementation of a nonparametric 

methodology. 

The paper is organised as five sections in total. In section 2, desirability function 

methodology and its use in MO problems is introduced. Later on, a discussion on the 

marginal rates of substitution between rival responses is given. Section 4 proposes a 

sensitivity analysis procedure on the parameter set of multiresponse problems solved by 



desirability functions. Finally, strength and weakness of the proposed procedure is 

supported along with conclusions and discussions on the results of a popular example from 

MO literature. 

 

2.  Desirability Functions 

In a MO problem, simultaneous optimization of all responses is possible by combining 

them into a single objective function, which basically represents the relationship of all 

responses that are to be optimized. Only by doing so, one can achieve the ideal balance 

among the desired response levels. The use of experimental design tools is common to all 

MO methods to gather the mathematical relationship between independent input variables 

and resulting responses. This relation can be shown by 
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 RSM utilizes the experimental design methods to model this relationship in a functional 

form and then solves this model in a specified region to find the optimal response values 

and corresponding input variable levels. Although the form of this relationship is not 

known in most MO problems, preferably a linear model or a high order polynomial model 

is tried to be gathered to approximate this relationship. When the order of the model(s) or 

the number of responses to be optimized is large, desirability functions is a favourable 

method by means of computational efficiency since RSM is a sequential procedure. 

MO via desirability functions comprises the following steps. First an adequate 

function transforms each determined response level into a desirability score within 0 -1 

scale. Then all individual desirability scores are combined on a single overall desirability 



function, which is optimized to find the optimum set of input variables. This combined 

mathematical relationship of responses is given as 
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where iY  is the determined level of the response i, )( ii Yd  is the converted desirability score 

of the associated response and ik  being the relative importance of that response compared 

to others. Maximization of overall desirability function, D, will also yield to a value 

between 0 and 1 in which being close to 1 as much as possible is desired. Individual 

desirability scores can be determined for any three kinds of questions faced in the 

multiresponse problems.  

 Transformation of the response levels into desirability scores can be achieved by 

using several functions. While founding paper of desirability functions by Harrington 

proposes exponential functions, in practice, weighted linear functions proposed by 

Derringer and Suich are far more popular. Weighted linear transformations are flexible in 

determining the risk associated with deviations from desired response levels. Following are 

the transformations proposed by these authors: 

 If the response of interest is a nominal or nominal (target) the best kind of problem, 

then the proposed individual desirability function is 
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where LSL and USL are the lower and upper specification limits and T is the target value of 

the associated response iY . The weight exponents s and t specifies the underlying form of 

the response within the range of interest and how strictly the target is desired. 

Similarly, when the response of interest is minimization, then a smaller the better type of 

desirability function is used as 
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where LSL automatically becomes the desired minimum value. It is the practical lower 

bound which any value below this would not improve the response. 

And when the response of interest is maximization, then a larger the better type of 

desirability function is used. 
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where USL automatically becomes the desired maximum value. It is the practical upper 

bound which any value above this would not improve the response. 

 

Figure 1.  Nominal the best desirability function 

 Figure 2.  Smaller the better desirability function 

Figure 3.  Larger the better desirability function 



While the target is best kind of desirability function represents a two-sided 

transformation, smaller the better and larger the better type of desirability functions are one 

sided transformations. This can clearly be observed from the shape of each individual 

desirability function for various settings of their corresponding parameters. For example; in 

target is best case, for user specified values 1== ts  the desirability function increases 

linearly towards T (target), for 1<s , 1<t  the function is convex, and for 1>s , 1>t  the 

function is concave. Note that weights s and t provide greater flexibility in assigning the 

individual desirability within the range of interest. While these weight coefficients denote 

the desired trend of the response within itself, importance coefficient of each response, k’s, 

associates the priority sequence of all responses so that a comparison between them is 

possible. Also, the strength of the convexity and concavity form of the responses depend on 

the size of specification band. Range of the response, defined as the measure between upper 

and lower specification limit, plays an important role on the individual desirability since d 

decreases as the response Y moves away from its target. 

 

3. Trade-off Structure within the Response Surface 

The basic necessity of a classic multiresponse (or any multiple objective) problem is to 

identify the models behaviour under a set of different feasible solutions, which is defined as 

the pareto-optimal solution domain. This analysis of sensitivity is performed by measuring 

the robustness of pareto-optimal solution with respect to the trade-offs occurring in the 

optimal values of the model’s response variables. The degree of rivalry between the 

responses also determines the level of difficulty of finding a compromising solution to the 

problem at hand. 



 Trade-off structure within the response surface can be best characterized by the 

marginal rates of substitution concept. Use of the marginal rates of substitution is first 

introduced by Keeney and Raiffa (1993) where the rate is calculated by the amount of loss 

in one response in order to gain a unit from the other. The marginal rate of substitution, λ , 

of two response variables such as 1y  and 2y , performing in a solution domain with n 

responses can be calculated from the following 
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This rate may also be obtained graphically by observing the slope of the vector generated 

with the change in value of 1y  with respect to the improvement in 2y by a margin of one 

unit. Kros and Mastrangelo (2001) utilize the marginal rates of substitution concept for the 

application of desirability functions. Since desirability function combines all objectives in a 

single maximization form, the marginal rate of substitution between two responses can 

simply be determined by the ratio of relative importance’s, 0>ik  of the responses being 

investigated as 
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When no response is dominant to another within response surface ( nkkk === K21 ), then 

λ  should be equal to one. In all other cases, (7) would determine the trade-off magnitude. 

For example, the manufacturing of printed circuit boards may involve multiple responses of 

interest to be optimized such as the maximization of peel bond strength, minimization of 

catalyser amount, setting the board thickness at a nominal value etc. If the relative 



importance of the peel bond strength ( 1y ) is set twice as large ( 1k ) as the relative 

importance ( 2k ) of board thickness ( 2y ) then the marginal rate of substitution 
21 , yyλ would 

be equal to two. 

However, ik ’s are not the only distinct parameters of desirability functions. Weight 

coefficients is ’s and it ’s and range of the underlying response variable also influences the 

optimal trade-off frontier and the resulting overall desirability strongly. Influence of these 

parameters as a whole to the overall desirability and resulting optimal frontier has not found 

much interest in the literature. 

 

4.  Sensitivity Analysis 

There exists no customary selection (or determination) procedure for the parameters of 

desirability functions.  The term “user specified” is used when these parameters are 

mentioned in the solution process, which in turn may lead to somehow biased or arbitrary 

selections. The question that has to be investigated is how sensitive the weight, importance 

and range parameters are to the desired value of the response. From the managerial point of 

view, it is likely to decide on cost sensitive values. But as a design or quality engineer this 

decision has to have statistical basis so that optimization results could be further analyzed. 

This analysis should check the robustness of the overall desirability to changes in these 

parameters.  

Regardless of the chosen optimization technique, initial approach for a MO problem 

is archetypal. First we design and conduct the experiments by fitting the observed responses 

on the certain levels of input variables, generally ix . By doing so, we try to estimate the 



linear, quadratic or cubic prediction equation that is most significant for each response. 

Then the solution efforts try to optimize the levels of input variables which simultaneously 

produce the most desirable predicted responses within the range of interest. However, the 

desired values of the responses are only pareto-optimal since these values are subject to 

change for various settings of the parameters of desirability solution procedure. The 

strength of pareto-optimality should be investigated with respect to these parameters in 

order to seek alternative cost effective solutions. 

 The general approach can be extended to include a sensitivity analysis by varying 

the parameters to certain upper and lower edges and analyze the effect of this on overall 

desirability by obtaining a prediction equation in which the overall desirability itself 

becomes the response of interest. The procedure includes following steps. 

 

1.  Assign the upper and lower edges for each parameter that has symmetric distances from 

the origin such as one half for the lower edge and twice as large for upper edge. For 

example; importance parameter, which is usually set to one or equal in every response 

should be selected as the half of original value for lower edge, and should be selected twice 

as large for its upper edge. If the origin (centre point) is selected as two, then lower edge 

should be one and upper edge should be four. Assignment of edges for weight parameters, s 

and t, will be done in a similar fashion. For range parameter, edges may also be selected by 

narrowing to half of the original range for lower and widening by one half for upper edge. 

2.  Actual settings then must be coded for the necessary factorial design. This design may 

or may not include the centre points. However inclusion of these points is useful for 

identifying the effects of interactions between parameters. Note that for any response Y, 



three factors should be included to design. As the number of responses increase, the number 

of runs necessary to complete a full factorial design rapidly increases.  

4.  Solve the multiresponse problem for each run and obtain the overall desirability value 

that will be used as the response value in the corresponding sensitivity design. 

5.  Find the most significant model, model terms, and associated prediction equation on the 

overall desirability. 

6.  Coefficients and signs of the factors in this prediction equation should identify the 

sensitivity of each parameter. While negative valued factors will decrease the overall 

desirability, positive values will improve it. Regardless of the sign, coefficients close to 

zero could be marked as insensitive. 

 Note that this procedure is a sequential procedure and requires the desirability 

function solution gathered from the settings given in each run. Each of these runs includes 

the separate use of importance, weight, and range parameters in optimum response values 

as design variables. For this reason selection of design plays an important role. If the 

number of responses is two then a design such as Box-Behnken can be selected to include 

centre points. However, when the number of responses is more than two, then use of 

fractional factorial designs should be considered to gather a significant model with a small 

set of design points.   

 

5.  Example 

The chemical reaction experiment of Myers and Montgomery (1995) is a popular example 

widely used in the desirability literature (originally presented in Box, Hunter, and Hunter 

(1978). Purpose of the experiment is to find the optimal settings for reaction time, reaction 



temperature and the catalyst amount that maximize the percent conversion of polymer (Y1) 

with a lower bound 80 and achieve a target value of 57.5 for the thermal activity (Y2). A 

lower bound of 55 and an upper bound of 60 are set for thermal activity.  

• Reaction time in minutes (x1) 

• Reaction temperature in CO  (x2)  

• Catalyst in % (x3) 

The prediction equations for the responses are found as the following after the use of 

central composite design model; 
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The optimal solution by desirability functions yields to following result from equation (2) 

with 1== ts  and equivalent importance setting 21 kk =  for each response. Response 

surface plot of the factors against overall desirability is illustrated in Figure 4 where 

catalyst set at -0.56.  
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Figure 4.  3D Response Surface Plot 

 

To initiate the sensitivity analysis, lower and upper edge values are assigned for 

importance, weight and range of each response as given in Table 1. For both of the 



responses, importance parameter is varied on scale between 1 and 5 and weight is varied 

between 0.5 and 2 where the first becomes the lower edge and latter is the upper edge that 

the sensitivity is being evaluated. Sensitivity on the range of the responses is evaluated with 

respect to the size of the specification band of each response. 

 

 

Table 1.  Parameter edge values for sensitivity analysis 

 

 

All of the three parameters are varied on 2-levels for each response and a fractional 

factorial design is established. In order to maintain efficiency, a fractional design with 6 

factors and 16 runs is chosen. Following the levels of each of these parameters, individual 

desirabilities and the corresponding overall desirability is evaluated at each run. This 

overall desirability has now become the new response value that is going to be used in 

obtaining the prediction equation. 

Importance of conversion of polymer, 1k  → A 

Importance of thermal activity, 2k  → B 

Weight of conversion of polymer, 1s  → C 

Weight of thermal activity, 22 ts =  → D 

Range of conversion of polymer, ( )
polymercpolymerc LSL ..max −  → E 

Range of thermal activity, ( )
activitytactivityt LSLUSL .. −  → F 



Experimental design setup given in Table 2 is analysed by Design-Expert® software and 

the resulting ANOVA is given in Table 3. Prediction equation on the overall desirability is 

found as following. 

 

Overall Desirability = 0.68 + 0.026(A) + 0.004(B) – 0.056(C) – 0.069(D) + 0.23(E) 

+ 0.071(F) 

 

Overall desirability model is found to be significant with a p-value << 0.05 and an 

acceptable R-square value. It can be observed that range of conversion is the most sensitive 

parameter where importance parameter of thermal activity is the least sensitive one. Others 

have relatively similar sensitivities. Any increase in the range of conversion will increase 

the overall desirability rapidly. Notice that, optimal levels of the input variables achieved 

from several design points (e.g. runs 2, 10, 11, 12 and 13) ended up with equal settings with 

different overall desirability levels which proves the importance of the sensitivity analysis 

on overall desirability. In the solution space, a high and a low overall desirability might end 

up with the same solution settings and this does not necessarily make one solution better 

than the other. 

Table 2.  DOE setup for sensitivity analysis 

 

 

Table 3.  Design-Expert® ANOVA output 

 

 



6.  Conclusions 

Sensitivity analysis is important in order to understand the accuracy of information at hand, 

to explore the effect of decision maker’s uncertainty about the priorities of the process or 

product and to identify the values of parameters and responses in multiresponse 

optimization. The desirability functions approach, which has found a great deal of interest 

both from practitioners and researchers, has been used intuitively with respect to its 

defining parameters. This paper proposes and illustrates a sensitivity analysis procedure 

that is utilized by the help of experimental design tools. The proposed procedure identifies 

the effect of importance, weight and range parameters of each response on the overall 

desirability by using the coefficients of prediction equation obtained from the design of the 

various settings of the very same parameters. This experimental setup is built and solved by 

the classical factorial design or by fractional factorial whereas the number of competing 

responses is high and design resources are scarce.  

 Previous attempts of evaluating trade-offs in the desirability functions focuses on 

the calculation of marginal rates of substitution between conflicting responses. Taking 

another step further to analyze the effect of each building structure of these functions on the 

unifying objective function, overall desirability, is a crucial task. As has been mentioned 

before, the example we solved is a heavily used benchmark problem for the introduction 

and comparison of new techniques within the multiresponse optimization literature. The 

optimal settings for maximizing the conversion of polymer and achieving a nominal value 

for thermal activity heavily relied on the width of the specification band. Lack of a common 

consensus for the choice of this bandwidth makes sensitivity analysis inevitable. More 

importantly, such an analysis will help to identify the factors that need improvement 



towards achieving a better optimal solution. Practitioners should keep in mind that a higher 

overall desirability does not necessarily mean a better solution since the manipulation of 

overall desirability is quite possible by simply varying parameter values. Enforcing certain 

edge values or gathering a higher order prediction model (to see the interactions between 

parameters) will further motivate the initiation of sensitivity analysis to incorporate the 

subjective nature of parameter selection. 

Other multiresponse optimization techniques that use the unifying objective 

approach may also benefit from the proposed sensitivity analysis procedure. Future 

research may expand the application on such methods.
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Table 1.  Parameter edge values for sensitivity analysis 

Min Max Min Max Min Max

Actual 1 5 0.5 2 95-100 65-100

Coded -1 1 -1 1 -1 1

Actual 1 5 0.5 2 55-60 50-65

Coded -1 1 -1 1 -1 1
FResponse 2 (Thermal Activity)

A

B

C

D

Importance Weight Range

Response 1 (Conversion) E

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2.  DOE setup for sensitivity analysis 

A B C D E(ABC) F(BCD) reaction time reaction temp. catalyst Conversion Thermal Activity

1 -1 -1 -1 -1 -1 -1 0.443 -0.68 1.68 -0.73 95.33 56.46

2 1 -1 -1 -1 1 -1 0.940 -0.49 1.68 -0.56 95.18 57.50

3 -1 1 -1 -1 1 1 0.988 -0.49 1.68 -0.57 95.18 57.50

4 1 1 -1 -1 -1 1 0.702 -1.41 1.68 -1.28 98.50 52.60

5 -1 -1 1 -1 1 1 0.862 -0.49 1.68 -0.56 95.18 57.50

6 1 -1 1 -1 -1 1 0.878 -1.59 1.68 -1.45 100.00 51.58

7 -1 1 1 -1 -1 -1 0.319 -0.29 1.68 -0.41 95.33 58.58

8 1 1 1 -1 1 -1 0.862 -0.49 1.68 -0.56 95.18 57.50

9 -1 -1 -1 1 -1 1 0.454 -0.88 1.68 -0.87 95.78 55.42

10 1 -1 -1 1 1 1 0.940 -0.49 1.68 -0.56 95.18 57.50

11 -1 1 -1 1 1 -1 0.988 -0.49 1.68 -0.56 95.18 57.50

12 1 1 -1 1 -1 -1 0.433 -0.49 1.68 -0.56 95.18 57.50

13 -1 -1 1 1 1 -1 0.862 -0.49 1.68 -0.56 95.18 57.50

14 1 -1 1 1 -1 -1 0.026 -0.91 1.68 -0.89 95.86 55.28

15 -1 1 1 1 -1 1 0.319 -0.78 1.68 -0.79 95.51 55.96

16 1 1 1 1 1 1 0.862 -0.49 1.68 -0.56 95.18 57.50

Coded Settings Matching values for Responses and input variables
Run Desirability

 

 

 

 

 



 

 

 

 

Table 3.  Design Expert® output 

Response: Overall Desirability

Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 1.088 6 0.181 6.129 0.008 significant

A 0.010 1 0.010 0.354 0.567

B 0.000 1 0.000 0.009 0.926

C 0.050 1 0.050 1.698 0.225

D 0.077 1 0.077 2.602 0.141

E 0.870 1 0.870 29.404 0.0004

F 0.080 1 0.080 2.711 0.134

Residual 0.266 9 0.030

Cor Total 1.355 15

Std. Dev. 0.172 R-Squared 0.803

Mean 0.680 Adj R-Squared 0.672

C.V. 25.305 Pred R-Squared 0.379

PRESS 0.842 Adeq Precision 7.171

Coefficient Standard 95% CI 95% CI

Factor Estimate DF Error Low High VIF

Intercept 0.680 1 0.043 0.583 0.777

A-A 0.026 1 0.043 -0.072 0.123 1

B-B 0.004 1 0.043 -0.093 0.101 1

C-C -0.056 1 0.043 -0.153 0.041 1

D-D -0.069 1 0.043 -0.167 0.028 1

E-E 0.233 1 0.043 0.136 0.330 1

F-F 0.071 1 0.043 -0.026 0.168 1

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 1.  Nominal the best desirability function 

Figure 2.  Smaller the better desirability function 

Figure 3.  Larger the better desirability function 

Figure 4.  3D Response Surface Plot 
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