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THE CLASSES OF BIPOLAR SINGLE VALUED NEUTROSOPHIC

GRAPHS

A. HASSAN1, M. A. MALIK2, §

Abstract. The bipolar single valued neutrosophic graph is the generalization of fuzzy,
intuitionistic, bipolar, bipolar intuitionistic graphs. The concept of antipodal bipolar
single valued neutrosophic graph (ABSVNG), eccentric BSVNG, self centered BSVNG
and self median BSVNG of the given BSVNG are introduced here. We also investi-
gated isomorphism properties of antipodal BSVNGs, eccentric BSVNGs and self sentered
BSVNGs. The edge connectivity plays important role in computer network problems and
path problems. In this paper, we introduce special types of bipolar single valued neutro-
sophic (BSVN) bridges, BSVN-Cut vertices, BSVN-Cycles and BSVN-Trees in BSVNG
and introduced some of their properties.

Keywords: Antipodal BSVNG, eccentric BSVNG, self centered BSVNG, self median
BSVNG, BSVN-Cycles, BSVN-Trees, BSVN-Bridges,BSVN-Cut-vertices and BSVN-Levels.

AMS Subject Classification: 99A00

1. Introduction

The concept of neutrosophic set theory is a generalization of the theory of fuzzy set [11],
intuitionistic fuzzy sets [4], interval-valued fuzzy sets [3] and interval-valued intuitionistic
fuzzy sets [5]. The concept of neutrosophic set is characterized by a truth-membership
degree (T), an indeterminacy-membership degree (I) and a falsity-membership degree (f)
independently, which are within the real standard or nonstandard unit interval ]−0, 1+[.
Therefore, if their range is restrained within the real standard unit interval [0, 1]. Never-
theless, NSs are hard to be apply in practical problems since the values of the functions
of truth, indeterminacy and falsity lie in ]−0, 1+[. The single valued neutrosophic set was
introduced for the first time by Smarandache in his 1998 book. The single valued neu-
trosophic sets as subclass of neutrosophic sets in which the value of truth-membership,
indeterminacy-membership and falsity-membership degrees are intervals of numbers in-
stead of the real numbers. Later on, Wang et al. [16] studied some properties related to
single valued neutrosophic sets.
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The bipolar single valued neutrosophic graphs were introduced by Broumi, Talea, Bakali
and Smarandache [7]. Also Recently in [9, 10, 8] proposed some algorithms dealt with
shortest path problem in a network (graph) where edge weights are characterized by a
neutrosophic numbers including single valued neutrosophic numbers, bipolar neutrosophic
numbers and interval valued neutrosophic numbers. The concept of neutrosophic hy-
pergraphs, its regularity and totally regularity discussed by Malik, Hassan, Broumi and
Smarandache in [1, 2].
P. K. Singh [12] has discussed adequate analysis of uncertainty and vagueness in medical
data set using the properties of three-way fuzzy concept lattice. This study provided a
precise representation of medical diagnoses problems using the vertices and edges of neu-
trosophic graph. Further to refine the knowledge three-way fuzzy concepts generation and
their hierarchical order visualization in the concept lattice is proposed using neutrosophic
graph and component-wise Godel resituated lattice. One application of the proposed
method is also discussed to analyze the multi-criteria decision making process.
Ulucay et al. [14] defined the concept of neutrosophic soft expert graph and have estab-
lished a link between graphs and neutrosophic soft expert sets and studies some basic
operations of neutrosophic soft experts graphs such as union, intersection and comple-
ment. Similar to the fuzzy graphs, which have a common property that each edge must
have a membership value less than or equal to the minimum membership of the nodes it
connects.
The BSVNGs have also many applications in path problems, networks and computer sci-
ence. The concept of antipodal fuzzy graphs introduced by Gani and Malarvizhi [15]. The
self centered intuitionistic fuzzy graphs were introduced by Karunambigai, the complete
intuitionistic fuzzy graph to be a self centered intuitionistic fuzzy graph and its properties
discussed, also the necessary and sufficient condition to be a self centered intuitionistic
fuzzy graph were discussed in [17]. M.S. Sunitha and A. Vijayakumar [13] gives the defini-
tion of complement of a fuzzy graph for understand and utilize in general concept of fuzzy
graphs with respect to complement properties. In this paper, we introduce new classes of
BSVNGs, antipodal BSVNGs, eccentric BSVNGs, self centered and self median BSVNGs,
BSVN-Bridges, BSVN-Cycles, BSVN-Trees, BSVN-Firm and BSVN-Blocks on the basis
of weight of edge connectivity.

2. Preliminary

Definition 2.1. [16] Let X be a crisp set, the single valued neutrosophic set (SVNS) Z
is characterized by three membership functions TZ(x), IZ(x) and FZ(x) which are truth,
indeterminacy and falsity membership functions, ∀x ∈ X

TZ(x), IZ(x), FZ(x) ∈ [0, 1].

Definition 2.2. [2] Let X be a crisp set, the bipolar single valued neutrosophic set
(BSVNS) Z is characterized by membership functions T+

Z (x), I+Z (x), F+
Z (x), T−Z (x), I−Z (x),

and F−Z (x). That is ∀x ∈ X

T+
Z (x), I+Z (x), F+

Z (x) ∈ [0, 1],

T−Z (x), I−Z (x), F−Z (x) ∈ [−1, 0].

A bipolar single valued neutrosophic graph (BSVNG) is a pair G = (Y, Z) of G∗, where Y
is BSVNS on V and Z is BSVNS on E such that

T+
Z (βγ) ≤ min(T+

Y (β), T+
Y (γ)), I+Z (βγ) ≥ max(I+Y (β), I+Y (γ)),

I−Z (βγ) ≤ min(I−Y (β), I−Y (γ)), F−Z (βγ) ≤ min(F−Y (β), F−Y (γ)),
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F+
Z (βγ) ≥ max(F+

Y (β), F+
Y (γ)), T−Z (βγ) ≥ max(T−Y (β), T−Y (γ)),

where

0 ≤ T+
Z (βγ) + I+Z (βγ) + F+

Z (βγ) ≤ 3

−3 ≤ T−Z (βγ) + I−Z (βγ) + F−Z (βγ) ≤ 0

∀ β, γ ∈ V. In this case D is bipolar single valued neutrosophic relation (BSVNR) on C.
The BSVNG G = (Y, Z) is complete (strong) BSVNG, if

T+
Z (βγ) = min(T+

Y (β), T+
Y (γ)), I+Z (βγ) = max(I+Y (β), I+Y (γ)),

I−Z (βγ) = min(I−Y (β), I−Y (γ)), F−Z (βγ) = min(F−Y (β), F−Y (γ)),

F+
Z (βγ) = max(F+

Y (β), F+
Y (γ)), T−Z (βγ) = max(T−Y (β), T−Y (γ)),

∀ β, γ ∈ V (∀ βγ ∈ E). The order of G, which is denoted by O(G), is defined by

O(G) = (O+
T (G), O+

I (G), O+
F (G), O−T (G), O−I (G), O−F (G))

where,

O+
T (G) =

∑
α∈V

T+
A (α), O+

I (G) =
∑
α∈V

I+A (α), O+
F (G) =

∑
α∈V

F+
A (α),

O−T (G) =
∑
α∈V

T−A (α), O−I (G) =
∑
α∈V

I−A (α), O−F (G) =
∑
α∈V

F−A (α).

The size of G, which is denoted by S(G), is defined by

S(G) = (S+
T (G), S+

I (G), S+
F (G), S−T (G), S−I (G), S−F (G))

where

S+
T (G) =

∑
βγ∈E

T+
B (βγ), S−T (G) =

∑
βγ∈E

T−B (βγ),

S+
I (G) =

∑
βγ∈E

I+B (βγ), S−I (G) =
∑
βγ∈E

I−B (βγ),

S+
F (G) =

∑
βγ∈E

F+
B (βγ), S−F (G) =

∑
βγ∈E

F−B (βγ).

The degree of a vertex β in G, which is denoted by dG(β), is defined by

dG(β) = (d+T (β), d+I (β), d+F (β), d−T (β), d−I (β), d−F (β))

where

d+T (β) =
∑
βγ∈E

T+
B (βγ), d−T (β) =

∑
βγ∈E

T−B (βγ),

d+I (β) =
∑
βγ∈E

I+B (βγ), d−I (β) =
∑
βγ∈E

I−B (βγ),

d+F (β) =
∑
βγ∈E

F+
B (βγ), d−F (β) =

∑
βγ∈E

F−B (βγ).

Definition 2.3. [7] The BSVNG G = (Y, Z) is complete (strong) BSVNG, whenever

T+
Z (β, γ) = min(T+

Y (β), T+
Y (γ)), I+Z (β, γ) = max(I+Y (β), I+Y (γ)),

I−Z (β, γ) = min(I−Y (β), I−Y (γ)), F−Z (β, γ) = min(F−Y (β), F−Y (γ)),

F+
Z (β, γ) = max(F+

Y (β), F+
Y (γ)), T−Z (β, γ) = max(T−Y (β), T−Y (γ)),

∀ β, γ ∈ V. (∀ (β, γ) ∈ E).
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Definition 2.4. [7] A path P in a BSVNG G = (A,B) is P : v1, v2, v3, . . . , vn such
that T+

B (vi, vi+1) > 0, I+B (vi, vi+1) > 0, F+
B (vi, vi+1) > 0, T−B (vi, vi+1) < 0, I−B (vi, vi+1) <

0, F−B (vi, vi+1) < 0 for 1 ≤ i ≤ n. The BSVNG to be a connected, if there is path between
every two vertices, else G is disconnected.

3. Special classes of BSVNGs

Let G denotes BSVNG and G∗ = (V,E) denotes underlying crisp graph. In this section
we discuss the antipodal, eccentric, self centered and self median bipolar single valued
neutrosophic graphs.

Definition 3.1. The bipolar single valued neutrosophic subgraph of BSVNG G = (C,D)

of G∗ = (V,E) is a BSVNG H = (C
′
, D
′
) on a H∗ = (V

′
, E
′
), such that

(1) C
′

= C, that is ∀ x ∈ V ′ ⊆ V with

T+
C′

(x) = T+
C (x), I+

C′
(x) = I+C (x), F+

C′
(x) = F+

C (x),

T−
C′

(x) = T−C (x), I−
C′

(x) = I−C (x), F−
C′

(x) = F−C (x).

(2) D
′

= D, that is ∀ (β, γ) ∈ E in the edge set E
′ ⊆ E with

T+
D′

(β, γ) = T+
D (β, γ), I+

D′
(β, γ) = I+D(β, γ), F+

D′
(β, γ) = F+

D (β, γ),

T−
D′

(β, γ) = T−D (β, γ), I−
D′

(β, γ) = I−D(β, γ), F−
D′

(β, γ) = F−D (β, γ).

Definition 3.2. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. Then the homomorphism χ : V1 → V2 is a mapping from
V1 into V2 satisfying following conditions

T+
C1

(p) ≤ T+
C2

(χ(p)), I+C1
(p) ≥ I+C2

(χ(p)), F+
C1

(p) ≥ F+
C2

(χ(p)),

T−C1
(p) ≥ T−C2

(χ(p)), I−C1
(p) ≤ I−C2

(χ(p)), F−C1
(p) ≤ F−C2

(χ(p)),

∀ p ∈ V1.
T+
D1

(p, q) ≤ T+
D2

(χ(p), χ(q)), I+D1
(p, q) ≥ I+D2

(χ(p), χ(q)), F+
D1

(p, q),≥ F+
D2

(χ(p), χ(q)),

T−D1
(p, q) ≥ T−D2

(χ(p), χ(q)), I−D1
(p, q) ≤ I−D2

(χ(p), χ(q)), F−D1
(p, q) ≤ F−D2

(χ(p), χ(q)),

∀ (p, q) ∈ E1.

Definition 3.3. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. Then the weak isomorphism υ : V1 → V2 is a bijective
homomorphism from V1 into V2 satisfying following conditions

T+
C1

(p) = T+
C2

(υ(p)), I+C1
(p) = I+C2

(υ(p)), F+
C1

(p) = F+
C2

(υ(p)),

T−C1
(p) = T−C2

(υ(p)), I−C1
(p) = I−C2

(υ(p)), F−C1
(p) = F−C2

(υ(p)),

∀ p ∈ V1.
Remark 3.1. The weak isomorphism between two BSVNGs preserves the orders.

Remark 3.2. The weak isomorphism between BSVNGs is a partial order relation.

Definition 3.4. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. Then the co-weak isomorphism κ : V1 → V2 is a bijective
homomorphism from V1 into V2 satisfying following conditions

T+
D1

(p, q) = T+
D2

(κ(p), κ(q)), I+D1
(p, q) = I+D2

(κ(p), κ(q)), F+
D1

(p, q),= F+
D2

(κ(p), κ(q)),

T−D1
(p, q) = T−D2

(κ(p), κ(q)), I−D1
(p, q) = I−D2

(κ(p), κ(q)), F−D1
(p, q) = F−D2

(κ(p), κ(q)),

∀ (p, q) ∈ E1.
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Remark 3.3. The co-weak isomorphism between two BSVNGs preserves the sizes.

Remark 3.4. The co-weak isomorphism between BSVNGs is a partial order relation.

Definition 3.5. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. Then an isomorphism ψ : V1 → V2 is a bijective homo-
morphism from V1 into V2 satisfying following conditions

T+
C1

(p) = T+
C2

(ψ(p)), I+C1
(p) = I+C2

(ψ(p)), F+
C1

(p) = F+
C2

(ψ(p)),

T−C1
(p) = T−C2

(ψ(p)), I−C1
(p) = I−C2

(ψ(p)), F−C1
(p) = F−C2

(ψ(p)),

∀ p ∈ V1.

T+
D1

(p, q) = T+
D2

(ψ(p), ψ(q)), I+D1
(p, q) = I+D2

(ψ(p), ψ(q)), F+
D1

(p, q),= F+
D2

(ψ(p), ψ(q)),

T−D1
(p, q) = T−D2

(ψ(p), ψ(q)), I−D1
(p, q) = I−D2

(ψ(p), ψ(q)), F−D1
(p, q) = F−D2

(ψ(p), ψ(q)),

∀ (p, q) ∈ E1.

Remark 3.5. The isomorphism between two BSVNGs is an equivalence relation.

Remark 3.6. The isomorphism between two BSVNGs preserves the orders and sizes.

Remark 3.7. The isomorphism between two BSVNGs preserves the degrees of their ver-
tices.

Definition 3.6. The strength of connectedness between x and y in V of BSVNG G =
(A,B), which is denoted by S∞B (x, y), is defined by

S∞B (x, y) = (T∞+
B (x, y), I∞+

B (x, y), F∞+
B (x, y), T∞−B (x, y), I∞−B (x, y), F∞−B (x, y))

where

T∞+
B (x, y) = sup{T k+B (x, y) : k = 1, 2, . . . , n},

T∞+
B (x, y) = sup{T+

B (x, v1) ∧ . . . ∧ T+
B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.

I∞+
B (x, y) = inf{Ik+B (x, y) : k = 1, 2, . . . , n},

I∞+
B (x, y) = inf{I+B (x, v1) ∨ . . . ∨ I+B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.

F∞+
B (x, y) = inf{F k+B (x, y) : k = 1, 2, . . . , n},

F∞+
B (x, y) = inf{F+

B (x, v1) ∨ . . . ∨ F+
B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.

T∞−B (x, y) = inf{T k−B (x, y) : k = 1, 2, . . . , n},

T∞−B (x, y) = inf{T−B (x, v1) ∨ . . . ∨ T−B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.

I∞−B (x, y) = sup{Ik−B (x, y) : k = 1, 2, . . . , n},

I∞−B (x, y) = sup{I−B (x, v1) ∧ . . . ∧ I−B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.

F∞−B (x, y) = sup{F k−B (x, y) : k = 1, 2, . . . , n},

F∞−B (x, y) = sup{F−B (x, v1) ∧ . . . ∧ F−B (vk−1, y) : x, v1, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}.
where T∞+

B (x, y), I∞+
B (x, y), F∞+

B (x, y), T∞−B (x, y), I∞−B (x, y) and F∞−B (x, y) are positive
and negative truth, indeterminacy and falsity connectedness between x and y in V, respec-
tively.
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Definition 3.7. Let G = (A,B) be a BSVNG of G∗, the length of path Q : v1, v2, . . . , vn,
which is denoted by l(Q), is defined by

l(Q) = (l+T (Q), l+I (Q), l+F (Q), l−T (Q), l−I (Q), l−F (Q))

where

l+T (Q) =

n−1∑
i=1

1

T+
B (vi, vi+1)

, l+I (Q) =

n−1∑
i=1

1

I+B (vi, vi+1)
, l+F (Q) =

n−1∑
i=1

1

F+
B (vi, vi+1)

,

l−T (Q) =
n−1∑
i=1

1

T−B (vi, vi+1)
, l−I (Q) =

n−1∑
i=1

1

I−B (vi, vi+1)
, l−F (Q) =

n−1∑
i=1

1

F−B (vi, vi+1)
.

The l+T (Q), l+I (Q) and l+F (Q) are called the positive T -Length, positive I-Length and positive

F -Length of path Q, respectively and l−T (Q), l−I (Q) and l−F (Q) are called the negative T -
Length, negative I-Length and negative F -Length of path Q, respectively. The distance
between two vertices α and β which is denoted by δ(α, β), is defined by

δ(α, β) = (δ+T (α, β), δ+I (α, β), δ+F (α, β), δ−T (α, β), δ−I (α, β), δ−F (α, β))

where δ+T (α, β), δ+I (α, β), δ+F (α, β), δ−T (α, β), δ−I (α, β) and δ−F (α, β) are called the positive
T -Distance, positive I-Distance, positive F -Distance, negative T -Distance, negative I-
Distance and negative F -Distance of any path α− β which are

δ+T (α, β) = min(l+T (Q)), δ+I (α, β) = min(l+I (Q)), δ+F (α, β) = min(l+F (Q)),

δ−T (α, β) = max(l−T (Q)), δ−I (α, β) = max(l−I (Q)), δ−F (α, β) = max(l−F (Q)).

The eccentricity of vertex vi ∈ V, which is denoted by e(vi), is defined by

e(vi) = (e+T (vi), e
+
I (vi), e

+
F (vi), e

−
T (vi), e

−
I (vi), e

−
F (vi))

where

e+T (vi) = max{δ+T (vi, vj) : vj ∈ V, vi 6= vj}, e−T (vi) = min{δ−T (vi, vj) : vj ∈ V, vi 6= vj},
e+I (vi) = min{δ+T (vi, vj) : vj ∈ V, vi 6= vj}, e−I (vi) = max{δ−T (vi, vj) : vj ∈ V, vi 6= vj},
e+F (vi) = min{δ+T (vi, vj) : vj ∈ V, vi 6= vj}, e−F (vi) = max{δ−T (vi, vj) : vj ∈ V, vi 6= vj},

where e+T (vi), e
+
I (vi), e

+
F (vi), e

−
T (vi), e

−
I (vi) and e−F (vi) are called the positive T -Eccentricity,

positive I-Eccentricity, positive F -Eccentricity, negative T -Eccentricity, negative I-Eccentricity
and negative F -Eccentricity of vertex vi, respectively. The radius of G, which is denoted
by r(G), is defined by

r(G) = (r+T (G), r+I (G), r+F (G), r−T (G), r−I (G), r−F (G))

where
r+T (G) = min{e+T (vi) : vi ∈ V }, r+I (G) = min{e+I (vi) : vi ∈ V },
r+F (G) = min{e+F (vi) : vi ∈ V }, r−T (G) = max{e−T (vi) : vi ∈ V },
r−I (G) = max{e−I (vi) : vi ∈ V }, r−F (G) = max{e−F (vi) : vi ∈ V },

where r+T (G), r+I (G), r+F (G), r−T (G), r−I (G), and r−F (G) are called the positive T -Radius,
positive I-Radius, positive F -Radius, negative T -Radius, negative I-Radius and negative
F -Radius of graph G, respectively. The diameter of G, which is denoted by d(G), is defined
by

d(G) = (d+T (G), d+I (G), d+F (G), d−T (G), d−I (G), d−F (G))

where
d+T (G) = max{e+T (vi) : vi ∈ V }, d+I (G) = max{e+I (vi) : vi ∈ V },
d+F (G) = max{e+F (vi) : vi ∈ V }, d−T (G) = min{e−T (vi) : vi ∈ V },
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d−I (G) = min{e−I (vi) : vi ∈ V }, d−F (G) = min{e−F (vi) : vi ∈ V },
where d+T (G), d+I (G), d+F (G), d−T (G), d−I (G), and d−F (G) are the positive T -Diameter, pos-
itive I-Diameter, positive F -Diameter, negative T -Diameter, negative I-Diameter and
negative F -Diameter of graph G, respectively.

Definition 3.8. An antipodal bipolar single valued neutrosophic graph (ABSVNG) A(G) =
(Q,R) of a BSVNG G = (A,B) is the BSVNG in which
(a) Q = A on V. (b) If δ(p, q) = d(G) then
(i) If (p, q) ∈ E then R = B on E.
(ii) If (p, q) 6∈ E then

T+
R (p, q) = min(T+

A (p), T+
A (q)), I+R (p, q) = max(I+A (p), I+A (q)),

I−R (p, q) = min(I−A (p), I−A (q)), F−R (p, q) = min(F−A (p), F−A (q)),

F+
R (p, q) = max(F+

A (p), F+
A (q)), T−R (p, q) = max(T−A (p), T−A (q)).

Example 3.1. Consider the BSVNG G = (A,B) of G∗, the BSVNSs A and B over
V = {ξ, η, ζ} and E = {(ξ, η), (η, ζ)(ζ, ξ)} are defined in Table. 1.

A T+
A I+A F+

A T−A I−A F−A B T+
B I+B F+

B T−B I−B F−B
ξ 1/5 1/4 1/3 −1/4 −1/5 −1/6 (ξ, η) 1/7 1/2 1/3 −1/4 −1/5 −1/6
η 1/7 1/2 1/5 −1/4 −1/5 −1/6 (η, ζ) 1/7 1/2 1/5 −1/4 −1/5 −1/6
ζ 1/4 1/6 1/8 −1/4 −1/5 −1/6 (ζ, ξ) 1/5 1/4 1/3 −1/4 −1/5 −1/6

Table 1. BSVNSs of BSVNG

Then by calculation

δ(ξ, η) = (7, 2, 3,−4,−5,−6), δ(ξ, ζ) = (5, 4, 3,−4,−5,−6), δ(η, ζ) = (7, 2, 5,−4,−5,−6),

e(ξ) = (7, 2, 3,−4,−5,−6), e(η) = (7, 2, 3,−4,−5,−6), e(ζ) = (7, 2, 3,−4,−5,−6), d(G) =
(7, 2, 3,−4,−5,−6) = δ(ξ, η). Also BSVNSs of ABSVNG are defined in Table. 2.

Q T+
Q I+Q F+

Q T−Q I−Q F−Q R T+
R I+R F+

R T−R I−R F−R
ξ 1/5 1/4 1/3 −1/4 −1/5 −1/6 (ξ, η) 1/7 1/2 1/3 −1/4 −1/5 −1/6
η 1/7 1/2 1/5 −1/4 −1/5 −1/6 (η, ζ) 0 0 0 0 0 0
ζ 1/4 1/6 1/8 −1/4 −1/5 −1/6 (ζ, ξ) 0 0 0 0 0 0

Table 2. BSVNSs of ABSVNG

Definition 3.9. An eccentric BSVNG Ge = (P,Q) of a BSVNG G = (A,B) is the
BSVNG in which,
(a) P = A on V. (b) If

δ+T (p, q) = min(e+T (p), e+T (q)), δ+I (p, q) = max(e+I (p), e+I (q)),

δ−I (p, q) = min(e−I (p), e−I (q)), δ−F (p, q) = min(e−F (p), e−F (q)),

δ+F (p, q) = max(e+F (p), e+F (q)), δ−T (p, q) = max(e−T (p), e−T (q)),

then
(i) If (p, q) ∈ E then Q = B on E.
(ii) If (p, q) 6∈ E then

T+
Q (p, q) = min(T+

A (p), T+
A (q)), I+Q (p, q) = max(I+A (p), I+A (q)),
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I−Q (p, q) = min(I−A (p), I−A (q)), F−Q (p, q) = min(F−A (p), F−A (q)),

F+
Q (p, q) = max(F+

A (p), F+
A (q)), T−Q (p, q) = max(T−A (p), T−A (q)).

(c) Otherwise Q = O = (0, 0, 0, 0, 0, 0).

Example 3.2. Consider the BSVNG G = (A,B) of G∗, which is given in Example. 3.1.
Then by calculation

δ(ξ, η) = (7, 2, 3,−4,−5,−6), δ(ξ, ζ) = (5, 4, 3,−4,−5,−6), δ(η, ζ) = (7, 2, 5,−4,−5,−6),

e(ξ) = (7, 2, 3,−4,−5,−6), e(η) = (7, 2, 3,−4,−5,−6), e(ζ) = (7, 2, 3,−4,−5,−6), δ−T (ξ, η) =

−4 = max(e−T (ξ), e−T (η)), δ−F (η, ζ) = −6 = max(e−F (η), e−F (ζ)),

δ−I (ξ, η) = −5 = min(e−I (ξ), e−I (η)), δ−T (ξ, η) = −4 = max(e−T (ξ), e−T (η)),

δ−F (ξ, η) = −6 = min(e−F (ξ), e−F (η)), δ−T (ξ, ζ) = −4 = max(e−T (ξ), e−T (ζ)),

δ−I (ξ, ζ) = −5 = min(e−I (ξ), e−I (ζ)), δ−F (ξ, ζ) = −6 = min(e−F (ξ), e−F (ζ)),

δ−T (η, ζ) = −4 = max(e−T (η), e−T (ζ)), δ−I (η, ζ) = −5 = max(e−I (η), e−I (ζ)),

δ+T (ξ, η) = 7 = min(e+T (ξ), e+T (η)), δ+I (ξ, η) = 2 = max(e+I (ξ), e+I (η)),

δ+F (ξ, η) = 3 = max(e+F (ξ), e+F (η)), δ+T (η, ζ) = 7 = min(e+T (η), e+T (ζ)).

The BSVNSs of EBSVNG are defined in Table. 3.

P T+
P I+P F+

P T−P I−P F−P Q T+
Q I+Q F+

Q T−Q I−Q F−Q
ξ 1/5 1/4 1/3 −1/4 −1/5 −1/6 (ξ, η) 1/7 1/2 1/3 −1/4 −1/5 −1/6
η 1/7 1/2 1/5 −1/4 −1/5 −1/6 (η, ζ) 1/7 1/2 0 −1/4 −1/5 −1/6
ζ 1/4 1/6 1/8 −1/4 −1/5 −1/6 (ζ, ξ) 0 0 1/3 −1/4 −1/5 −1/6

Table 3. BSVNSs of EBSVNG

Proposition 3.1. The ABSVNG of the BSVNG is the generalization of antipodal bipo-
lar fuzzy graph of bipolar fuzzy graph and antipodal intuitionistic bipolar fuzzy graph of
intuitionistic bipolar fuzzy graph.

Proposition 3.2. The EBSVNG of BSVNG is the generalization of eccentric bipolar fuzzy
graph of bipolar fuzzy graph and eccentric intuitionistic bipolar fuzzy graph of intuitionistic
bipolar fuzzy graph.

Proposition 3.3. A(G) is a BSVN subgraph of Ge.

Definition 3.10. The connected BSVNG G = (A,B) is distance regular BSVNG when-
ever

δ(x, y) = k = (k1, k2, k3, k4, k5, k6)

∀ x, y ∈ V.

Proposition 3.4. If G = (A,B) is distance regular BSVNG, then G is BSVN-spanning
subgraph of A(G), such that A(G) is same as Ge.

Theorem 3.1. For the complete BSVNG G = (A,B) where A be constant BSVNS, then
G and A(G) are isomorphic.

Theorem 3.2. The ABSVNG A(G) = (Q,R) of a BSVNG G = (A,B) is spanning
subgraph of G.
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Proof. Since by the definition of A(G) (i) Q = A on V. (ii) If δ(ξ, η) = d(G) then (a) If ξ
and η are adjacent in G then R = B on E. (b) If ξ and η are not adjacent in G, then by
definition of A(G)

T+
R (ξ, η) = min(T+

A (ξ), T+
A (η)), I+R (ξ, η) = max(I+A (ξ), I+A (η)),

I−R (ξ, η) = min(I−A (ξ), I−A (η)), F−R (ξ, η) = min(F−A (ξ), F−A (η)),

F+
R (ξ, η) = max(F+

A (ξ), F+
A (η)), T−R (ξ, η) = max(T−A (ξ), T−A (η)).

this completes the result. �

Theorem 3.3. If G1 = (A1, B1) and G2 = (A2, B2) are isomorphic BSVNGs, then so
A(G1) and A(G2).

Proof. By hypothesis there is an isomorphism f between them preserves the weights
of edges. Hence if vertex α has maximum positive T -eccentricity, minimum positive
I-eccentricity, positive minimum F -eccentricity minimum negative T -eccentricity, max-
imum negative I-eccentricity and maximum negative F -eccentricity in G1. Then f(α) has
maximum positive T -eccentricity, minimum positive I-eccentricity, minimum positive F -
eccentricity minimum negative T -eccentricity, maximum negative I-eccentricity and max-
imum negative F -eccentricity in G2, so G1 and G2 will have same diameter. If distance
between α and β is k = (k1, k2, k3, k4, k5, k6) in G1 then f(α) and f(β) will also have
their distance as k in G2, since f is a bijective function between A(G1) and A(G2) with
Q1(α) = A1(α) = A2(α) = Q2(α) ∀α ∈ V1 and (i) If (α, β) ∈ E1 then R1 = B1. (ii) If
(α, β) 6∈ E1 then

T+
R1

(α, β) = min(T+
A1

(α), T+
A1

(β)), I+R1
(α, β) = max(I+A1

(α), I+A1
(β)),

I−R1
(α, β) = min(I−A1

(α), I−A1
(β)), F−R1

(α, β) = min(F−A1
(α), F−A1

(β)),

F+
R1

(α, β) = max(F+
A1

(α), F+
A1

(β)), T−R1
(α, β) = max(T−A1

(α), T−A1
(β)).

Since f : G1 → G2 is an isomorphism if (α, β) ∈ E1 then R1(α, β) = B2(f(α), f(β)), if
(α, β) 6∈ E1 then

T+
R1

(α, β) = min(f(α), f(β)), I+R1
(α, β) = max(f(α), f(β)),

I−R1
(α, β) = min(f(α), f(β)), F−R1

(α, β) = min(f(α), f(β)),

F+
R1

(α, β) = max(f(α), f(β)), T−R1
(α, β) = max(f(α), f(β)).

Therefore we conclude that R1(α, β) = R2(f(α), f(β)). �

Theorem 3.4. Let G1 = (A1, B1) and G2 = (A2, B2) be two connected BSVNGs, If G1

and G2 are co-weak isomorphic, then A(G1) is homomorphic to A(G2).

Proof. As G1 and G2 be co-weak isomorphic BSVNGs, then there exist a bijection f :
G1 → G2 satisfying the conditions T+

A1
(α) ≤ T+

A2
(f(α)), I+A1

(α) ≥ I+A2
(f(α)), F+

A1
(α) ≥

F+
A2

(f(α)), T−A1
(α) ≥ T−A2

(f(α)), I−A1
(α) ≤ I−A2

(f(α)), F−A1
(α) ≤ F−A2

(f(α)) ∀α ∈ V1 and

B+
1 (α, β) = B+

2 (f(α), f(β)) ∀(α, β) ∈ E1, so the distance and diameters will preserved.
Let d(G1) = d(G2) = k = (k1, k2, k3, k4, k5, k6) if u, v ∈ V1 distance k in G1 then (u, v) ∈
E(A(G1)), so f(u), f(v) ∈ V2 distance k in G2 then (f(u), f(v)) ∈ E(A(G2)). If (u, v) ∈
E(G1) then R1(u, v) = B1(u, v) = B2(f(u), f(v)) = R2(f(u), f(v)). If (u, v) 6∈ E(G1) then

T+
R1

(u, v) = min(T+
A1

(u), T+
A1

(v)) ≤ min(T+
A2

(f(u)), T+
A2

(f(v))) = T+
R2

(f(u), f(v)),

similarly others can be proved, therefore

T+
R1

(u, v) ≤ T+
R2

(f(u), f(v)), I+R1
(u, v) ≥ I+R2

(f(u), f(v)), F+
R1

(u, v) ≥ F+
R2

(f(u), f(v)),
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T−R1
(u, v) ≥ T−R2

(f(u), f(v)), I−R1
(u, v) ≤ I−R2

(f(u), f(v)), F−R1
(u, v) ≤ F−R2

(f(u), f(v)).

Hence A(G1) is homomorphic to A(G2). �

Theorem 3.5. Let G1 = (A1, B1) and G2 = (A2, B2) be complete BSVNGs, if G1 is
co-weak isomorphic to G2 then A(G1) is co-weak isomorphic to A(G2).

Proof. Straight forward as Theorem 3.4. is proved. �

Next we introduce the self centered and self median bipolar single valued neutrosophic
graphs.

Definition 3.11. Let G = (A,B) be a BSVNG, a vertex vi ∈ V is said to be a central
vertex if r(G) = e(vi). The set of all central vertices of a BSVNG G is denoted by C(G),
G is said to be a self centered bipolar single valued neutrosophic graph (SCBSVNG) if
r(G) = e(vi) ∀vi ∈ V .

Example 3.3. Consider the BSVNG G = (A,B) of G∗, which is given in Example 3.1 is
also a self centered BSVNG.

Definition 3.12. A path cover of a BSVNG G = (A,B) is the set Q of paths so that
every vertex of G is incident to some path of Q.

Theorem 3.6. Every complete BSVNG G = (A,B) is a self centered BSVNG and

r(G) = (
1

T+
Ai

,
1

I+Ai
,

1

F+
Ai

,
1

T−Ai
,

1

I−Ai
,

1

F−Ai
)

where T+
Ai, I

−
Ai and F−Ai are minimal, T−Ai, I

+
Ai and F+

Ai are maximal.

Proof. Let vi ∈ V such that T+
Ai is least truth membership of vertex value in G.

Case(i) ∀ vi − vj paths P having n length in G ∀vj ∈ V.
for n = 1 trivially holds, if n > 1, the positive T -strength of one edge T+

Ai and therefore

positive T -length of a vi − vj path will exceed 1
T+
Ai

, thus positive T -length of path P =

l+T (P ) > 1
T+
Ai

, hence δ+T (vi, vj) = min(l+T (P )) = 1
T+
Ai

∀vj ∈ V.
Case(ii) Whenever vk 6= vi ∈ V, consider all vk − vj paths Q having n length in G
∀vj ∈ V.
Subcase(i) Whenever n = 1, T+

B (vk, vj) = min(T+
Ak, T

+
Aj) ≥ T+

Ai since T+
Ai is minimal,

hence positive T -length of Q = l+T (Q) = 1
T+
B (vk,vj)

≤ 1
T+
Ai

.

Subcase(ii) Whenever n = 2 then l+T (Q) = 1
T+
B (vk,vk+1)

+ 1
T+
B (vk+1,vj)

≤ 2
T+
Ai

since T+
Ai is

minimal.
Subcase(iii) Whenever n > 2 then l+T (Q) ≤ n

T+
Ai

since T+
Ai is minimal, hence we have

δ+T (vk, vj) = min(l+T (Q)) ≤ 1
T+
Ai

∀vk, vj ∈ V. Thus we have e+T (vi) = max(δ+T (vi, vj)) = 1
T+
Ai

∀vi ∈ V. Next r+T (G) = min(e+T (vi)) = 1
T+
Ai

, hence r+T (G) = 1
T+
Ai

where T+
A (vi) is minimal.

Similarly others can be proved. Hence G is self centered BSVNG. �

Remark 3.8. In general converse part does not hold of Theorem 3.6.

Example 3.4. Consider a BSVNG G = (A,B) of G∗ = (V,E), where A and B be
BSVNSs of V = {α, β, γ, ξ} and E = {(α, β), (β, γ), (γ, ξ), (ξ, α)} respectively, which are
defined in Table. 4

δ(α, γ) = (11, 6, 4,−10,−6,−7), δ(β, ξ) = (11, 6, 4,−10,−6,−7),

δ(α, β) = (6, 3, 2,−6,−4,−5), δ(α, ξ) = (5, 3, 2,−4,−2,−2),
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δ(β, γ) = (5, 3, 2,−4,−2,−2), δ(γ, ξ) = (6, 3, 2,−6,−4,−5),

e(α) = (11, 3, 2,−10,−2,−2), e(β) = (11, 3, 2,−10,−2,−2),

e(γ) = (11, 3, 2,−10,−2,−2), e(ξ) = (11, 3, 2,−10,−2,−2),

here r(G) = e(G). Thus G is self centered BSVNG but G is not complete BSVNG.

A T+
A I+A F+

A T−A I−A F−A B T+
B I+B F+

B T−B I−B F−B
α 1/5 1/3 1/3 −1/5 −1/5 −1/5 (α, β) 1/6 1/3 1/2 −1/6 −1/4 −1/5
β 1/5 1/5 1/5 −1/3 −1/7 −1/6 (β, γ) 1/5 1/3 1/2 −1/4 −1/2 −1/2
γ 1/3 1/6 1/6 −1/2 −1/2 −1/2 (γ, ξ) 1/6 1/3 1/2 −1/6 −1/4 −1/5
ξ 1/4 1/4 1/4 −1/6 −1/3 −1/3 (ξ, α) 1/5 1/3 1/2 −1/4 −1/2 −1/2

Table 4. BSVNSs of SCBSVNG

Remark 3.9. A BSVNG G = (A,B) is self centered BSVNG if and only if d(G) = r(G).

Remark 3.10. Let BSVNG G with path covers P1, P2, P3, P4, P5 and P6, then G is self
centered BSVNG if and only if

δ+T (vi, vj) = d+T (G) ∀(vi, vj) ∈ P1, δ
−
T (vi, vj) = d−T (G) ∀(vi, vj) ∈ P4,

δ+I (vi, vj) = d+I (G) ∀(vi, vj) ∈ P2, δ
−
I (vi, vj) = d−I (G) ∀(vi, vj) ∈ P5,

δ+F (vi, vj) = d+F (G) ∀(vi, vj) ∈ P3, δ
−
F (vi, vj) = d−F (G) ∀(vi, vj) ∈ P6.

Theorem 3.7. Let H = (A
′
, B
′
) be a connected self centered BSVNG, then there exists a

connected BSVNG G = (A,B) for which < C(G) > and H isomorphic and 2r(G) = d(G)

Definition 3.13. The status in G of vertex ξ, which is denoted by S(ξ), is defined by

S(ξ) = (S+
T (ξ), S+

I (ξ), S+
F (ξ), S−T (ξ), S−I (ξ), S−F (ξ))

where

S+
T (ξ) =

∑
η∈V

δ+T (ξ, η), S+
I (ξ) =

∑
η∈V

δ+I (ξ, η), S+
F (ξ) =

∑
η∈V

δ+F (ξ, η),

S−T (ξ) =
∑
η∈V

δ−T (ξ, η), S−I (ξ) =
∑
η∈V

δ−I (ξ, η), S−F (ξ) =
∑
η∈V

δ−F (ξ, η),

where S+
T (ξ), S+

I (ξ), S+
F (ξ), S−T (ξ), S−I (ξ) and S−F (ξ) are positive T -status, positive I-status,

positive F -status, negative T -status, negative I-status and negative F -status of the vertex
ξ, respectively. The connected BSVNG G = (C,D) is called self median if every vertex
has the same status.

Example 3.5. Consider the BSVNG G = (A,B) of G∗ = (V,E), where BSVNSs A and
B be BSVNSs of V = {α, β, γ, ξ} and E = {(α, β), (β, γ), (γ, ξ), (ξ, α), (α, γ)} respectively,
which are defined in Table. 5. Then,

δ(α, γ) = (5, 3, 4,−5,−2,−2), δ(β, γ) = (5, 4, 5,−10,−3,−2),

δ(β, ξ) = (13, 5, 7,−10,−5,−4), δ(γ, ξ) = (8, 2, 3,−5,−2,−2),

S(α) = (5, 3, 4,−5,−2,−2), (β) = (18, 9, 12,−20,−8,−6),

S(γ) = (13, 6, 8,−15,−5,−6), S(ξ) = (21, 7, 10,−15,−7,−6).

Thus G is not self median BSVNG.
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A T+
A I+A F+

A T−A I−A F−A
α 1/3 1/4 1/5 −1/3 −1/4 −1/5
β 1/2 1/5 1/6 −1/2 −1/5 −1/2
γ 1/4 1/6 1/7 −1/2 −1/2 −1/3
ξ 1/7 1/3 1/4 −1/3 −1/6 −1/5

B T+
B I+B F+

B T−B I−B F−B
(α, β) 1/4 1/3 1/4 −1/5 −1/3 −1/2
(β, γ) 1/5 1/4 1/5 −1/10 −1/3 −1/2
(γ, ξ) 1/8 1/2 1/3 −1/5 −1/2 −1/2
(ξ, α) 1/9 1/2 1/3 −1/5 −1/3 −1/5
(α, γ) 1/5 1/3 1/4 −1/5 −1/2 −1/2

Table 5. BSVNSs of BSVNG

Remark 3.11. Let G = (C,D) be a connected BSVNG of G∗ = (W,Y ), which is even
cycle then G is self median BSVNG, if alternative edges have same positive and negative
truth, indeterminacy and falsity membership values.

Example 3.6. The BSVNG G of G∗, which is given in Example 3.4 is also self median
BSVNG.

4. Bipolar Single Valued Neutrosophic Trees

Definition 4.1. The partial BSVN subgraph of BSVNG G = (C,D) on a crisp graph

G∗ = (V,E) is a BSVNG H = (C
′
, D
′
), such that

(1) C
′ ⊆ C, that is for all p ∈ V

T+
C′

(p) = T+
C (p), I+

C′
(p) = I+C (p), F+

C′
(p) = F+

C (p)

T−
C′

(p) = T−C (p), I−
C′

(p) = I−C (p), F−
C′

(p) = F−C (p).

(2) D
′ ⊆ D, that is for all pq ∈ E

T+
D′

(pq) = T+
D (pq), I+

D′
(pq) = I+D(pq), F+

D
′ (pq) = F+

D (pq)

T−
D′

(pq) = T−D (pq), I−
D′

(pq) = I−D(pq), F−
D′

(pq) = F−D (pq).

The BSVN subgraph of BSVNG G = (C,D) of crisp graph G∗ = (V,E) is a BSVNG

H = (C
′
, D
′
) on a H∗ = (V

′
, E
′
), such that

(1) C
′

= C, that is for all p ∈ V ′

T+
C′

(p) = T+
C (p), I+

C′
(p) = I+C (p), F+

C′
(p) = F+

C (p)

T−
C′

(p) = T−C (p), I−
C′

(p) = I−C (p), F−
C′

(p) = F−C (p).

(2) D
′

= D, that is for all pq ∈ E in the edge set E
′

T+
D′

(pq) = T+
D (pq), I+

D
′ (pq) = I+D(pq), F+

D′
(pq) = F+

D (pq)

T−
D′

(pq) = T−D (pq), I−
D′

(pq) = I−D(pq), F−
D′

(pq) = F−D (pq).
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Definition 4.2. Let C be a BSVNS on X, the support of C, which is denoted by supp(C),
defined by supp(C) = supp(T+

C ) ∪ supp(I+C ) ∪ supp(F+
C ) ∪ (T−C ) ∪ supp(I−C ) ∪ supp(F−C ),

where

supp(T+
C ) = {x : x ∈ X, T+

C (x) > 0}, supp(I+C ) = {x : x ∈ X, I+C (x) > 0},

supp(F+
C ) = {x : x ∈ X, F+

C (x) > 0}, supp(T−C ) = {x : x ∈ X, T−C (x) < 0},
supp(I−C ) = {x : x ∈ X, I−C (x) < 0}, supp(F−C ) = {x : x ∈ X, F−C (x) < 0}.

We call supp(T+
C ), supp(I+C ) and supp(F+

C ) truth support, indeterminacy support and fal-

sity support, respectively. And supp(T−C ), supp(I−C ) and supp(F−C ) are called the negative
truth support, indeterminacy support and falsity support, respectively. Let C be a BSVNS
on X, the (ξ, η, ζ, α, β, γ)-level subset of C, which is denoted by C(ξ,η,ζ,α,β,γ) and defined

by C(ξ,η,ζ,α,β,γ) = Cξ ∪ Cη ∪ Cζ ∪ Cα ∪ Cβ ∪ Cγ , where

Cξ = {x : x ∈ X, TC(x) ≥ ξ}, Cη = {x : x ∈ X, IC(x) ≤ η},

Cζ = {x : x ∈ X, FC(x) ≤ ζ}, Cα = {x : x ∈ X, TC(x) ≤ α},
Cβ = {x : x ∈ X, IC(x) ≥ β}, Cγ = {x : x ∈ X, FC(x) ≥ γ}.

The height of C, which is denoted by h(C), defined by h(C) = (h+T (C), h+I (C), h+F (C),

h−T (C), h−I (C), h−F (C)), where

h+T (C) = sup{T+
C (x) : x ∈ X}, h+I (C) = inf{I+C (x) : x ∈ X},

h+F (C) = inf{F+
C (x) : x ∈ X}, h−T (C) = inf{T−C (x) : x ∈ X},

h−I (C) = sup{I−C (x) : x ∈ X}, h−F (C) = sup{F−C (x) : x ∈ X}.
The BSVNS C is normal if there is p ∈ X such that C(p) = (1, 0, 0,−1, 0, 0). The depth
of C, which is denoted by d(C), defined by d(C) = (d+T (C), d+I (C), d+F (C), d−T (C),

d−I (C), d−F (C)), where

d+T (C) = inf{T+
C (x) : x ∈ X}, d+I (C) = sup{I+C (x) : x ∈ X},

d+F (C) = sup{F+
C (x) : x ∈ X}, d−T (C) = sup{T−C (x) : x ∈ X},

d−I (C) = inf{I−C (x) : x ∈ X}, d−F (C) = inf{F−C (x) : x ∈ X}.
The crisp graph of a BSVNG G = (A,B) is G∗ = (A∗, B∗), where A∗ = supp(A) and

B∗ = supp(B). Let G(ξ,η,ζ,α,β,γ) = (A(ξ,η,ζ,α,β,γ), B(ξ,η,ζ,α,β,γ)) where ξ, η, ζ ∈ [0, 1] and

α, β, γ ∈ [−1, 0]. A(ξ,η,ζ,α,β,γ) = {x : x ∈ V, T+
A (x) ≥ ξ, I+A (x) ≤ η, F+

A (x) ≤ ζ, T−A (x) ≤
α, I−A (x) ≥ β, F−A (x) ≥ γ} is the (ξ, η, ζ, α, β, γ)-level subset of A and B(ξ,η,ζ,α,β,γ) = {xy :

xy ∈ E, T+
B (xy) ≥ ξ, I+B (xy) ≤ η, F+

B (xy) ≤ ζ, T−B (xy) ≤ α, I−B (xy) ≥ β, F−B (xy) ≥ γ}
is the (ξ, η, ζ, α, β, γ)-level subset of B. Note that G(ξ,η,ζ,α,β,γ) is a crisp graph.

Definition 4.3. Let G = (A,B) be a BSVNG on the crisp graph G∗ = (V,E), the positive
T -strength of connectedness between x and y in V is

T∞+
B (xy) = sup{T k+B (xy) : k = 1, . . . , n},

T∞+
B (xy) = sup{T+

B (xv1) ∧ . . . ∧ T+
B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}

the positive I-strength of connectedness between x and y in V is

I∞+
B (xy) = inf{Ik+B (xy) : k = 1, . . . , n},

I∞+
B (xy) = inf{I+B (xv1) ∨ . . . ∨ I+B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}

and the positive F -strength of connectedness between x and y in V is

F∞+
B (xy) = inf{F k+B (xy) : k = 1, . . . , n},
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F∞+
B (xy) = inf{F+

B (xv1) ∨ . . . ∨ F+
B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}

The negative T -strength of connectedness between x and y in V is

T∞−B (xy) = inf{T k−B (xy) : k = 1, . . . , n},

T∞−B (xy) = inf{T−B (xv1) ∨ . . . ∨ T−B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}
the negative I-strength of connectedness between x and y in V is

I∞−B (xy) = sup{Ik−B (xy) : k = 1, . . . , n},

I∞−B (xy) = sup{I−B (xv1) ∧ . . . ∧ I−B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}
and the negative F -strength of connectedness between x and y in V is

F∞−B (xy) = sup{F k−B (xy) : k = 1, . . . , n},

F∞−B (xy) = sup{F−B (xv1) ∧ . . . ∨ F−B (vk−1y) : x, v1, . . . , vk−1, y ∈ V, k = 1, . . . , n}.
The positive T -strength, I-strength and F -strength between x and y in G is denoted by
T∞+
G (xy), I∞+

G (xy) and F∞+
G (xy) respectively. The negative T -strength, I-strength and

F -strength between x and y in G is denoted by T∞−G (xy), I∞−G (xy) and F∞−G (xy) respec-

tively. Next T
′∞+
B (xy), I

′∞+
B (xy) and F

′∞+
B (xy) denote T∞+

G−{xy}(xy), IaG−{xy}∞+(xy) and

F∞+
G−{xy}(xy), respectively. Also T

′∞−
B (xy), I

′∞−
B (xy) and F

′∞−
B (xy) denote T∞−G−{xy}(xy),

I∞−G−{xy}(xy) and F∞−G−{xy}(xy), respectively. Here G−{xy} is obtained from G by removing

the edge xy.

Definition 4.4. A bridge in BSVNG G = (A,B) is said to be positive (negative) T -bridge,
if removing the edge xy decreases (increases) the positive T -strength of connectivity of some
two vertices. A bridge in G is said to be positive (negative) I-bridge, if removing the edge
xy increases (decreases) the I-strength of connectedness of two vertices. A bridge in G is
said to be positive (negative) F -bridge, if by removing the edge xy increases (decreases)
the F -strength of connectedness of some two vertices. A bridge in BSVNG G is said to be
BSVN-Bridge xy if it is positive and negative T -bridge, I-bridge and F -bridge.

Definition 4.5. Let G = (A,B) be a BSVNG on the crisp graph G∗ = (V,E),
(i) xy ∈ E is called bridge if xy is bridge of G∗ = (A∗, B∗).
(ii) xy ∈ E is called BSVN-Bridge if

T
′∞+
B (uv) < T∞+

B (uv), I
′∞+
B (uv) > I∞+

B (uv), F
′∞+
B (uv) > F∞+

B (uv)

T
′∞−
B (uv) > T∞−B (uv), I

′∞−
B (uv) < I∞−B (uv), F

′∞−
B (uv) < F∞−B (uv)

for some uv ∈ E, where T
′+
B , I

′+
B , F

′+
B , T

′−
B , I

′−
B and F

′−
B , are T+

B , I
+
B ,F

+
B , T

−
B , I

−
B and

F−B , which are restricted to V × V − {xy, yx}.
(iii) xy ∈ E is called a weak BSVN-Bridge if there exist (ξ, η, ζ, α, β, γ) ∈ (O, h(B)] such

that xy is bridge of G(ξ,η,ζ,α,β,γ), where O = (0, 0, 0, 0, 0, 0).
(iv) xy ∈ E is called partial SVN bridge if xy is bridge for all (ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)]
∪ {h(B)}.
(v) xy ∈ E is called full BSVN-Bridge if xy is bridge for G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ)
∈ (O, h(B)], where 0 = (0, 0, 0, 0, 0, 0).

Remark 4.1. Let xy be a bridge in G∗ then xy is BSVN-Bridge if and only if

T+
B (xy) > T

′∞+
B (xy), I+B (xy) < I

′∞+
B (xy), F+

B (xy) < F
′∞+
B (xy)

T−B (xy) < T
′∞−
B (xy), I−B (xy) > I

′∞−
B (xy), F−B (xy) > F

′∞−
B (xy)
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Remark 4.2. An edge xy is BSVN-Bridge if and only if xy is not weakest bridge of any
cycle.

Proposition 4.1. An edge xy is BSVN-Bridge if and only if xy is bridge for G∗ and

T+
B (xy) = h(T+

B ), I+B (xy) = h(I+B ), F+
B (xy) = h(F+

B )

T−B (xy) = h(T−B ), I−B (xy) = h(I−B ), F−B (xy) = h(F−B )

Proof. Suppose that xy is full bridge then xy is bridge of G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β,

γ) ∈ (O, h(B)] = (0, h(TB)]× (0, h(IB)]× (0, h(FB)]. Hence xy ∈ Bh(B) and so

T+
B (xy) = h(T+

B ), I+B (xy) = h(I+B ), F+
B (xy) = h(F+

B )

T−B (xy) = h(T−B ), I−B (xy) = h(I−B ), F−B (xy) = h(F−B )

since xy is bridge for G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)]. It follows that xy is

bridge for G∗, since V = Ad(B) and E = Bd(B).
Conversely: Suppose xy is bridge for G∗ and

T+
B (xy) = h(T+

B ), I+B (xy) = h(I+B ), F+
B (xy) = h(F+

B )

T−B (xy) = h(T−B ), I−B (xy) = h(I−B ), F−B (xy) = h(F−B )

Then xy ∈ B(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], thus since xy is bridge for G∗,

xy is bridge for G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], since each G(ξ,η,ζ,α,β,γ) is
subgraph of G∗. Hence xy is a full BSVN-Bridge. �

Proposition 4.2. If an arc xy is not in the cycle of crisp graph G∗, then the following
conditions are equivalent.
(i) T+

B (xy) = h(T+
B ), I+B (xy) = h(I+B ), F+

B (xy) = h(F+
B ), T−B (xy) = h(T−B ), I−B (xy) =

h(I−B ), F−B (xy) = h(F−B ).
(ii) xy is partial BSVN-Bridge.
(iii) xy is full BSVN-Bridge.

Proof. Since xy is not contained in a cycle of G∗ and xy is bridge of G∗. Hence by propo-
sition 4.1, (i) ⇔ (iii) obvious (iii) ⇔ (ii). Next suppose that (ii) holds, then xy is

bridge for G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] and so xy ∈ Bh(B). Thus
T+
B (xy) = h(T+

B ), I+B (xy) = h(I+B ), F+
B (xy) = h(F+

B ), T−B (xy) = h(T−B ), I−B (xy) =

h(I−B ), F−B (xy) = h(F−B ). Thus (i) is true. �

Remark 4.3. If xy is a bridge, then xy is weak BSVN-Bridge and BSVN-Bridge.

Proposition 4.3. An arc xy is BSVN-Bridge if and only if xy is weak BSVN-Bridge.

Proof. Suppose that xy is a weak BSVN-Bridge, then there exists (ξ, η, ζ, α, β, γ) ∈ (O, h(B)]

such that xy is bridge for G(ξ,η,ζ,α,β,γ). Hence by removing xy it disconnects G(ξ,η,ζ,α,β,γ),
thus any path from x to y in G has an edge uv with T+

B (uv) < ξ, I+B (uv) > η, F+
B (uv) > ζ,

T−B (uv) > α, I−B (uv) < β, F−B (uv) < γ. Hence by removal of arc xy implies that

T
′∞+
B (xy) < ξ ≤ T∞+

B (xy), I
′∞+
B (xy) > η ≥ I∞+

B (xy), F
′∞+
B (xy) > ζ ≥ F∞+

B (xy)

T
′∞−
B (xy) > α ≥ T∞−B (xy), I

′∞−
B (xy) < β ≤ I∞−B (xy), F

′∞−
B (xy) < γ ≤ F∞−B (xy).

Hence xy is BSVN-Bridge.
Conversely: Suppose that xy is BSVN-Bridge, then there is an arc uv such that by re-
moving of xy implies that

T
′∞+
B (uv) < T∞+

B (uv), I
′∞+
B (uv) > I∞+

B (uv), F
′∞+
B (uv) > F∞+

B (uv)
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T
′∞−
B (uv) > T∞−B (uv), I

′∞−
B (uv) < I∞−B (uv), F

′∞−
B (uv) < F∞−B (uv)

Hence xy is on every strongest path joining u and v and in fact T+
B (uv) ≥, I+B (uv) ≤,

F+
B (uv) ≤, T−B (uv) ≤, I−B (uv) ≥, F−B (uv) ≥ this value. Thus there does not exist a path

other than xy connecting x and y in G(T+
B (xy),I+B (xy),F+

B (xy),T−B (xy),I−B (xy),F−B (xy)), else this
other path without xy would be of strength ≥ T+

B (xy), ≤ I+B (xy), ≤ F+
B (xy), ≤ T−B (xy),

≥ I−B (xy) and ≥ F−B (xy). Also it would be part of a path connecting u and v of strongest
length, contrary to fact that xy is on every such path. Hence xy is on every such path.

Hence xy is a bridge of G(T+
B (xy),I+B (xy),F+

B (xy),T−B (xy),I−B (xy),F−B (xy)) and

0 < T+
B (xy) ≤ h(T+

B ), 0 < I+B (xy) ≤ h(I+B ), 0 < F+
B (xy) ≤ h(F+

B )

0 > T−B (xy) ≥ h(T−B ), 0 > I−B (xy) ≥ h(I−B ), 0 > F−B (xy) ≥ h(F−B )

Thus (T+
B (xy), I+B (xy), F+

B (xy), T−B (xy), I−B (xy), F−B (xy)) are the desired (ξ, η, ζ, α, β, γ).
�

Definition 4.6. Let x ∈ V,
(i) The vertex x is called a cut vertex, if x is a cut vertex of G∗ = (A∗, B∗).

(ii) The vertex x ∈ V is called BSVN-Cut vertex if T
′∞+
B (uv) < T∞+

B (uv), I
′∞+
B (uv)

> I∞+
B (uv), F

′∞+
B (uv) > F∞+

B (uv) T
′∞−
B (uv) > T∞−B (uv), I

′∞−
B (uv) < I∞−B (uv),

F
′∞−
B (uv), F∞−B (uv) for some u, v ∈ V, where T

′
B, I

′
B and F

′
B are TB, IB and FB restricted

to V × V − {xz, zx : z ∈ V }.
(iii) The vertex x ∈ V is called a partial BSVN-Cut vertex if x is a cut vertex for

G(ξ,η,ζ,α,β,γ) for all (ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] ∪ {h(B)}.
(iv) The vertex x ∈ V is called a weak BSVN-Cut vertex if there exists (ξ, η, ζ, α, β, γ)

∈ (O, h(B)] such that x is a cut vertex of G(ξ,η,ζ,α,β,γ).

(v) The vertex x ∈ V is called a full BSVN-Cut vertex if x is a cut vertex for G(ξ,η,ζ,α,β,γ)

if there exists (ξ, η, ζ, α, β, γ) ∈ (O, h(B)].

Remark 4.4. Let G be a BSVNG such that G∗ is a cycle, then a vertex is BSVN cut
vertex of G if and only if it is a same vertex of two BSVN bridges.

Remark 4.5. If z ∈ V is a same vertex of at least two BSVN bridges, then z is a BSVN
cut vertex.

Remark 4.6. If G is a complete BSVNG, then T∞+
B (uv) = T+

B (uv), I∞+
B (uv) = I+B (uv),

F∞+
B (uv) = F+

B (uv), T∞−B (uv) = T−B (uv), I∞−B (uv) = I−B (uv) and F∞−B (uv) = F−B (uv).

Remark 4.7. The complete BSVNG has no BSVN-Cut vertex.

Definition 4.7. (i) The BSVNG G is called a block if G∗ is a block.
(ii) The BSVNG G is called a block if it has no BSVN-Cut vertices.
(iii) The BSVNG G is called a weak block if there exists (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], such

that G(ξ,η,ζ,α,β,γ) is a block.
(iv) The BSVNG G is called a partial BSVN-Block if G(ξ,η,ζ,α,β,γ) is a block for all
(ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] ∪ {h(B)}.
(v) The BSVNG G is called a full BSVN-Block if G(ξ,η,ζ,α,β,γ) is block for all (ξ, η, ζ, α, β, γ)
∈ (O, h(B)].

Definition 4.8. The connected BSVNG G is said to be a firm if

min{T+
A (x) : x ∈ V } ≥ max{T+

B (xy) : xy ∈ E},

max{I+A (x) : x ∈ V } ≤ min{I+B (xy) : xy ∈ E},
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max{F+
A (x) : x ∈ V } ≤ min{F+

B (xy) : xy ∈ E},
max{T−A (x) : x ∈ V } ≤ min{T−B (xy) : xy ∈ E},
min{I−A (x) : x ∈ V } ≥ max{I−B (xy) : xy ∈ E},
min{F−A (x) : x ∈ V } ≥ max{F−B (xy) : xy ∈ E}.

Definition 4.9. Let G be a connected BSVNG, then
(i) The BSVNG G is said to be a cycle whenever G∗ is a cycle.
(ii) The BSVNG G is said to be a BSVN-Cycle whenever G∗ is a cycle and there is a
unique pq ∈ E such that

T+
B (pq) = min{T+

B (uv) : uv ∈ E}, I+B (pq) = max{I+B (uv) : uv ∈ E},

F+
B (pq) = max{F+

B (uv) : uv ∈ E}, T−B (pq) = max{T−B (uv) : uv ∈ E},
I−B (pq) = min{I−B (uv) : uv ∈ E}, F−B (pq) = min{F−B (uv) : uv ∈ E}.

(iii) The BSVNG G is said to be a weak BSVN-Cycle if there exists (ξ, η, ζ, α, β, γ) ∈
(O, h(B)] such that G(ξ,η,ζ,α,β,γ) is a cycle.

(iv) The BSVNG G is called a partial BSVN-Cycle if G(ξ,η,ζ,α,β,γ) is a cycle for all
(ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] ∪ {h(B)}.
(v) The BSVNG G is called a full BSVN-Cycle if G(ξ,η,ζ,α,β,γ) is cycle for all (ξ, η, ζ, α, β, γ)
∈ (O, h(B)].

Remark 4.8. The BSVN-Cycle G is partial BSVN-Cycle if and only if G is a full BSVN
cycle.

Remark 4.9. The BSVNG G is a full BSVN-Cycle if and only if B is constant on E.
and G is a cycle.

Definition 4.10. A connected BSVNG G = (A,B) is said to be a BSVN-Tree if it has
a BSVN spanning subgraph H = (A,C) which is a tree, where for all edges xy not in
H satisfying T+

B (xy) < T∞+
C (xy), I+B (xy) > I∞+

C (xy), F+
B (xy) > F∞+

C (xy), T−B (xy) >

T∞−C (xy), I−B (xy) < I∞−C (xy), F−B (xy) < F∞−C (xy).

Definition 4.11. (i) The BSVNG G is called a forest if G∗ is a forest.
(ii) The BSVNG G = (A,B) is said to be a BSVN-Forest if G has a BSVN span-
ning subgraph forest H = (A,C), where all arcs uv ∈ E − W, satisfying T+

B (uv) <

T∞+
C (uv), I+B (uv) > I∞+

C (uv), F+
B (uv) > F∞+

C (uv), T−B (uv) > T∞−C (uv), I−B (uv) <

I∞−C (uv), F−B (uv) < F∞−C (uv).
(iii) The BSVNG G is called a weak BSVN-Forest if for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)]

such that G(ξ,η,ζ,α,β,γ) is a forest.
(iv) The BSVNG G is called a partial BSVN-Forest if G(ξ,η,ζ,α,β,γ) is a forest for all
(ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] ∪ {h(B)}.
(v) The BSVNG G is called a full BSVN-Forest if G(ξ,η,ζ,α,β,γ) is forest for all (ξ, η, ζ, α, β, γ)
∈ (O, h(B)].

Proposition 4.4. The BSVNG G is full BSVN-Forest if and only if G is forest.

Proof. Suppose that G is a full BSVN forest, then G∗ is a forest.
Conversely: Suppose that G is forest, then G∗ is a forest and so must be G(ξ,η,ζ,α,β,γ) for
all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], since each G(ξ,η,ζ,α,β,γ) is a subgraph of G∗. �

Proposition 4.5. The BSVNG G is weak BSVN-Forest if and only if G does not contain
a cycle whose edges are of strength h(B).
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Proof. Suppose that G contains a cycle whose edges are of strength h(B), then G(ξ,η,ζ,α,β,γ)

for (ξ, η, ζ, α, β, γ) ∈ (O, h(B)] that contains this cycle and so is not a forest, thus G is not
a weak BSVN-Forest.
Conversely: Suppose G does not contain a cycle whose edges are of strength h(B), then

Gh(B) does not contain a cycle and so it is forest. �

Remark 4.10. If G is a BSVN-Forest, then G is a weak BSVN-Forest.

Theorem 4.1. Let G be a forest and B is a constant on E if and only if G is a full
BSVN-Forest, G∗ and Gh(B) have the same number of connected components, and G is a
firm.

Proof. Suppose that G is a forest and B is constant on E, then for all (ξ, η, ζ, α, β, γ) ∈
(O, h(B)], then G(ξ,η,ζ,α,β,γ) = G∗ and so G is full BSVN-Forest also G∗ and Gh(B) have
the same number of connected components, clearly G is a firm, since B is constant on E.
Converse part is obvious. �

Corollary 4.1. The BSVNG G is a tree and B is constant on E if and only if G is a full
BSVN-Tree and G is a firm.

Definition 4.12. (i) The BSVNG G is called a tree if G∗ is a tree.
(ii) The BSVNG G = (A,B) is said to be a BSVN-Tree if it has a BSVN spanning sub-
graph H = (A,C) which is a tree, where for all edges uv ∈ E −W, satisfying T+

B (uv) <

T∞+
C (uv), I+B (uv) > I∞+

C (uv), F+
B (uv) > F∞+

C (uv), T−B (uv) > T∞−C (uv), I−B (uv) <

I∞−C (uv), F−B (uv) < F∞−C (uv).
(iii) The BSVNG G is called a weak BSVN-Tree if for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)] such

that G(ξ,η,ζ,α,β,γ) is a tree.
(iv) The BSVNG G is called a partial BSVN-Tree if G(ξ,η,ζ,α,β,γ) is a tree for all (ξ, η, ζ, α, β,
γ) ∈ (d(B), h(B)] ∪ {h(B)}.
(v) The BSVNG G is called a full BSVN-Tree if G(ξ,η,ζ,α,β,γ) is tree for all (ξ, η, ζ, α, β, γ)
∈ (O, h(B)].

Remark 4.11. If G is a BSVN-Tree, then G is not complete BSVNG.

Remark 4.12. If G is a BSVN-Tree, then arcs of spanning subgraph H are the BSVN-
Bridges of G.

Remark 4.13. If G is a BSVN-Tree, then internal vertices of spanning subgraph H are
the BSVN-Cut vertices of G.

Remark 4.14. If G is a BSVN-Tree, then xy is BSVN-Bridge if and only if T∞+
B (xy) =

T+
B (xy), I∞+

B (xy) = I+B (xy), F∞+
B (xy) = F+

B (xy), T∞−B (xy) = T−B (xy),

I∞−B (xy) = I−B (xy), F∞−B (xy) = F−B (xy).

Remark 4.15. The BSVNG G is a BSVN-Tree if and only if there is a unique maximum
spanning tree of G.

Remark 4.16. Let G be a firm, if G is a weak BSVN-Tree, then G is a BSVN-Tree.

Definition 4.13. (i) The BSVNG G is called a connected if G∗ is a connected.
(ii) The BSVNG G = (A,B) is said to be a BSVN connected if G is BSVN-Block.
(iii) The BSVNG G is called a weak BSVN connected if there exists (ξ, η, ζ, α, β, γ) ∈
(O, h(B)] such that G(ξ,η,ζ,α,β,γ) is a connected.

(iv) The BSVNG G is called a partial BSVN connected if G(ξ,η,ζ,α,β,γ) is a connected for
all (ξ, η, ζ, α, β, γ) ∈ (d(B), h(B)] ∪ {h(B)}.
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(v) The BSVNG G is called a full BSVN connected if G(ξ,η,ζ,α,β,γ) is tree for all (ξ, η, ζ, α, β,
γ) ∈ (O, h(B)].

Proposition 4.6. If G is connected then G is weakly connected.

Proof. Since G is connected implies that G∗ is connected. Now G∗ = Gh(B) and so G is
weak connected. �

Proposition 4.7. If G is firm and weak connected then G is connected.

Proof. If G(ξ,η,ζ,α,β,γ) is connected for some (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], then G∗ is con-
nected, since G is firm. �

Proposition 4.8. (i) If G is a weak BSVN-Tree, then G is weak connected and G is
a weak BSVN-Forest, conversely if there are (ξ1, η1, ζ1, α1, β1, γ1), (ξ2, η2, ζ2, α2, β2, γ2) ∈
(0, h(B)], with ξ1 < ξ2, η1 < η2 and ζ1 < ζ2 such that G(ξ1,η1,ζ1) is a forest and G(ξ2,η2,ζ2)

is connected, then G is weak SVN tree.
(ii) The SVNG G is a tree if and only if G is a forest and G is connected.
(iii) The SVNG G is partial SVN tree if and only if G is a partial SVN forest and G is
partially connected SVNG.
(iv) The SVNG G is full SVN tree if and only if G is a full SVN forest and G is fully
connected SVNG.

Proof. (i) If G(ξ,η,ζ) is a tree for some (ξ, η, ζ) ∈ (0, h(B)], then G(ξ,η,ζ) is connected and

is a forest. For converse, note that G(ξ2,η2,ζ2) must also be a forest, since also G(ξ2,η2,ζ2) is
connected, G(ξ2,η2,ζ2) is a tree.
(ii), (iii) and (iv) are obvious. �

Proposition 4.9. The BSVNG G is firm if and only if G(ξ,η,ζ,α,β,γ) is firm for all
(ξ, η, ζ, α, β, γ) ∈ (O, h(B)].

Proof. Suppose G is firm, let (ξ, η, ζ, α, β, γ) ∈ (O, h(B)], for xy ∈ T (ξ,η,ζ,α,β,γ) then

ξ ≤ T+
B (xy) ≤ min{T+

A (x) : x ∈ V } ≤ min{T+
A (x) : x ∈ T ξ+A }

η ≥ I+B (xy) ≥ max{I+A (x) : x ∈ V } ≥ max{I+A (x) : x ∈ Iη+A }

ζ ≥ F+
B (xy) ≥ max{F+

A (x) : x ∈ V } ≥ max{F+
A (x) : x ∈ F ζ+A }

α ≥ T−B (xy) ≥ max{T−A (x) : x ∈ V } ≥ max{T−A (x) : x ∈ T ξ−A }

β ≤ I−B (xy) ≤ min{I−A (x) : x ∈ V } ≤ min{I−A (x) : x ∈ Iη−A }

γ ≤ F−B (xy) ≤ min{F−A (x) : x ∈ V } ≤ min{F−A (x) : x ∈ F ζ−A }
therefore

max{T+
B (xy) : xy ∈ T ξ+B } ≤ min{T+

A (x) : x ∈ T ξ+A }

min{I+B (xy) : xy ∈ Iη+B } ≤ max{I+A (x) : x ∈ Iη+A }

min{F+
B (xy) : xy ∈ F ζ+B } ≤ max{F+

A (x) : x ∈ F ζ+A }

min{T−B (xy) : xy ∈ T ξ−B } ≥ max{T−A (x) : x ∈ T ξ−A }

max{I−B (xy) : xy ∈ Iη−B } ≥ min{I−A (x) : x ∈ Iη−A }

max{F−B (xy) : xy ∈ F ζ−B } ≥ min{F−A (x) : x ∈ F ζ−A }
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thus we conclude that B(ξ,η,ζ,α,β,γ)∗ = B(ξ,η,ζ,α,β,γ), A(ξ,η,ζ,α,β,γ)∗ = A(ξ,η,ζ,α,β,γ)

and G(ξ,η,ζ,α,β,γ) is a firm.
Conversely: Suppose that G(ξ,η,ζ,α,β,γ) is a firm for all (ξ, η, ζ, α, β, γ) ∈ (O, h(B)]. Let

min{T+
A (x) : x ∈ V } = ξ0 > 0, max{I+A (x) : x ∈ V } = η0 > 0

max{F+
A (x) : x ∈ V } = ζ0 > 0, max{T−A (x) : x ∈ V } = α0 < 0

min{I−A (x) : x ∈ V } = β0 < 0, min{F−A (x) : x ∈ V } = γ0 < 0

next
max{T+

B (xy) : xy ∈ T ξ0+B } ≤ ξ0, min{I+B (xy) : xy ∈ Iη0+B } ≥ η0
min{F+

B (xy) : xy ∈ F ζ0+B } ≥ ζ0, min{T−B (xy) : xy ∈ Tα0−
B } ≥ α0

max{I−B (xy) : xy ∈ Iβ0−B } ≤ β0, max{F−B (xy) : xy ∈ F γ0−B } ≤ γ0
since G(ξ0,η0,ζ0,α0,β0,γ0) is firm and V = A(ξ0,η0,ζ0,α0,β0,γ0) = A(ξ0,η0,ζ0,α0,β0,γ0)∗. Let xy ∈ E−
B(ξ0,η0,ζ0,α0,β0,γ0)∗, then T+

B (xy) < ξ0, I
+
B (xy) > η0, F

+
B (xy) > ζ0, T

−
B (xy) > α0, I

−
B (xy) <

β0 and F−B (xy) > γ0. Thus

max{T+
B (xy) : xy ∈ E} ≤ ξ0 = min{T+

A (x) : x ∈ V }
min{T−B (xy) : xy ∈ E} ≥ ξ0 = min{T−A (x) : x ∈ V }

min{I+B (xy) : xy ∈ E} ≥ η0 = max{I+A (x) : x ∈ V }
max{I−B (xy) : xy ∈ E} ≤ η0 = max{I−A (x) : x ∈ V }

min{F+
B (xy) : xy ∈ E} ≥ ζ0 = max{F+

A (x) : x ∈ V }
max{F−B (xy) : xy ∈ E} ≤ ζ0 = max{F−A (x) : x ∈ V }

Hence G is firm. �

5. Conclusions

The special classes of BSVNGs, antipodal BSVNGs, eccentric BSVNGs, self centered
BSVNGs and self median BSVNGs of BSVNGs were introduced here. We investigated iso-
morphism properties on antipodal BSVNGs, eccentric BSVNGs and self centered BSVNGs.
The neutrosophic graphs have many applications in path problems, networks and com-
puter science. The edge connectivity in BSVNG is basic concept to understand the con-
nections of connectedness between two systems of computers. The BSVN-Bridges, BSVN-
Cycles, BSVN-Trees, BSVN-Cut vertices and BSVN-Levels are introduced here, also the
BSVN-Blocks and BSVN-Firms are introduced with its properties and criteria to prove the
BSVNG to be firm or Block. In our future research, we will focus on antipodal, eccentric,
self centered and self median interval valued neutrosophic graphs of IVNGs.
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