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OPTIMAL AND MODEL PREDICTIVE CONTROL OF

A QUADROTOR

Abstract

Quadrotors are unmanned aerial vehicles (UAVs) used widely and these vehicles

have been controlled with different controllers, such as PID, Linear Quadratic

Regulator (LQR) and, Model Predictive Control (MPC). In this study, the linear

state-space model was developed according to quadrotor’s kinematic and dynamic

equations, and LQR and MPC controllers were designed for tracking a given

trajectory. The simulation results of the controller performances were compared.

Keywords: Quadrotor, MPC, LQR, trajectory tracking, control
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QUADROTOR’UN OPTİMAL VE MODEL

ÖNGÖRÜLÜ KONTROLÜ

Özet

Quadrotorlar yaygın kullanılan insansız hava araçlarıdır (İHA) ve PID, Lineer

Kuadratik Regülatör (LQR) ve Model Öngörülü Kontrol (MPC) gibi farklı kon-

trolörler ile kontrol edilmiştir. Bu çalışmada, quadrotorun kinematik ve dinamik

denklemlerine göre lineer durum uzay modeli geliştirildi ve verilen bir yörüngeyi

izlemek için LQR ve MPC kontrolörleri tasarlandı. Kontrolör performanslarının

simülasyon sonuçları karşılaştırıldı.

Anahtar kelimeler: Quadtoror, MPC, LQR, yörünge izleme, kontrol

iii



Acknowledgements

This study was completed thanks to my thesis supervisors Prof. Dr. Yorgo

Istefanopulos and Assoc Prof. Dr. Erkin Dinçmen and Prof. Dr. Mustafa Doğan

who helped with their extensive knowledge and experiences. I owe them a debt

of gratitude.

I would like to thank my friends Ece Yener and Ege Sarı who never made me feel

lonely on this rocky road. They encouraged me whenever I wanted to give up.

I thank other friends Berk Kenan Mataracı who gave me suggestions to find a

thesis subject and for his endurance in all steps of the thesis and Oğuzhan Ulusoy
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Chapter 1

Introduction

In the last ten years, Unmanned Aerial Vehicles (UAVs) have become the focus

of research and development. In particular, Quadrotors are more preferred due to

their Vertical Take-Off and Landing (VTOL) capability and movement flexibility.

Moreover, Quadrotors have importance in the field of Aeronautic Engineering,

military, and civilian applications. Such as environmental monitoring, lifesaving,

battlefield assessment, and various industrial applications [1].

Quadrotors have a simple and symmetric structure in virtue of four equally spaced

rotors. This structure provides six degrees of freedom as coupled with transla-

tional and rotational motion. With the aerodynamic effects, the dynamics of the

Quadrotors have become considerable nonlinear and causing the stability more

complicated. Depending on these factors, controlling the Quadrotor becomes

harder [2].

A considerable amount of control techniques have been tested to deal with mul-

tiple inputs and multiple outputs (MIMO) nonlinear systems in both classical

and modern control theories. The linear model of the Quadrotor is attained by

applying a linearization procedure around an equilibrium point [3]. In general,

the linear model would rather be preferred due to its ease of implementation and

simple design.
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Feedback linearization method, backstepping controller, PD, PID, sliding mode

controller, and Linear Quadratic Regulator (LQR) controller were used to achieve

a proper stability [4].In accordance with references [3] and [4], the feedback lin-

earization method has been applied to obtain a proper trajectory tracking and the

backstepping technique was used to obtain a more flexible controller with its in-

terconnected subsystems. As a classical approach, PID presents a solution for an

attitude control problem with a simplified dynamic model [4].]. Another control

technique LQR is an optimal control method which aspires to achieve minimum

objective function, in other words, a cost function is obtained from the system dy-

namics described in the state-space model. This function is in quadratic form and

consists of differential Riccati Equations. The state feedback gain of the system

is obtained by solving the Riccati Equations. Therefore, states are evolved with

minimum energy consumption [1]. In addition to these, Model Predictive Control

(MPC) method has been used in recent researches. When comparing with the

other control methods, MPC is designed with robust control law for position con-

trol. Also, MPC provides stable rotational movements. Solves quadratic problem

as LQR. However, it solves by making iteration periodically as distinct from the

LQR controller [4].

In this study, the dynamic model of the system has been established in both

continuous-time and discrete-time state-space models to track a given trajectory.

Then, the LQR controller and MPC controller have been designed. All the system

modellings and simulations have been done by using Matlab / Simulink. Finally,

evaluated simulation results have been compared for LQR and MPC controllers

2



Chapter 2

Literature Survey

2.1 Working Principle

Quadrotors are simple unmanned aerial vehicles with symmetric structure. Con-

figuration can be in two different types, ”cross” and ”plus” configurations, as

shown in Figure 2.1. below. There are four aligned rotors in a quadrotor. While

one pair of rotors, placed opposite to each other, rotate in the same direction, the

rest one pair of rotors rotate in opposite direction with respect to the other pair.

Quadrotors have three transitional and three rotational movements. Therefore,

we can understand that it has six degrees of freedom (6-DOF).

Figure 2.1: Cross and Plus Configurations.
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By adjusting the angular velocity of each rotor, rotational movements on three

axes are provided. The speed difference of rotor pairs creates roll, pitch, and yaw

movements according to x, y, and z axes respectively [5].

2.2 Mathematical Model

According to reference [6], the system dynamics are modeled using Newton’s Laws

and Euler’s Laws considering the following assumptions:

• The body is rigid.

• The tensor of inertia (ToI) of the Quadrotor is assumed as zero.

• The center of gravity (CoG) and the center of Mass (CoM) assumed to

coincide with the geometrical center of the Quadrotor.

• The moment of inertia (MoI) of the propellers is neglected.

• The drag force is neglected.

2.2.1 Reference Frame

There are two frames to describe the linear and angular positions of the quadrotor.

The axes on the quadrotor are called as body frame and the axes on the Earth

are called as inertial frame. The linear position of the quadrotor in the inertial

frame is defined as x, y, z. In the body frame, the axes are defined as xb, yb, zb.

Angular position is called Euler angles and the Euler angles are defined as φ, θ, ψ.

φ is the roll angle which determines rotations around the x-axis, θ is the pitch

angle which determines rotations around the y-axis, and ψ is the yaw angle which

determines rotations around the z-axis [7].

The orientation between the inertial frame and body frame is provided by an

orthogonal rotations matrix R, which will be explained and derived in the next

section.

4



Figure 2.2: Inertial & Body Frames.

2.2.2 System Kinematics

Transitional Kinematics: Kinematic equations are obtained by geometric

relationships between axes on both inertial and body frames. Roll movement is

described by the relationship between y and z axes. Pitch movement is described

by the relationship between x and z axes. Yaw movement is described by the

relationship between x and y axes.

The transitional kinematics equations and matrix forms are as below [8]:

Roll Movement

xb = x

yb = y. cosφ+ z. sinφ

zb = −y. sinφ+ z. cosφ

5



Rx =


1 0 0

0 cosφ sinφ

0 sinφ cosφ

 (2.1)

Pitch Movement

xb = x. cos θ − z. sin θ

yb = y

zb = x. sin θ + z. cos θ

Ry =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.2)

Yaw Movement

xb = x. cosψ + y. sinψ

yb = −x. sinψ + y. cosψ

zb = z

Rz =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.3)

The rotation matrix from the body frame to the inertial frame is found below [9]:

R=Rz ×Ry ×Rx

6



R =


cos θ cosψ sinφsinθ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ


(2.4)

Rotational Kinematics: Angles on the body frame are denoted as p, q,

and r according to the x, y, and z axes respectively. Trigonometric relationships

between the Euler rates φ̇, θ̇, ψ̇ and angular rates of body ṗ, q̇, ṙ are as follows

[9]:


ṗ

q̇

ṙ

 = R(φ̇)


φ̇

0

0

+R(φ)R(θ̇)


0

θ̇

0

+R(φ)R(θ)R(ψ̇)


0

0

ψ̇

 (2.5)

To provide the transformation between the Euler rates and body rates, φ̇, θ̇, ψ̇

need to be assumed small. Thus,

R(φ̇) = R(θ̇) = R(ψ̇) = I (2.6)

Then the equation becomes
ṗ

q̇

ṙ

 =


φ̇

0

0

+


1 0 0

0 cosφ sinφ

0 sinφ cosφ




0

θ̇

0

+


1 0 0

0 cosφ sinφ

0 sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




0

0

ψ̇


(2.7)
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ṗ

q̇

ṙ

 =


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ



φ̇

θ̇

ψ̇

 (2.8)

The transfer matrix is obtained by inverting
φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sin θ

0 sinφ sec θ cosφ sec θ



ṗ

q̇

ṙ

 (2.9)

2.2.3 System Dynamics

Dynamic equations describe the quadrotor attitude. The angle of Roll, Pitch,

and Yaw movement is procured by the rotational velocity of rotors. This angle is

also affected by the weight of the quadrotor, wind and gravity.

Thrust force is produced through the rotor torques of brushless DC motors [8].

Motor Dynamics and Thrust In order to meet the power requirement of

the system, motor power is determined. Motor torque is calculated before deter-

mining the motor power [10].

τ = KtI (2.10)

where τ (Nm) is the rotor torque, Kt (Nm/A) is the torque constant, and I

(A) is the input current. For DC power sources Kirchoff’s Voltage Law can be

applied. Motor resistance can be neglected because it is too small. According to

the Kirchoff’s Voltage Law, the voltage that generated by motor is given as:

V = (I.R) + VEMF (2.11)

8



R represents the motor resistance and if it is negligible, then the voltage that

generated by motor equals to Beck-EMF voltage.

V = VEMF (2.12)

VEMF = ω.Ke (2.13)

where V (volts) is the developed voltage, VEMF (volts) is the voltage drop of the

Back-EMF, R (ohm) is the motor resistance, I (A) is the current, ω (rpm) ) is

the angular velocity of the motor, and Ke (volts/(radian/sec)) is the Back-EMF

constant.

If the voltage and the current values are known, the required electrical power of

the motor can be calculated as follows [10]:

P = I.V (2.14)

In accordance with the previous equations (2.10) and (2.12) τ/Kt can be written

instead of I and ω.Ke can be written instead of V. Therefore the power require-

ment P (watt) becomes:

P =
τω.Ke

Kt

(2.15)

Power requirement can also be described as

P = T.vi (2.16)

where T (N) is the thrust and vi (m/s) is the inlet air velocity.

In hover case, the air is sucked in from all directions and passes through the rotor

disk. The air passed through the disk is accelerated. Then, according to the

Momentum Theorem accelerated mass flow of air is

ṁ = ρAvi (2.17)

9



where A (m2) is the disk area and ρ (kg/m3) is the air density.

Thrust is produced by momentum change of the stream. Therefore,

T = ρAvivs (2.18)

where vs (m/s) is the stream velocity.

From Bernoulli Equation, the energy change per unit time of stream can be

written as

∆Ė =
1

2
ṁv2s (2.19)

Energy change per unit time describes work done per unit time. Therefore, the

work done per unit time of the thrust is

Ẇ = Tvi = ∆Ė (2.20)

Here from following equations are obtained

Tvi = ρAv2i vs =
1

2
ρAviv

2
s (2.21)

vs = 2vi (2.22)

Then the thrust becomes

T = 2ρAv2i (2.23)

Rewriting the power requirement as [11]

P =
T 3/2

√
2ρA

(2.24)

10



The power requirement of the motor should be equal to the power requirement

of hover.

P =
τωKe

Kt

=
T 3/2

√
2ρA

(2.25)

Thus,

T =
(Ker

√
2ρA

Kt

ω
)2

=
(Ker

√
2ρA

Kt

)2
(ω2

1 + ω2
2 + ω2

3 + ω2
4) (2.26)

where r (mm) is the length of propeller from its center to the end.

Drag Force Effect on Thrust In accordance with the magnitude of thrust

and size of the quadrotor, the size of the propeller and its rotational speed

changes. Propellers generate thrust by rotational motion. Thrust is affected

by drag. Thrust and drag effect relation is as follows [12]:

T = Cd
1

2
ρApv

2
i (2.27)

where Cd is the drag coefficient and Ap is the propeller cross-section area.

Torques on Roll, Pitch, and Yaw Motion The rolling moment is computed

by taking into account the moments of the second and fourth rotor. The moment

of the first and third rotors is zero because of the fact that these rotors are on

the x-axis

τx = dT2 − dT4 (2.28)

where d (mm) is the moment arm, T2 and T4 are thrust generated by second and

fourth rotors.

11



The pitch moment is the moment on the y-axis and computed by taking into

account the first and third rotor moments. Therefore,

τy = dT1 − dT3 (2.29)

To compute z-axis torque, unbalance between rotors is used. However, this time

total thrust is multiplied by the drag force coefficient.

τz = Cd(−T1 + T2 − T3 + T4) (2.30)

where Cd is the drag coefficient mentioned in previous section [13].

T1, T2, T3, T4 are the thrust of each rotor. Therefore, the total thrust is computed

as:
4∑

i=1

Ti (2.31)

2.2.3.1 Transitional Dynamics

Transitional motion equations are described by Newton’s Second Law [13]. The

equations for x, y, and z directions are as follows [14]:

ẍ =
1

m
[−kxẋ+ T (cosφ sin θc cosψ + sinφsinψ)] (2.32)

ÿ =
1

m
[−kyẏ + T (cosφ sin θ sinψ − sinφcosψ)] (2.33)

z̈ =
1

m
[−kz ż −mg + T (cosφ cos θ)] (2.34)

where m (kg) is mass of the quadrotor and kx, ky, and kz are friction coefficients.

In this study, the friction force will be neglected.

12



These equations can be represented in the form of a matrix as


ẍ

ÿ

z̈

 =
1

m

(
−kxẋ

−kyẏ

−kz ż

+


0

0

−mg



+


cos θ cosψ sinφsinθ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ




0

0

T


)

(2.35)

2.2.3.2 Rotational Dynamics

Rotational dynamic equations are described by the Euler’s equation that gives

total torque:

Jω̇ + ω × (Jω) (2.36)

J is the inertia matrix. 
Jx 0 0

0 Jy 0

0 0 Jz

 (2.37)

Inertia products are neglected because of the quadrotor symmetry. There are

external moments acting on the quadrotor body which are gyroscopic and wind.

M = (τx + τy + τz)− ga + τw (2.38)

M represents total moments in body, ga is the gyroscopic moment, and τw is the

wind torque. According to [15] moment of inertia of rotor is found to be small,

so that the gyroscopic moment is not taken into account for system modeling.

Also, the wind effect is neglected for this study. Therefore, rotational dynamic

equations become [15]:

13



p̈ =
1

Jx
[τx + q̇ṙ(Jy − Jz)] (2.39)

q̈ =
1

Jy
[τy + ṗṙ(Jx − Jz)] (2.40)

r̈ =
1

Jz
[τz + ṗq̇(Jx − Jy)] (2.41)

2.2.4 State-Space Model

A state-space model describes the behavior of a physical system mathematically.

State variables, inputs, and outputs are related to each other and describe by

differential equations. There are twelve state variables to describe the quadrotor

dynamics [13].

[x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T (2.42)

14



The complete dynamic equations of the system is as follows:

ẋ = żb[sinφ sinψ+cosφ cosψ sin θ]−ẏb[cosφ sinψ−cosψ sinφ sin θ]+ẋb[| cosψ cos θ]

ẍ =
1

m
(cosψ sin θ cosφ+ sinψ sinφ)T

ẏ = ẏb[cosφ cosψ+sinφ sinψ sin θ]−żb[cosψ sinφ−cosφ sinψ sin θ]+ẋb[cos θ sinψ]

ÿ =
1

m
(sinψ sin θ cosφ− cosψ sinφ)T

ż = żb[cosφ cos θ]− ẋb[sin θ] + ẏb[cos θ sinφ]

z̈ = −g +
1

m
(cos θ cosφ)T

φ̇ = ṗ+ ṙ[cosφ tan θ] + q̇[sinφ tan θ]

p̈ =
1

Jx
[τx + q̇ṙ(Jy − Jz)]

θ̇ = q̇[cosφ]− ṙ[sinφ]

q̈ =
1

Jy
[τy + ṗṙ(Jx − Jz)]

ψ̇ = ṙ
cosφ

cos θ
+ q̇

sinφ

cos θ

r̈ =
1

Jz
[τz + ṗq̇(Jx − Jy)]

(2.43)

15



According to the dynamic equations, the whole system can be represented in the

form of state-space.

ẋ(t) = Ax(t) +Bu(t) (2.44)

y(t) = Cx(t) +Du(t) (2.45)

where A is the system matrix, B is the input matrix, C is the output matrix, and

D is the feed forward matrix. D matrix is accepted as zero matrix. x(t) represents

state vector and u(t) represents control input vector.

In this study, the control input vector is determined as:

[φ θ T τx τy τz]
T (2.46)

2.2.5 Linearization

Linearization procedure is applied around an equilibrium point for fixed constant

input. The dynamic equations of the whole system written in the previous section

are nonlinear. Finding the solution of the algebraic system becomes difficult

because of the trigonometric functions in the dynamic equations. Hence, the

mathematical model should be linearized by simplification. The simplification is

made by small-angle assumptions. According to the small-angle assumption, the

sine function is equal to its argument, and the cosine function is equal to one [15]

and also the thrust is almost equal to the weight of the quadrotor when it is in

hovering position. Consequently, the linear equations can be written as follows

[13]:

16



ẋ = ẋb

ẍ = gθ

ẏ = ẏb

ÿ = −gθ

ż = żb

φ̇ = ṗ

p̈ =
1

Jx
τx

θ̇ = q̇

q̈ =
1

Jy
τy

ψ̇ = ṙ

r̈ =
1

Jz
τz

(2.47)

The system equations can be written in state-space matrix form as following:

ẋ(t) = Ax(t) +Bu(t) (2.48)

17





ẋ

ẍ

ẏ

ÿ

ż

z̈

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈



=



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0





x

ẋ

y

ẏ

z

ż

φ

φ̇

θ

θ̇

ψ

ψ̇



+



0 0 0 0 0 0

g 0 0 0 0 0

0 0 0 0 0 0

0 −g 0 0 0 0

0 0 0 0 0 0

0 0 g − 1
m

0 0 0

0 0 0 0 0 0

0 0 0 1
Jx

0 0

0 0 0 0 0 0

0 0 0 0 1
Jy

0

0 0 0 0 0 0

0 0 0 0 0 1
Jz





φ

θ

T

τx

τy

τz



(2.49)

y(t) = C(t) (2.50)



x

y

z

φ

θ

ψ


=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0





x

ẋ

y

ẏ

z

ż

φ

φ̇

θ

θ̇

ψ

ψ̇



(2.51)
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2.3 Controller Design

2.3.1 Linear Quadratic Optimal Control

Linear quadratic optimal control is a general name of optimal control problems

for linear systems. The optimal control includes state, input, output, and cost

function, in other words, performance index. The aim of optimal control is to

minimize the cost function [16]. The cost function is in quadratic form and it is

given as:

J =

∫ ∞
0

(xTQx+ uTRu)dt (2.52)

Where Q is the state weighting matrix and R is the control weighting matrix.

u(t) is the control vector and found as follows:

u(t) = −Kx(t) (2.53)

The optimal controller is a closed-loop system with full-state feedback and deter-

mines the gain matrix denoted by K. The optimal gain K is computed through:

K = R−1BTP (2.54)

P is the optimal matrix and it is positive-definite. The P matrix is found from

algebraic Riccati Equation [17]:

ATP + PA− PBR−1BTP +Q = 0 (2.55)

The closed-loop system is asymptotically stable with the feedback gain matrix K

[18].
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Figure 2.3: Closed Loop LQR Controller System.

2.3.2 Optimal Control with Estimator

The optimal control technique is one of the control methods that can be applied

for UAVs. There are twelve states determined for the quadrotor. Some of them

cannot be measured or measurements of the states can be noisy. Hence, a filtering

method named Kalman filter is applied with the optimal controller. Kalman filter

estimates the unmeasurable states. Kalman filter uses state equations like LQR

controller. First, calculates gain by using initial states, then, estimates the states

of the system for each sampling period. The estimation process is done by a

discretized linear state-space model.

The Kalman filter described as follows:

x(k + 1) = Ax(k) +Bu(k) +Gw(k) (2.56)

y(k) = Cx(k) + v(k) (2.57)

x(k), u(k), and y(k) vectors represent state, control input and output of the

system respectively. A is the system matrix, B is the control input matrix, and

C is the output matrix. w(k) is the noise effecting the states and accepted as

Gaussian noise with zero mean. v(k) is the noise caused by measurements with

zero mean. Both w(k) and v(k)vectors are known by their covariance structure.

There is no correlation between the noise vectors [19].
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The covariance matrices for the noise vectors are given by [20]:

E[w(k)Tw(k)] = Q (2.58)

E[v(k)Tv(k)] = R (2.59)

The Kalman filter equation to obtain optimal states and outputs is given by [2]:

x̂(k + 1|k) = Ax̂(k − 1|k) +Bu(k|k − 1) +K
(
y(k)− ŷ(k|k − 1)

)
(2.60)

ŷ(k|k − 1) = Cx̂(k|k − 1) (2.61)

where K is the Kalman gain and it is computed by solving algebraic Riccati

equation.

K(k) = P (k)CTR−1(k) (2.62)

P (k) represents the covariance matrix and R represents the weight matrix [20].

2.3.3 Linear Model Predictive Control

Model predictive control (MPC) is the most popular research topic in recent

years. Predictive control is a kind of feedback control. MPC solves the quadratic

optimal control problem at each sampling period and predicts the future dynamic

behavior of the system with finite or infinite horizon [21].

Receding horizon control (RHC) is a widely used method for MPC. In accordance

with the RHC, the optimization problem is solved for each time step and future

inputs and states are determined over a fixed time horizon. To determine the

future behavior of the system, RHC uses initial inputs. For the next time step,

the process is repeated and a new optimization problem is solved by shifting the

time horizon one step forward. The estimation process depends on measurable

data and optimization of the system. This process provides feedback [22].

In this study, state feedback receding horizon control method was used.
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The general form of the predictive representation is given by [2]:

x̂(k + j|k) = Aj−1x̂(k + 1|k) +

j−1∑
n=1

Aj−n−1Bu(k + n|k) (2.63)

ŷ(k + j|k) = CAj − 1x̂(k + 1|) + Cx̂(k + j|k) (2.64)

where k represents current time, j represents time distance. In this manner, the

state feedback RHC is in the form of tracking. According to the terminal equality

constraint, the cost function of RHC for tracking case is written as:

J
(
x̂(k), xr, u(k+j|k)

)
=

N−1∑
j=0

[x̂(k+j|k)−xr(k+j|k)]TQ[x̂(k+j|k)−xr(k+j|k)]

+ [u(k + j|k)TRu(k + j|k)]

(2.65)

where N represents horizon size.

Then the Riccati equation is solved by forward computation and control input of

the system is obtained.

u(k) = −R−1BTP−N
1Ax(k) (2.66)

PN is computed by the following equation:

P (j + 1) = A−1P (j)[I + A−TQA−1P (j)]−1A−T +BR−1BT (2.67)

According to [23] assume A P (1) = 0.
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Chapter 3

Approach

In this study, there are six different models. Each model was modeled by using

Matlab/Simulink and observed individually. The reference trajectory was deter-

mined as lifting the quadrotor with a ramp, then going straight along the x-axis

and returning down to the ground with a ramp. Whether the system tracks

the given trajectory or not was observed. Then the results of each model was

compared. Also, the development was preferred as step by step instead of direct

application.

First, the transitional movement on the x and y axes, vertical take-off, and the

rotational movement were observed separately modeled by the linear state-space

model. The linear state-space model for the transitional movement on the x and

y axes is given as: 
ẋ

ẍ

ẏ

ÿ

 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




x

ẋ

y

ẏ

+


0 0

−g 0

0 0

0 g


φ
θ

 (3.1)

The vertical take-off of the quadrotor was observed by constituting another linear

state-space model. ż
z̈

 =

0 1

0 0

z
ż

+

0

1

 g − T

m
(3.2)
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The other state-space model was constituted for observing the angular position

of the quadrotor.

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





φ

φ̇

θ

θ̇

ψ

ψ̇


+



0 0 0

1
Jx

0 0

0 0 0

0 1
Jy

0

0 0 0

0 0 1
Jz




τx

τy

τz

 (3.3)

Second, the system was modeled by combining all transitional positions in one

state-space model. The rotational movement of the quadrotor was observed from

another state-space model like in the first model. Third, the system was modeled

by combining all states. Then, by discretizing the third model, the fourth model

was obtained. So far for four models, the system is closed-loop full state feed-

back. Therefore, the outputs of all states can be observed. The linear-quadratic

optimal control method was applied to the models. The optimal gain matrices

were computed by using lqr(A,B,Q,R) command in Matlab for each model.

In the fifth model, an estimator was applied to the discrete-time system. Matlab

function block was used as a Kalman filter. Kalman filter algorithm was written

in the Matlab function block. The output states were estimated iteratively by

using for loops in the algorithm.

In the sixth model, the discrete-time system was modeled with the model pre-

dictive controller by using the RHC method. Matlab function block was used as

controller. In the Matlab function block, the Kalman filter algorithm was used

and the predictive part was added to the algorithm. The predicted states were

obtained iteratively. The Riccati equation was solved in for loop algorithm. Thus,

the optimal inputs could be obtained.
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Chapter 4

Results and Discussion

In this study, more than one Simulink model were analyzed and the output states

were observed individually for each model.

In Model 1, the system was modeled in three parts which are x-y position, z-

position, and angular position. This model is in continuous time. The simulation

run time was set as 100 seconds. The controller of the system is LQR. References

were given for the states x, z, and phi. According to the output results of the

Model 1, the system tracks the desired trajectory well. The LQR controller

performs optimally and the system is stable.

The Simulink model and the results of the system are given in the following

figures:
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Figure 4.1: Model 1.

Figure 4.2: Results of Model 1.

In Model 2, all transitional positions were combined in one part and the angular

positions were the other part of the model. This model is in continuous time.

The simulation run time was set as 100 seconds. The controller of the system is

LQR. References were given for the states x, z, and phi (φ). According to the

output results of the Model 2, the system tracks the desired trajectory well. The

LQR controller performs optimally and the system is stable.

The Simulink model and the results of the system are given in the following

figures:
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Figure 4.3: Model 2.

Figure 4.4: Results of Model 2.

In Model 3, the system was modeled by combining all states. This model is in

continuous time. The simulation run time was set as 100 seconds. The controller

of the system is LQR. References were given for the states x, z, and phi. According

to the output results of the Model 3, the system tracks the desired trajectory well.

The LQR controller performs optimally and the system is stable. In addition, we

can say that the Model 3 is more robust than the Model 1 and the Model 2.

The Simulink model and the results of the system are given in the following

figures:
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Figure 4.5: Model 3.

Figure 4.6: Results of Model 3.

In Model 4, the system is in discrete-time. The sampling period was set at 0.1

seconds. A and B matrices were discretized. The simulation run time was set as

100 seconds. The controller of the system is LQR. References were given for the

states x, z, and phi. According to the output results of the Model 4, the system

tracks the desired trajectory well. The LQR controller performs optimally and

the system is stable. There is a little scaling factor between the reference and

output lines. This scaling factor is caused by discretization. Also, the output line
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is smoother than the reference line with sharp corners.

The Simulink model and the results of the system are given in the following

figures:

Figure 4.7: Model 4.

Figure 4.8: Results of Model 4.

29



Model 5 was designed by adding an estimator to the LQR controller. This system

is in discrete-time. The sampling period was set at 0.1 seconds. . The simulation

run time was set as 100 seconds. References were given for the states x, z, and

phi. According to the output results of the Model 5, the Kalman filter estimates

the states correctly. The optimal Kalman gain values were found the same as

the LQR gain values after many trials. The system tracks the given trajectory

perfectly. Using the Kalman estimator with the optimal controller got better

than the first four models.

The Simulink model and the results of the system are given in the following

figures:

Figure 4.9: Model 5.
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Figure 4.10: Results of Model 5.

In Model 6, the system was designed with the model predictive controller. By

comparing the sixth model and the other models, there is a major difference. The

controller converges to the reference values exponentially. The MPC output curve

stopped by changing the Simulink run time from 100 seconds to 70 seconds. Only

the result of state x has been observed for the MPC controller. Because the MPC

controller needs more optimization. The MPC controller has not been working

well for other states. Nevertheless, we can say that the system is stable.

Figure 4.11: Model 6.
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Figure 4.12: Results of Model 6.

As a result, the results of the states and the controller performances were observed

for each model. We see that the controllers work well for five models, especially

when the system is not under any disturbance. For five models, while the states

x and z track the given reference perfectly, the phi () angle tracks smoothly the

given angle changes with a minor time delay. For Model 6, we can say that the

controller works but the results are not fully satisfactory. As a future study, the

controller can be developed to work well as could as previous models.
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Chapter 5

Conclusion

In this thesis project, controllers’ performances and different system designs have

been examined then, the output results have been compared. At the beginning

of the system design, states have been observed by dividing into three groups

and gathering them. In compliance with both cases, in continuous time, the LQR

controller has the ability to trajectory tracking. After the continuous-time system

has been discretized, the LQR controller performed well again. Nevertheless, a

slight difference caused by discrete-time coefficients has been observed. With

these coefficients, a smoother graphic has been obtained, as if through a low-pass

filter. Then, the Kalman estimator has been applied to the system. According

to the Kalman estimator results, the outputs have been obtained almost exactly

the same as the reference.

Finally, the MPC performance has been observed by using the receding horizon

control method. Considering the optimal controller and the Kalman estimator,

the MPC controller has achieved to approach the reference values by converging

exponentially. The MPC performance has been observed for only the state x.

Because for other states, it was not exactly accurate. Hence, the MPC controller

can be optimized for future projects.

The RHC is a kind of repetitive LQR control with a fixed period. Therefore, the

proceeding has been determined as step by step development.
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Chapter 6

APPENDİX
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