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ON HARDY TYPE INEQUALITIES VIA K-FRACTIONAL INTEGRALS

M. Z. SARIKAYA1, CANDAN CAN BILIŞIK1, T. TUNÇ1, §

Abstract. In this study, we will give the k-fractional integral inequalities to take ad-
vantage of the some results of Hardy type inequalities and some special cases.

Keywords: Hölder’s inequality, k-fractional integrals, Hardy inequality.

AMS Subject Classification:26D15, 26A51, 26A33, 26A42

1. Introduction

The classical Hardy inequality (see [4]) states that for f ≥ 0 and integrable over any
finite interval (0, x) and fp is integrable and convergent over (0,∞) and p > 1, then

∞∫
0

1

x

 x∫
0

f (t) dt

 dx

p

≤
(

p

p− 1

)p ∞∫
0

fp (x) dx,

unless f = 0. The constant
(

p
p−1

)p
is the best possible. This inequality has been proved

by Hardy in 1925 and plays an important role in analysis and its applications, see ([1],
[4]-[9], [12]-[16]) and the references therein.

Now, we give some motivating results to our work. Firstly, the following generalization
is accomplished by N. Levinson in [9] :∫ b

a

(
F (x)

x

)p
dx ≤

(
p

p− 1

)p ∫ b

a
fp (t) dt,

where f > 0 on [a, b] ⊆ [0,∞), p > 1, and F (x) =
∫ x

0 f (t) dt.

Then, in [15] W.T. Sulaiman presented the following like Hardy İnequality:

p

∫ b

a

(
F (x)

x

)p
dx ≤ (b− a)p

∫ b

a

(
f (x)

x

)p
dx−

∫ b

a

(
1− a

x

)p
fp (x) dx. (1)
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sarikayamz@gmail.com; ORCID: https://orcid.org/0000-0002-6165-9242.
candancanbilisik@gmail.com; ORCID: https://orcid.org/0000-0001-5649-284X.
tubatunc03@gmail.com; ORCID: https://orcid.org/0000-0002-4155-955X.
§ Manuscript received: June 21, 2017; accepted: October 11, 2017.

TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.2 c© Işık University, Department
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Lately, in [14] B. Sroysang established the following generalized result:

p

∫ b

a

F p (x)

xq
dx ≤ (b− a)p

∫ b

a

fp (x)

xq
dx−

∫ b

a

(x− a)p

xq
fp (x) dx. (2)

The significant integral results given in the paper by S.Wu et al. [16] is other motivation
for us. As our results, some inequalities of this reference be able to make a deduction as
some special cases. We also generalise some results obtained by the authors of [7].

2. Preliminaries

In this section, we will give some necessary definitions and mathematical preliminaries
of k-fractional calculus theory which are used further in this paper.

In [2] Diaz and Pariguan have defined k -gamma function Γk, k -beta function Bk and
the Pochhammer k -symbol (x)n,k that is generalization of the classical gamma, beta
functions and the classical Pochhammer symbol. Γk is given by formula

Γk (x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
k > 0.

It has shown that Mellin transform of the exponential function e−
tk

k is the k-gamma
function, clearly given by

Γk (α) :=

∫ ∞
0

e−
tk

k tα−1dt.

Obviously, Γk (x+ k) = xΓk (x) , Γ(x) = lim
k→1

Γk (x) and Γk (x) = k
x
k
−1 Γ(xk ). Later, in

[10] Mubeen and Habibullah have introduced the k-fractional integral of Riemann-Liouville
type as follows:

Jα,kf(x) =
1

kΓk(α)

∫ x

0
(x− t)

α
k
−1 f(t)dt, α > 0, x > 0, k > 0.

Furthermore, in [11] Romero and et al. give the following definition.

Definition 2.1. Let α be a real non negative number. Let f be piece wise continuous
on I ′ = (0,∞) and integrable on any finite subinterval of I = [0,∞] . Then k-Riemann
Liouville fractional integral of f order α

Jα,ka f(x) =
1

kΓk(α)

∫ x

a
(x− t)

α
k
−1 f(t)dt, x > a, k > 0. (3)

Note that when k = 1 in the above integral, then it reduces to the classical Riemann–
Liouville fractional integral. Also, for the expression (3), when f (x) = (x− a)µ,we get:

Jα,ka (x− a)µ =
Γk (µk + k)

Γk (α+ µk + k)
(x− a)µ+α

k , x ∈ [a, b] ,

and for x = b, we have

Jα,ka f (b) =
1

kΓk(α)

∫ b

a
(b− t)

α
k
−1 f(t)dt.

Besides, we have the folllowing properties for α > 0, β > 0, k > 0:

Jα,ka Jβ,ka f(x) = Jα+β,k
a f(x),

Jα,ka Jβ,ka f(x) = Jβ,ka Jα,ka f(x).
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For some recent results connected with k -gamma function, k -beta function and k-
fractional integral inequalities see ([2], [3], [8], [10], [11],[13]) and the references therein.

In this paper, we establish several new inequalities of Hardy’s type inequalities via
k-fractional integral. Now, we give our main results.

3. Main Results

We start with the following Theorem:

Theorem 3.1. Let η be a non negative real number and let f > 0 and g > 0 on [a, b]
⊆ [0,∞). If x−a+η

g(x) is non-increasing, then for all p > 1, αk ≥ 1, the k-fractional integral

inequality

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
Γp−1
k

(
α+ k − k

p

)(
α
k (p− 1)− p+ 1

p

)
×
{

(b− a)
α
k

(p−1)−p+ 1
p

(
Jα,ka

[
f (b)

g (b)
(b− a+ η)p (b− a)

p−1
p

])
−Jα,ka

[
f (b)

g (b)
(b− a+ η)p (b− a)

α
k

(p−1)−p+1

]}

is valid.

Proof. We have

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

=

∫ b

a
g−p (x)

[∫ x

a

1

kΓk(α)
(x− t)

α
k
−1 f(t) (t− a)

p−1

p2 (t− a)
1−p
p2 dt

]p
dx.

Thanks to Hölder inequality, we find that

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤ 1

kpΓpk(α)

∫ b

a
g−p (x)

×

{[∫ x

a
(x− t)

α
k
−1 fp(t) (t− a)

p−1
p dt

] 1
p
[∫ x

a
(x− t)

α
k
−1 (t− a)

(
1−p
p2

)(
p
p−1

)
dt

]1− 1
p

}p
dx.
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Then, we obtain

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤ 1

kpΓpk(α)

∫ b

a
g−p (x)

[∫ x

a
(x− t)

α
k
−1 fp(t) (t− a)

p−1
p dt

] [∫ x

a
(x− t)

α
k
−1 (t− a)

−1
p dt

]p−1

dx

=
1

kΓk(α)

∫ b

a
g−p (x)

[∫ x

a
(x− t)

α
k
−1 fp(t) (t− a)

p−1
p dt

] [
Jα,ka (x− a)

−1
p

]p−1
dx.

Furthermore,

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
kΓk (α) Γp−1

k

(
α+ k − k

p

)
×
{∫ b

a
g−p (x) (x− a)

(
α
k
− 1
p

)
(p−1)

[∫ x

a
(x− t)

α
k
−1 fp(t) (t− a)

p−1
p dt

]}
dx.

This is to say that

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
kΓk (α) Γp−1

k

(
α+ k − k

p

)
×
{∫ b

a

(
x− a
g (x)

)p
(x− a)

α
k

(p−1)−p−1+ 1
p

[∫ x

a
(x− t)

α
k
−1 fp(t) (t− a)

p−1
p dt

]}
dx.

Since x−a+η
g(x) is non increasing and with the change of integration order, then we can

write

∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
kΓk (α) Γp−1

k

(
α+ k − k

p

)
×
{∫ b

a

(
t− a+ η

g (t)

)p
(b− t)

α
k
−1 fp (t) (t− a)

p−1
p

[∫ b

t
(x− a)

α
k

(p−1)−1+ 1
p
−p
dx

]
dt

}
.
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Therefore,∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
kΓk (α) Γp−1

k

(
α+ k − k

p

)(
α
k (p− 1) + 1

p − p
)

×
{∫ b

a

(
t− a+ η

g (t)

)p
(b− t)

α
k
−1 fp (t) (t− a)

p−1
p

[
(b− a)

α
k

(p−1)+ 1
p
−p − (t− a)

α
k

(p−1)+ 1
p
−p
]
dt

}
.

Consequently,∫ b

a

(
Jα,ka f(x)

g(x)

)p
dx

≤
Γp−1
k

(
k − k

p

)
kΓk (α) Γp−1

k

(
α+ k − k

p

)(
α
k (p− 1) + 1

p − p
)

×
[
(b− a)

α
k

(p−1)+ 1
p
−p
∫ b

a

(
t− a+ η

g (t)

)p
(b− t)

α
k
−1 fp (t) (t− a)

p−1
p dt

−
∫ b

a

(
t− a+ η

g (t)

)p
(b− t)

α
k
−1 fp (t) (t− a)

α
k

(p−1)+1−p dt

]
.

Finally by rearranging the above inequality, we get the desired result. �

Remark 3.1. Taking α = 1 and k = 1 in Theorem 3.1,we obtain Theorem 3.1 of [16].

Theorem 3.2. Let f > 0 and g > 0 on [a, b] ⊆ [0,∞) such that g is non-decreasing, then
for all p > 1, q > 0, αk ≥ 1, we have

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx (4)

≤ 1

Γp−1
k (α+ k)

(
α
k (p− 1) + 1

)
×
{

(b− a)
α
k

(p−1)+1 Jα,ka

(
fp (b)

gq (b)

)
− Jα,ka

[
fp (b)

gq (b)
(b− a)

α
k

(p−1)+1

]}
.

Proof. We have,

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx =

∫ b

a
g−q(x)

[∫ x

a

1

kΓk(α)
(x− t)

α
k
−1 f (t) dt

]p
dx

and then,∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx ≤
∫ b

a
g−q(x)

[(
Jα,ka fp(x)

) 1
p
(
Jα,ka (1)

)1− 1
p

]p
dx.
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Accordingly,

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≤
∫ b

a
g−q(x)

{[
1

kΓk(α)

∫ x

a
(x− t)

α
k
−1 fp (t) dt

] [
1

kΓk(α)

∫ x

a
(x− t)

α
k
−1 dt

]p−1
}
dx.

So, we obtain

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≤ 1

kΓk(α)Γp−1
k (α+ k)

∫ b

a
g−q(x) (x− a)

α
k

(p−1)

[∫ x

a
(x− t)

α
k
−1 fp (t) dt

]
dx.

Since g is non-decreasing and with the change of integration order, we have

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≤ 1

kΓk(α)Γp−1
k (α+ k)

∫ b

a
g−q(t)fp (t) (b− t)

α
k
−1 dt

∫ b

t
(x− a)

α
k

(p−1) dx.

Hence,

∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≤ 1

kΓk(α)Γp−1
k (α+ k)

(
α
k (p− 1) + 1

)
×
{∫ b

a
g−q(t)fp (t) (b− t)

α
k
−1
[
(b− a)

α
k

(p−1)+1 − (t− a)
α
k

(p−1)+1
]
dt

}
.

Finally by rearranging the above inequality, we get the desired result. �

Remark 3.2. (i) Putting α = 1, k = 1 in Theorem 3.2, we obtain the first part of Theorem
3.5 in [16].

(ii) Taking α = 1, k = 1 and g (x) = x in Theorem 3.2, we obtain Sroysang inequality
(2).

(iii) Putting α = 1, k = 1, g (x) = x and p = q in Theorem 3.2,we obtain Sulaiman
inequality (1).

Now, we give the last main result with the following theorem.
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Theorem 3.3. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞) such that g is non-decreasing.
Then, for all 0 < p < 1, q > 0, αk ≥ 1,we have∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ g−q (b)(
α
k (p− 1) + 1

)
Γp−1
k (α+ k)

×

[
(−1)

α
k

(p−1)+1

Γk (α)
Γk (αp+ k) Jαp+k,kb fp (a)− (b− a)

α
k

(p−1)+1 Jα,kb fp (a)

]
.

Proof. Thanks to the weighted reverse Hölder inequality, we have∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ 1

kpΓpk (α)

∫ b

a
g−q(x)

{[∫ x

a
(x− t)

α
k
−1 fp (t) dt

] 1
p
[∫ x

a
(x− t)

α
k
−1 dt

]1− 1
p

}p
dx

=
1

kΓk (α)

∫ b

a
g−q(x)

{(∫ x

a
(x− t)

α
k
−1 fp (t) dt

)(
Jα,ka (1)

)p−1
}
dx.

Consequently,∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ 1

kΓk (α) Γp−1
k (α+ k)

∫ b

a
g−q(x) (x− a)

α
k

(p−1)

[∫ x

a
(x− t)

α
k
−1 fp (t) dt

]
dx.

Since g is non-decreasing and with the change of integration order, we obtain∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ 1

kΓk (α) Γp−1
k (α+ k)

∫ b

a
g−q(b) (x− a)

α
k

(p−1)

[∫ x

a
(x− t)

α
k
−1 fp (t) dt

]
dx.

Therefore, ∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ 1

kΓk (α) Γp−1
k (α+ k)

∫ b

a
g−q(b) (a− t)

α
k
−1 fp (t)

[∫ b

t
(x− a)

α
k

(p−1) dx

]
dt

=
1(

α
k (p− 1) + 1

)
kΓk (α) Γp−1

k (α+ k)

×
{∫ b

a
g−q(b) (a− t)

α
k
−1 fp (t)

[
(t− a)

α
k

(p−1)+1 − (b− a)
α
k

(p−1)+1
]
dt

}
.
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Moreover, ∫ b

a

(
Jα,ka f(x)

)p
gq(x)

dx

≥ 1(
α
k (p− 1) + 1

)
kΓk (α) Γp−1

k (α+ k)

×
[
(b− a)

α
k

(p−1)+1
∫ b

a
g−q(b) (a− t)

α
k
−1 fp (t) dt

−
∫ b

a
g−q(b) (a− t)

α
k
−1 fp (t) (t− a)

α
k

(p−1)+1 dt

]
.

Finally by rearranging the above inequality, we get the desired result. �

Remark 3.3. Taking k = 1 in the above theorems, we get generalizations of the results
in the paper [7].
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Mehmet Zeki SARIKAYA received his B.Sc. (Maths), M.Sc. (Maths) and Ph.D.
(Maths) degrees from Afyon Kocatepe University, Afyonkarahisar, Turkey in 2000,
2002 and 2007 respectively. At present, he is working as a professor and the head in
the Department of Mathematics at Duzce University (Turkey). Moreover; he is the
founder and Editor-in-Chief of Konuralp Journal of Mathematics (KJM). He is the
author or the co-author of more than 200 papers in the field of Theory of Inequalities,
Potential Theory, Integral Equations and Transforms, Special Functions, Time-Scales.
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