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VARIABLE MESH DISCRETIZATION OF SYSTEM OF NONLINEAR

SINGULAR BOUNDARY VALUE PROBLEMS

S. NAYAK1, A. KHAN2, R. K. MOHANTY3, §

Abstract. In this paper two generalized numerical schemes using variable mesh has
been developed to solve the system of nonlinear two point boundary value problems.
Analytical convergence using a model fourth order problem has been provided. The
order of convergence of the proposed methods are two and three. The methods are
applicable to singular problems as well. Comparative study of numericals are given to
prove the efficiency of the schemes.
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1. Introduction

Consider the system of M nonlinear singular boundary value problems(BVPs) :

yxx = f, (1)

y(0) = A, y(1) = B (2)

where

yxx = [yxx
(1), yxx

(2), ..., yxx
(i), ..., yxx

(M)]T ,

f = [f (1), f (2), ..., f (i), ..., f (M)]T ,

f (i) = f (i)(x, y(1), ..., y(i), ..., y(M), yx
(1), ..., yx

(i), ..., yx
(M)),

y(0) = [y(1)(0), y(2)(0), ..., y(i)(0), ..., y(M)(0)]T ,

y(1) = [y(1)(1), y(2)(1), ..., y(i)(1), ..., y(M)(1)]T ,

A = [A1, A2, ..., Ai..., AM ]T ,

B = [B1, B2, ..., Bi, ..., BM ]T .

1 Department of Mathematics, Jamia Millia Islamia, New Delhi-25, India & Department of Mathematics,
Lady Shri Ram College for Women, University of Delhi, New Delhi-24, India.
e-mail: suchetanayak@lsr.edu.in; ORCID: https://orcid.org/0000-0002-0683-6613.

2 Department of Mathematics, Jamia Millia Islamia, New Delhi-25, India.
e-mail: akhan1234in@rediffmail.com; ORCID: https://orcid.org/0000-0003-3783-188X.

3 Department of Mathematics, South Asian University, New Delhi- 21, India.
e-mail: rmohanty@sau.ac.in; ORCID: https://orcid.org/0000-0001-6832-1239.

§ Manuscript received: December 14, 2018; accepted: February 25, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.3 © Işık University, Department
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We assume that y(x) is sufficiently smooth and required higher order derivatives exist
in the solution domain 0 ≤ x ≤ 1. The boundary conditions in (1) − (2) are given with
sufficient smoothness. Also, we ensure the existence of solutions by assuming that for
−∞ < y(i), yx

(i) <∞, we have

(i)f (i)is continuous;

(ii)
∂f (i)

∂y(j)
and

∂f (i)

∂yx(j)
exist and are continuous;

(iii)
M∑

i,j=1

∂f (i)

∂y(j)
> 0 and | ∂f

(i)

∂yx(j)
| ≤ C,

for some positive constant C and i, j = 1(1)M.

Many real life complex models [5] are simulated using system of boundary value problems.
These BVPs are very useful in solving higher order problems which arise in the study
of fluid dynamics, astronomy, astrophysics, hydrodynamics, beam and wave theory, engi-
neering and other applied sciences and have been considerably explored by Glatzmaier [3],
Terril [8] and Chandrasekhar [13] to name a few. Also, more recently system of nonlinear
second-order BVPs was solved by using cubic B-spline scaling functions by Dehgan et.al.
[1], sixth-order two-point BVPs were solved by a new method based on uniform Haar
wavelet developed by Haq et. al. [4]. Ullah et. al. [10] solved fifth and sixth order BVPs
using iteration method, Twizell [9] solved fourth order nonlinear BVPs by using method
of extrapolation and Talwar et.al. [7] developed finite difference methods to solve fourth
order ordinary differential equations.
The proposed methods solves system of nonlinear singular second order problems. The
problem is first discretized at the interior points using only three consecutive nodal points.
Then, in case of a higher order problem; it is decomposed into system of second order prob-
lems. Also, as nonlinear problems are solved, it results in a nonlinear system of BVPs.
Newton’s block method is used to solve such systems.

There are seven sections in this paper. In the section “Derivation of the Schemes”,
we provide complete derivation of the methods using second order BVPs and in section
“Generalized Schemes”, the generalization of both the schemes is discussed. In section
“Application to Fourth Order Singular BVP”, the application of the proposed methods
is provided using a fourth order singular BVPs; in section “Convergence Analysis”, we
discuss the analytical convergence of the proposed scheme and in section “Numerical
Illustrations”, we provide five numericals and comparison to justify the efficiency of the
proposed scheme. In the last section “Conclusion”, we provide final remarks.

2. Derivation of the Schemes

We derive the scheme using the following second order nonlinear singular BVP :

yxx = f(x, y, yx), such that y(0) = α, y(1) = β (3)

Now, to derive the scheme we first discretize the solution interval [0,1] into N subin-
tervals using nodal points xj = xj−1 + hj , j = 1(1)N, where hj is the mesh size and

σ =
hj+1

hj
> 0, j = 1, 2, 3, ..., N − 1 be the mesh ratio. When σ = 1, the mesh becomes to a

uniform mesh i.e., hj+1 = hj = h. Also, at the nodal points xj , j = 1, ...., N assume yj and
Yj be the exact and approximate solution of (3). Next, we follow the method developed
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by Mohanty [11] and accordingly following approximations are defined at the nodal points
xj , j = 1(1)N − 1,

S = σ(σ + 1), (4)

ȳxj+1
=

(1 + 2σ)yj+1 − (1 + σ)2yj + σ2yj−1
hjS

, (5)

ȳxj−1
=
−yj+1 + (1 + σ)2yj − σ(2 + σ)yj−1

hjS
, (6)

ȳxj
=
yj+1 + (σ2 − 1)yj − σ2yj−1

hjS
, (7)

F̄r = f(xr, yr, ȳxr
), r = j, j ± 1, (8)

¯̄yxj
= ȳxj

+ hj+1µ[F̄j+1 − F̄j−1], (9)

¯̄Fj = f(xj , yj , ¯̄yxj
), (10)

where µ is a parameter to be determined. Also the schemes considered are evaluated at three
consecutive nodal points:

σyj−1 − (1 + σ)yj + yj+1 =
h2j
6

(AFj+1 +BFj−1) + T
(2)
j , j = 1(1)N − 1 (11)

σyj−1 − (1 + σ)yj + yj+1 =
h2j
12

(PFj+1 +QFj +RFj−1) + T
(3)
j , j = 1(1)N − 1 (12)

where A = σ(2 + σ), B = σ(1 + 2σ), P = σ2 + σ − 1, Q = (1 + σ)(σ2 + 3σ + 1),
R = σ(1 + σ − σ2) and σ 6= 1.
Simplifying the approximations (5)− (10), we get

ȳxj
= yxj

+
1

6
σh2jyxxxj

+O(h3j ), (13)

ȳxj+1
= yxj+1

− 1

6
σ(1 + σ)h2jyxxxj

+O(h3j ), (14)

ȳxj−1 = yxj−1 −
1

6
(1 + σ)h2jyxxxj +O(h3j ), (15)

F̄j+1 = Fj+1 −
1

6
σ(1 + σ)h2jyxxxjGj +O(h3j ), (16)

F̄j−1 = Fj−1 −
1

6
(1 + σ)h2jyxxxjGj +O(h3j ), (17)

F̄j = Fj +
1

6
σh2jyxxxj

Gj +O(h3j ), (18)

¯̄yxj = yxj +
σ + 6µ(1 + σ)

6
h2jyxxxj +O(h3j ), (19)

¯̄Fj = Fj +
σ + 6µ(1 + σ)

6
h2jyxxxj

Gj +O(h3j ),where Gj =
∂f

∂yxj

(20)

Hence, using the approximations (5)−(7) in (11), we get the following equation for j = 1(1)N−1
and σ 6= 1:

σyj−1 − (1 + σ)yj + yj+1 =
h2j
6

(AF̄j+1 +BF̄j−1) + T
(2)
j (21)

Now, using (5)− (6) and (9) in (12), we obtain the following equation:

σyj−1 − (1 + σ)yj + yj+1 =
h2j
12

(PF̄j+1 +Q ¯̄Fj +RF̄j−1)

+(
P

6
σ(1 + σ) +

R

6
(1 + σ)−Qσ + 6µ(1 + σ)

6
)h2jyxxxjGj +O(h5j ) (22)
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To find the value of µ, we equate the coefficient of h4j to zero, thus raising the local truncation

error T
(3)
j in the equation (22) to O(h5j ) i.e.,

P

6
σ(1 + σ) +

R

6
(1 + σ)−Qσ + 6µ(1 + σ)

6
= 0

Therefore,

µ = − σ(1 + σ + σ2)

6(1 + σ)(σ2 + 3σ + 1)
.

Similarily, in case of the first discretized equation (21) it can be easily proved that the local
truncation error is of O(h4j ) and in case of uniform mesh it is O(h6). Also, note that the coefficients

A,B are positive for σ > 0 and P,Q,R are positive if (
√
5−1)
2 < σ < (

√
5+1)
2 , a condition required

for the convergence of the schemes given by Jain[6] and Mohanty[11].
Finally, since Yj is the approximate solution of (3), using(21)− (22) we write the discretization

schemes as follows:

σYj−1 − (1 + σ)Yj + Yj+1 =
h2j
6

(AF̄j+1 +BF̄j−1), j = 1(1)N − 1 (23)

σYj−1 − (1 + σ)Yj + Yj+1 =
h2j
12

(PFj+1 +Q ¯̄Fj +RF̄j−1), j = 1(1)N − 1 (24)

3. Generalized Schemes

We generalize the proposed schemes. At the grid point xj , j = 1(1)N − 1, the following approx-
imations and schemes are used:

S = σ(σ + 1), (25)

Ȳ (i)
xj+1

=
(1 + 2σ)Y

(i)
j+1 − (1 + σ)2Y

(i)
j + σ2Y

(i)
j−1

hjS
, (26)

Ȳ (i)
xj−1

=
−Y (i)

j+1 + (1 + σ)2Y
(i)
j − σ(2 + σ)Y

(i)
j−1

hjS
, (27)

Ȳ (i)
xj

=
Y

(i)
j+1 + (σ2 − 1)Y

(i)
j − σ2Y

(i)
j−1

hjS
, (28)

F̄ (i)
r = f (i)(xr, Yr

(1), Yr
(2), ..., Yr

(i), ..., Yr
(M),

Ȳ (1)
xr
, Ȳ (2)
xr
, ..., Ȳ (i)

xr
, ..., Ȳ (M)

xr
), (29)

¯̄Y (i)
xj

= Ȳ (i)
xj

+ hj+1µi(F̄
(i)
j+1 − F̄

(i)
j−1), (30)

¯̄F
(i)
j = f (i)(xj , Y

(1)
j , Y

(2)
j , ..., Y

(i)
j , ..., Y

(M)
j ,

¯̄Y (1)
xj
, ¯̄Y (2)
xj
, ..., ¯̄Y (i)

xj
, ..., ¯̄Y (M)

xj
), (31)

where i = 1(1)M, r = j, j ± 1 and µi =
σ(1 + σ + σ2)

6Q
. (32)

Then the discretization schemes are:

Y
(i)
j+1 − (1 + σ)Y

(i)
j + σY

(i)
j−1 =

h2j
6

(
AF̄

(i)
j+1 +BF̄

(i)
j−1
)
, (33)

σY
(i)
j−1 − (1 + σ)Y

(i)
j + Y

(i)
j+1 =

h2j
12

(PF̄
(i)
j+1 +Q ¯̄Fj

(i)
+RF̄

(i)
j−1), (34)

where A = σ(2 + σ), B = σ(1 + 2σ), P = σ2 + σ − 1, Q = (1 + σ)(σ2 + 3σ + 1),
R = σ(1 + σ − σ2), σ 6= 1.

-
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4. Application to Fourth Order Singular BVP

All even ordered boundary value problems can be solved by the method developed in the paper.
Moreover, the same concept is applicable in odd ordered BVPs. The only difference is being that
instead of second order we get system of first order BVPs. However, we consider only a fourth
order singular BVPs to exhibit the application of the method and accordingly the method can be
generalised for all even ordered BVPs. The fourth order problem is decomposed into system of
second order BVPs:

yxxxx(x) = c(x)yx(x) + d(x)y(x) + f(x), c(x) 6= 0, (35)

such that:

y(0) = α1, yxx(0) = α2, y(1) = β1, yxx(1) = β2 (36)

where c(x) = − 1
x , x 6= 0 and α1, α2, β1, β2 are real constants. We write the problem (35)− (36) as

follows:

yxx(x) = v(x), (37)

vxx(x) = c(x)yx(x) + d(x)y(x) + f(x), (38)

such that

y(0) = α1, v(0) = α2, y(1) = β1, v(1) = β2 (39)

Now, using the scheme (34) we discretize the problem (37)− (38) as follows:

σYj−1 − (1 + σ)Yj + Yj+1 =
h2j
6

(PVj+1 +QVj +RVj−1), (40)

σVj−1 − (1 + σ)Vj + Vj+1 =
h2j
6

(
P (cj+1 Ȳxj+1

+ dj+1Yj+1 + fj+1)

+Q(cj
¯̄Yxj

+ djYj + fj) +R(cj−1Ȳxj−1
+ dj−1Yj−1 + fj−1)

)
, (41)

where Y (xj), V (xj) are approximate solutions of (35) − (36). Also , we notice that the derived
schemes fails when j = 1 due to presence of singularity at x = 0. Therefore, we define the following
approximations for cj±1 at x = 0 respectively:

c∗∗j−1 = cj − hjcxj +
(hj)

2

2
cxxj +O(h3j ), (42)

c∗∗j+1 = cj + σhjcxj +
(σhj)

2

2
cxxj +O(h3j ) (43)

Similar approximations can be defined for dj±1, fj±1. Applying the approximations (42)-(43)
to the coupled second order scheme (40)− (41), we obtain the following equations:

σYj−1 − (1 + σ)Yj + Yj+1 =
h2j
6

(PVj+1 +QVj +RVj−1) (44)

σVj−1 − (1 + σ)Vj + Vj+1 =
h2j
6

(
P (c∗∗j+1 Ȳxj+1 + d∗∗j+1Yj+1 + f∗∗j+1)

+Q(cj
¯̄Yxj + djYj + fj) +R(c∗∗j−1Ȳxj−1 + d∗∗j−1Yj−1 + f∗∗j−1)

)
. (45)

The equations are simplified upto O(h5j ) terms. Then, the matrix form of the derived scheme
(44)− (45) is written as:

LŶ + φ̂ =
[
subj diagj supj

] Ŷj−1Ŷj
Ŷj+1

+ φ̂j = 0̂, (46)
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where L is a block tridiagonal matrix of order N − 1; subj , supj , diagj are block matrices of order
2× 2 in L. Also

Ŷ = [Ŷ1, Ŷ2, ..., Ŷj , ...ŶN−1]T , where Ŷj = [Yj , Vj ]
T

φ̂ = [φ̂1 + sub1[α1, α2]T , φ̂2, ..., φ̂j , ...φ̂N−1 + supN−1[β1, β2]T ]T , where φ̂j = [φ1j , φ
2
j ]
T

0̂ = [[0, 0]T , [0, 0]T , ..., [0, 0]T ]T .

Simplifying (46), we obtain the vector difference equation as follows:[
sub11 sub12

sub21 sub22

] [
Yj−1
Vj−1

]
+

[
diag11j diag12j
diag21j diag22j

] [
Yj
Vj

]
+

[
sup11 sup12

sup21 sup22

] [
Yj+1

Vj+1

]
=

[
φ1j
φ2j

]
, (47)

where

sub11 = −σ, sub12 =
h2j
12
R, (48)

sub21 =
hj

12S

(
cj((P −R−Q)σ2 − 2Rσ) + hj(cxj

(Pσ3 +Rσ2 + 2Rσ) +RSdj)

+h2j (cxxj
(
Pσ4 −Rσ(2 + σ)

2
)−RSdxj

) + h3j
RS

2
dxxj

)
,

sub22 = −σ +
h3jQcjσµ

12
, (49)

diag11j = (1 + σ), diag12j =
h2j
12
Q, (50)

diag21j =
hj

12S

(
cj((−P +R)(1 + σ)2 +Q(σ2 − 1)) + hj(cxj (−Pσ −R)(1 + σ)2 +QSdj)

+h2jcxxj
(−Pσ

2

2
+
R

2
)(1 + σ)2

)
,

diag22j = 1 + σ, (51)

sup11 = −1, sup12 =
h2j
12
P, (52)

sup21 =
hj

12S

(
cj(P (1 + 2σ)−R+Q) + hj(cxj

(Pσ(1 + 2σ) +R) + PSdj)

+h2j (cxxj
(
P (1 + 2σ)σ2 −R

2
) + PSσdxj

) + h3j
PSσ2

2
dxxj

)
,

sup22 = −1−
h3jQcjσµ

12
, (53)

φ1j = 0, φ2j = −
h2j
12

(
fj(P +Q+R) + hjfxj

(Pσ −R) +
h2j
2
fxxj

(Pσ2 +R)

)
. (54)

5. Convergence Analysis

Vector convergence i.e., for M = 2 a coupled second order BVP is provided. Consider a coupled
nonlinear singular second order boundary value problem (37) − (38). As y(xj), v(xj) is the exact
solution, we let:

y = [[y1, v1]T , [y2, v2]T ......, [yj , vj ]
T , ..., [yN−1, vN−1]T ]T ∼= ŷ satisfy

Ly + φ̂+ T̂ 3
j = 0, where L is defined in (46) . (55)

Let êj = [Yj − yj , Vj − vj ]T ≡ [ejy, ejv]
T be the discretization error

then Y − ŷ = E = [ê1, ê2, ..., ˆeN−1]T .

where T̂ 3
j = [ (T 3

1 (h1), T 3
1 (h1)), (T 3

2 (h2), T 3
2 (h2)), ..., (T 3

N−1(hN−1), T 3
N−1(hN−1) )T ]T .
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We subtract (46) from (55) and obtain the error equation as follows

LE = T̂ 3
j . (56)

Let |dj | ≤ K1 and |dxj
| ≤ K2 for some K1,K2 > 0 , then using (48)− (49), (52)− (53) we get,

‖supj‖∞ ≤ max
1≤j≤N−2

{
1 +

h2
jP

12 +O(h4j ),

1 +
h2
jσ

2P

2 (K1 +
hjσ
2 K2) +O(h4j ),

(57)

‖subj‖∞ ≤ max
2≤j≤N−1

{
σ +

h2
jR

12 +O(h4j ),

σ +
h2
jσ

2R

2 (K1 +
hj

2 K2) +O(h4j ),
(58)

Thus for sufficiently small hj , we get ‖subj‖∞ ≤ σ and ‖supj‖∞ ≤ 1. Hence, L is irreducible [12].
Let the sum of elements of rowj of L be sumrowj

sumrowj =


σ +

h2
j

12 (P +Q) +O(h4j ), j = 1

σ +
hj

12S (−P +R+Q+ 2Rσ)cj +
h2
j

12S

(
(cxj

(−Pσ3 −Rσ2 − 2Rσ) + djS(P +Q))

+
hj

2 (cxxj
(−Pσ4 +R(σ2 + 2σ)) + 2S(Pσdxj

−Qcjµσ))

)
+O(h4j ), j = 2

(59)

sumrowj =

{
h2
j

12 (P +Q+R) +O(h4j ), j = 3, 5, ..., N − 4
h2
j

12

(
(P +Q+R)dj + hjdxj (Pσ −R) +

h2
j

2 dxxj (R+ σ2P )
)
, j = 4, 6, ..., N − 3

(60)

sumrowj =


1 +

h2
j

12 (R+Q) +O(h4j ), j = N − 2

1 +
hj

12S (−Pσ − P +R−Q)cj +
h2
j

12S

(
(cxj

(−Pσ(1 + σ)−R) + djS(R+Q))

+
hj

2 (cxxj
(−Pσ2(1 + σ) +R) + 2S(−dxj

R+Qcjµσ))

)
+O(h4j ), j = N − 1

(61)

Let

0 < Kmin ≤ min(K1,K2) ≤ Kmax (62)

Using (59)−(61) and for sufficiently small hj , Monotonicity of L can be easily proved. Therefore,
L−1 exist and L−1 ≥ 0[12]. Hence by (56) we have,

||E|| = ||L−1||||T̂ 3
j || (63)

Now by (59)− (61) and for sufficiently small hj we can say that:

sumrowj >

{
h2
j

12 (P +Q), j = 1
h2
j

12 (P +Q)Kmin, j = 2
(64)

sumrowj ≥

{
h2
j

12 (P +Q+R), j = 3, 5, ..., N − 4
h2
j

12 (P +Q+R)Kmin, j = 4, 6, ..., N − 3
(65)

sumrowj >

{
h2
j

12 (R+Q), j = N − 2
h2
j

12 (R+Q)Kmin, j = N − 1
(66)

Since σ 6= 0 we can say that:

sumrowj > max[
h2j
12

(P +Q) ,
h2j
12

(P +Q)Kmin]

=
h2j
12

(P +Q)Kmin, for j = 1, 2 (67)
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sumrowj ≥ max[
h2j
12

(P +Q+R) ,
h2j
12

(P +Q+R)Kmin]

=
h2j
12

(P +Q+R)Kmin, for j = 3, 4, ..., N − 3 (68)

sumrowj > max[
h2j
12

(R+Q) ,
h2j
12

(R+Q)Kmin]

=
h2j
12

(R+Q)Kmin, for j = N − 2, N − 1 (69)

Let Li,j
−1 be the (i, j)th element of L−1 then, for i = 1, 2, ..., N − 1

Li,j
−1 ≤ 1

sumrowj

(70)

By using (67)− (69), we have

1

sumrowj

≤


12

h2
j (P+Q)Kmin

, j = 1, 2

12
h2
j (P+Q+R)Kmin

, j = 3, 4, 5, ..., N − 3

12
h2
j (Q+R)Kmin

, j = N − 2, N − 1

(71)

Now let us define,

‖ Li,j−1 ‖= max
1≤i≤N−1

N−1∑
j=1

| Li,j−1 | and ‖ T ‖= max
1≤j≤N−1

| T̂ 3
j | (72)

Therefore,using (63) and (70)− (72) we get,

‖ E ‖≤ 12

h2jKminσ

( 1

P +Q
+

1

R+Q
+

1

(P +R+Q)
)O(h5j ) = O(h3j ). (73)

Hence, scheme (34) has third order convergence for fourth order singular BVPs. On the similar
lines without loss of generality, third order vector convergence for system of second order BVPs of
the type (1)− (2) can be proved. Similarly, second order convergence of the difference scheme (33)
can also be proved.

Theorem 1. Let the solution of boundary value problems (1) − (2) be sufficiently smooth
such that the required higher order derivatives of y(x) exist in the solution domain. Then, the

scheme derived in (34) with sufficiently small hj , 0 < σ < 1 and (
√
5−1)
2 < σ < (

√
5+1)
2 has third

order convergence.

6. Numerical Illustrations

In this section we have solved five nonlinear BVPs and compared the numerical results with
existing methods. The root mean square errors(erms) for variable mesh, maximum absolute error
(emax) for uniform mesh and computational order of convergence (COC) are tabulated in the
Tables 1-5:

erms = (
1

N − 1

N−1∑
j=1

|yj − Yj |2)
1
2 ,

emax = max
1≤j≤N−1

|yj − Yj |,

COC = log2
emax at j

emax at j + 1
.
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We have considered h1 = (σ−1)
(σN−1) , σ 6= 1 . Therefore, the rest of the hj ’s has been obtained as

hj+1 = σhj , j = 1(1)N − 1. The nonlinear system of difference equations is solved by Newton’s
Block method. Thus we consider y0 = 0 as the initial approximation. Also all calculations are
done in Matlab 07. In the following questions y(i)(x) means ith derivative of y(x).

Example 5.1 Consider fourth order nonlinear BVP [9] :

y(iv)(x) = 6e−4 y(x) − 12

(1 + x)4
, 0 < x < 1

with

y(0) = 0, y(ii)(0) = −1,

y(1) = 0.6931, y(ii)(1) = −0.25.

The exact solution is given by y(x) = log(1 +x). The erms and emax errors are tabulated in Table
1.

Table 1. erms errors for σ = 0.9 and emax errors for σ = 1

erms | emax
N O(hj

2)method O(hj
3) method | Twizell[9] O(h4)method

8 4.2831e-03 8.7695e-05 | 3.7e-04 1.4817e-05
16 1.8422e-03 2.2401e-05 | 2.9e-05 9.6743e-07
32 1.1828e-03 1.1389e-05 | 1.9e-06 6.0883e-08

Example 5.2 Consider a sixth order nonlinear BVP([4],[10]):

y(vi)(x) = e−xy(x), 0 < x < 1

with

y(0) = y(ii)(0) = y(iv)(0) = 1, y(1) = y(ii)(1) = y(iv)(1) = e.

The test solution is ex. The erms and emax errors are tabulated in Table 2.

Table 2. erms errors for σ = 0.8 and emax errors for σ = 1

erms | emax
N O(hj

2) method O(hj
3)method | Haq et.al.[4] Ullah et.al.[10] O(h4)method

.1 6.3259e-02 5.3858e-06 | -1.2e-04 1.1106e-07 2.5257e-08

.2 9.2757e-02 6.1146e-06 | -2.3e-04 2.1138e-07 4.6154e-08

.3 1.0035e-01 4.2164e-06 | -3.2e-04 2.9128e-07 6.2412e-08

.4 9.4516e-02 3.1467e-06 | -3.8e-04 3.4229e-07 7.3657e-08

.5 8.1200e-02 2.2326e-06 | -4.0e-04 3.6143e-07 7.9407e-08

.6 6.4401e-02 3.1467e-06 | -3.9e-04 3.4461e-07 7.9065e-08

.7 4.6677e-02 1.4826e-06 | -3.3e-04 2.9390e-07 7.1906e-08

.8 2.9559e-02 8.7666e-07 | -2.4e-04 2.1404e-07 5.7058e-08

.9 1.3877e-02 3.9002e-07 | -1.2e-04 1.1271e-07 3.3493e-08
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Example 5.3 Consider a coupled second order nonlinear problem of the form([1],[2]):

y(ii)(x) + y(i)(x) + xy(x) + 2xz(x) + xy2(x) = f1(x)

z(ii)(x) + z(x) + x2y(x) + sin(x)z2(x) = f2(x)

with

y(0) = y(1) = 0, z(0) = z(1) = 1,

where f1(x) = −2x sin(x)−2+x2−2x4 +x5 , f2(x) = (1−x)x3 +(1−π2) sin(πx)+sin(x) sin2(πx)
and 0 ≤ x ≤ 1. The exact solution is y(x) = x−x2, z(x) = sin(πx). The emax errors are tabulated
in Table 3.

Table 3. emax errors for σ = 1

z(x) | y(x)
N Geng[2] Dehgan et.al.[1] O(h4)method | Geng[2] Dehgan et.al.[1] O(h4)method
.08 8.1e-04 1.3e-08 6.2649e-10 | 2.1e-04 5.4e-10 7.7420e-11
.24 8.3e-04 9.9e-09 1.7075e-09 | 1.6e-04 1.2e-09 6.5540e-11
.40 7.0e-04 3.5e-08 2.3610e-09 | 8.5e-05 2.2e-09 4.6350e-10
.56 3.5e-04 1.2e-07 2.4373e-09 | 1.3e-04 2.4e-09 8.5945e-10
.72 1.7e-04 1.0e-07 1.9188e-09 | 8.8e-05 5.8e-10 9.7664e-10
.88 7.4e-04 4.9e-08 9.2456e-10 | 2.3e-04 3.4e-10 6.1619e-10
.96 4.6e-04 5.8e-09 3.1683e-10 | 1.3e-04 1.6e-10 2.3631e-10

Example 5.4 Consider the fourth order nonlinear singular problem of the form :

y(iv)(x) +
4

x
y(iii)(x)− ey = ex(

4 + x

x
)− ee

x

, 0 < x < 1

with

y(0) = y(ii)(0) = 1,

y(1) = y(ii)(1) = 2.7183.

The test solution is y(x) = ex. The erms and emax errors are tabulated in Table 4.

Table 4. erms errors for σ = 0.9 and emax errors for σ = 1

erms | emax

N O(hj
2) method O(hj

3) method | O(h4) method COC
16 9.7848e-02 5.8113e-05 | 1.2702e-05 -
32 9.8618e-02 3.0508e-05 | 1.1248e-06 3.4972
64 9.9103e-02 2.6797e-05 | 9.2148e-08 3.6096

Example 5.5 Consider the sixth order nonlinear singular problem of the form :

y(vi)(x) +
6

x
y(v)(x)− y2 = 6

cos(x)

x
− sin(x)− sin2(x),

with

y(0) = y(ii)(0) = y(iv)(0) = 0,

y(1) = −y(ii)(1) = y(iv)(1) = 0.8415.

The exact solution is y(x) = sin(x). The erms and emax errors are tabulated in Table 5. We
observe that, in case of second order method the error overflows.



604 TWMS J. APP. ENG. MATH. V.10, N.3, 2020

Table 5. erms errors for σ = 0.8 and emax errors for σ = 1

erms | emax

N O(hj
2) method O(hj

3)method | O(h4)method COC
8 - 3.0349e-06 | 5.2269e-06 -
16 - 1.6912e-06 | 2.8506e-07 4.1966
32 - 1.5162e-06 | 1.5987e-08 4.1563
64 - 1.5115e-06 | 9.3622e-10 4.0939

7. Conclusion

In this paper, second and third order variable mesh schemes have been derived for solving
nonlinear higher order(mainly even ordered) and system of second order singular BVPs. Table
1, 2, 3 proves refinement in results when compared with other nonlinear BVPs which are solved
by computational methods using extrapolation, collocation and iterative method (Daftardar Jafari
method) and finally using cubic B-spline scaling functions. We have compared our own results
in Table 4, 5 due to inadequacy of any prior results. Thus, we have provided COC for the
uniform mesh method. The proposed schemes are more computationally efficient due to use of
only three consecutive nodal points at a time which leads to solving of a tri-diagonal matrix. Our
methods with minor modifications are applicable to higher even order singularly perturbed BVPs
and problems in polar as well as cartesian coordinates.
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