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A NOTE ON INDICES OF PRIMEPOWER AND SEMIPRIME

DIVISOR FUNCTION GRAPH

S. SHANMUGAVELAN1, K. THANGA RAJESWARI1, C. NATARAJAN1, §

Abstract. The notion of using number theortic based graph seems to be one of the
flourishing areas in Graph theory. One such concept is the divisor function graph GD(n)

which is defined as: For any positive integer n ≥ 1 with r divisors d1, d2, d3, ..., dr, divisor
function graph GD(n) is a (V,E) graph with V as the set of all factors of n and E be
defined in such a way that two vertices di and dj are adjacent if and only if either di | dj
or dj | di, i 6= j. In this paper, we analyze the operation sum of two divisor function
graphs and investigate several indices exclusively for prime powers and for semi primes.
Also, we derive a result for an independent function.
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1. Introduction

Throughout the discussion G = (V,E) is a non-trivial, simple, connected graph. The
cardinality of neighbourhood set of vertex v in G is denoted by deg(v) and the distance
between any two verices u and v in G denoted by d(u, v) is the length of the shortest u−v
path. For notation and graph theory terminologies not defined here we generally follow [2].

The idea of having a graph associated with divisor function D(n) was introduced by
Kannan, Narasimhan, Shanmugavelan [4] in 2015. Moreover they proved that GD(n) is
always connected and a complete graph if and only if no two proper divisors in D(n) are
relatively prime. Also the chromatic number for GD(n) is at least 3 and it is Eulerian for
a perfect square numbers.

Later in 2018, Narasimhan and Vignesh [5] introduced directed divisor function graph
and proved it is unilaterally connected for prime powers and derived an algorithm for
determining the size of it. Moreover, the extended study on colorability of GD(n) was
made in 2018 by Narasimhan and Elamparithi [6] and they briefly discussed connectivity
and its independence.
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In this paper, several degree, distance based topological indices are analyzed for prime
power divisor function graph, which is always regular and also we derive energy for GD(pn)

and a result on sum operation of Divisor fuction graph.

2. Indices of GD(pn)

Theorem 2.1. For any prime power pn, GD(pn) has a harmonic index of n+1
2 .

Proof: We know that, GD(pn) is regular graph of degree n and it is also complete with

m = n(n+1)
2 edges. By definition of Harmonic index,

H(GD(pn)) =
∑

uv∈E(GD(pn))

2

deg(u) + deg(v)

=
∑

uv∈E(GD(pn))

2

(n) + (n)

=
∑

uv∈E(GD(pn))

1

n

= m
1

n

=
(n+ 1)

2

Theorem 2.2. The degree distance index of GD(pn) is n2(n+ 1).
Proof: Clearly, deg(u) = n, ∀u ∈ V (GD(pn)). Since GD(pn) is complete, each vertex is
adjacent to remaining n vertices. Also,d(u, v), ∀u, v ∈ V (GD(pn)). By definition of degree
distance index,

Hence,DD(GD(pn)) =
∑

{u,v}⊆V (GD(pn))

[deg(u) + deg(v)]d(u, v)

=
∑

{u,v}⊆V (GD(pn))

[n+ n](1)

= 2nm, since m =
n(n+ 1)

2

Therefore,DD(GD(pn)) = n2(n+ 1).

Definition 2.1. The semiprime divisor function graph GD(p×q) = (V,E), where
V = {1, p, q, pq} and the graph follows.

Figure 1. GD(p×q)
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Theorem 2.3. The degree distance index of semiprime Divisor function graph GD(p×q) is
34.
Proof: Clearly, using figure 1, deg(1) = 3; deg(p) = 2; deg(q) = 2; deg(pq) = 3

DD(G) =
∑

{u,v}⊆V (G)

[deg(u) + deg(v)]d(u, v)

= [(3 + 2)(1) + (3 + 3)(1) + (3 + 2)(1)

+ (2 + 3)(1) + (2 + 2)(2) + (2 + 3)(1)]

Therefore,DD(GD(p×q)) = 34.

Theorem 2.4. The Wiener index of GD(pn) is n(n+1)
2 .

Proof: Clearly for any fixed vertex pi, 0 ≤ i ≤ n + 1, as origin there are n distinct
terminus vertices each with distance 1. By the definition of Wiener index,

W (G) =
∑

{u,v}⊆V (G)

d(u, v)

W (GD(pn)) =
∑

{u,v}⊆V (G)

(1)

For the vertex p0 = 1, its possible distances are d(1, p), d(1, p2), ..., d(1, pn), where each
distance is exactly one.
Therefore, The distances whose origin is 1 is accounted for n.
For the next vertex p1, its possible distances are d(p1, p2), d(p1, p3), ..., d(p1, pn).
Therefore, the distances whose origin is p1 is accounted for n− 1.
For any arbitrary vertex pi, its possible distances are d(pi, p(i+1)), d(pi, p(i+2)), ..., d(pi, pn).
Hence, the distances whose origin is pi is accounted for n− i.
On adding these, we have

W (GD(pn)) = n+ (n− 1) + ...+ (n− i) + ...+ 2 + 1

=
n(n+ 1)

2
.

Theorem 2.5. The Wiener index of semiprime Divisor function graph GD(p×q) is 7.
Proof: Clearly, using the figure 1, d(p, q) = 2 and all the other pairs of vertices has
distance equal to 1.

Hence,W (G) =
∑

{u,v}⊆V (G)

d(u, v)

W (GD(p×q)) = d(1, p) + d(1, q) + d(1, pq) + d(p, q) + d(p, pq) + d(q, pq)

= 1 + 1 + 1 + 2 + 1 + 1

Therefore,W (GD(p×q)) = 7.

Theorem 2.6. The hyper Wiener index of GD(pn) is n(n+1)
2 .
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Proof: Clearly, there is a edge between each pair of vertices.
Hence d(u, v) = 1, ∀u, v ∈ V (GD(pn)). By the definition of hyper Wiener index,

WW (G) =
1

2

∑
{u,v}⊆V (G)

(d(u, v) + d(u, v)2)

WW (GD(pn)) =
1

2

∑
{u,v}⊆V (G)

(1 + 12)

=
∑

{u,v}⊆V (G)

1

Similar to the proof of theorem 2.4, we have

WW (GD(pn)) =
n(n+ 1)

2
.

Theorem 2.7. The hyper Wiener index of semiprime Divisor function graph GD(p×q) is
8.
Proof:

Hence,WW (GD(p×q)) =
1

2

∑
{u,v}⊆V (G)

(d(u, v) + d(u, v)2)

=
1

2
([d(1, p) + d(1, p)2] + [d(1, q) + d(1, q)2] + [d(1, pq) + d(1, pq)2]

+ [d(p, q) + d(p, q)2] + [d(p, pq) + d(p, pq)2] + [d(q, pq) + d(q, pq)2])

=
1

2
[(1 + 12) + (1 + 12) + (1 + 12) + (2 + 22) + (1 + 12) + (1 + 12)

Hence,WW (GD(p×q)) = 8.

Theorem 2.8. The Randic index of GD(pn) is (n+1)
2

Proof: Clearly, |V (GD(pn))| = n + 1 and deg(u) = n,∀u ∈ V (GD(pn)). By the definition
of Randic index,

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

R(GD(pn)) =
∑

uv∈E(G)

1√
n× n

=
∑

uv∈E(G)

1

n

=
n(n+ 1)

2× n
, since m =

n(n+ 1)

2

R(GD(pn)) =
(n+ 1)

2

Theorem 2.9. The Randic index of semiprime Divisor function graph GD(p×q) is 2
√
6+1
3 .
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Proof: Clearly, using the figure 1, d(p, q) = 2 and all the other pairs of vertices has
distance equal to 1.

R(G) =
∑

uv∈E(G)

1√
deg(u)deg(v)

R(GD(p×q)) =
1√

3× 2
+

1√
3× 2

+
1√

3× 3
+

1√
2× 3

+
1√

2× 3

R(GD(p×q)) =
2
√

6 + 1

3
.

Theorem 2.10. The first Zagreb index of GD(pn) is (n+ 1)n2.

Proof: Clearly, V (GD(pn)) =
{

1, p, p2, ..., pn
}

.
Therefore |V (GD(pn))| = n+ 1 and deg(u) = n, ∀u ∈ V (GD(pn)). By the definition of first
Zagreb index,

M1(G) =
∑

vi∈V (G)

deg(vi)
2

M1(GD(pn)) =
∑

vi∈V (G)

n2

M1(GD(pn)) = (n+ 1)n2.

Theorem 2.11. The first Zagreb index of semiprime Divisor function graph GD(p×q) is
26.
Proof:

M1(G) =
∑

vi∈V (G)

deg(vi)
2

M1(GD(p×q)) = deg(1)2 + deg(p)2 + deg(q)2 + deg(pq)2

= 32 + 32 + 22 + 22

Hence,M1(GD(p×q)) = 26.

Theorem 2.12. The second Zagreb index of GD(pn) is n3(n+1)
2 .

Proof: Clearly, |V (GD(pn))| = n + 1 and deg(u) = n, ∀u ∈ V (GD(pn)). By the definition
of second Zagreb index,

M2(G) =
∑

vivj∈E(G)

deg(vi)deg(vj)

M2(GD(pn)) =
∑

vivj∈E(G)

(n)(n)

= n2(
n(n+ 1)

2
), since m =

n(n+ 1)

2

M2(GD(pn)) =
n3(n+ 1)

2
.

Theorem 2.13. The second Zagreb index of semiprime divisor function graph GD(p×q) is
33.
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Proof:

Hence,M2(G) =
∑

vivj∈E(G)

deg(vi)deg(vj)

M2(GD(p×q)) = [deg(1)deg(p)] + [deg(1)deg(q)] + [deg(1)deg(pq)]

+ [deg(p)deg(pq)] + [deg(q)deg(pq)]

= [3.2] + [3.2] + [3.3] + [2.3] + [2.3]

M2(GD(p×q)) = 33.

Theorem 2.14. The Gutman index of GD(pn) is n3(n+1)
2 .

Proof: By the definition of Gutman index,

Gut(G) =
∑
u6=v

deg(u)deg(v)d(u, v)

Clearly, Gut(GD(pn)) =
∑
pi 6=pj

deg(pi)deg(pj)d(pi, pj)

=
∑
pi 6=pj

n2

= n2 × n(n+ 1)

2

Gut(GD(pn)) =
n3(n+ 1)

2
.

Theorem 2.15. The Gutman index of semiprime divisor function graph GD(p×q) is 41.
Proof: Clearly, using the figure 1, d(p, q) = 2 and all the other pairs of vertices has
distance equal to 1.

Gut(G) =
∑
u6=v

deg(u)deg(v)d(u, v)

Gut(GD(p×q)) = [deg(1)deg(p)d(1, p)] + [deg(1)deg(q)d(1, q)] + [deg(1)deg(pq)d(1, pq)]

+ [deg(p)deg(q)d(p, q)] + [deg(p)deg(pq)d(p, pq)] + [deg(q)deg(pq)d(q, pq)]

= [3.2.1] + [3.2.1] + [3.3.1] + [2.2.2] + [2.3.1] + [2.3.1]

Gut(GD(p×q)) = 41

Theorem 2.16. The Detour Gutman index of GD(pn) is n4(n+1)
2 .

Proof: Clearly, |V (GD(pn))| = n+ 1 and deg(u) = n, ∀u ∈ V (GD(pn)).
Also, the longest path D(u, v) = n,∀u ∈ V (GD(pn)). By the definition of detour Gutman
index,

DGut(G) =
∑
u6=v

deg(u)deg(v)D(u, v)

DGut(GD(pn)) =
∑
u6=v

n.n.n

= n3(
n(n+ 1)

2
)

DGut(GD(pn)) =
n4(n+ 1)

2
.
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Theorem 2.17. The Detour Gutman index of GD(p×q) is 90.
Proof: Clearly, D(1,p)=2; D(1,q)=3; D(1,pq)=2; D(p,q)=3; D(p,pq)=3; D(q,pq)=2.

DGut(G) =
∑
u6=v

deg(u)deg(v)D(u, v)

DGut(GD(p×q)) = [deg(1)deg(p)D(1, p)] + [deg(1)deg(q)D(1, q)] + [deg(1)deg(pq)D(1, pq)]

+ [deg(p)deg(q)D(p, q)] + [deg(p)deg(pq)D(p, pq)] + [deg(q)deg(pq)D(q, pq)]

= [3.2.2] + [3.2.3] + [3.3.2] + [2.2.3] + [2.3.3] + [2.3.2]

DGut(GD(p×q)) = 90.

Definition 2.2. For a vertex v, the sum degree of v is defined as
Sv =

∑
u∈N(v)

deg(u) and for a vertex v, the multiplication degree of v is defined as

Mv =
∏

u∈N(v)

deg(u). The R degree of a vertex v of a simple connected graph G is defined

as r(v) = Sv +Mv.
The first R index of a simple connected graph G defined as R1(G) =

∑
v∈G

(r(v))2.

The second R index of a simple connected graph G defined as R2(G) =
∑
uv∈E

r(u)r(v).

The third R index of a simple connected graph G defined as R3(G) =
∑
uv∈E

[r(u) + r(v)].

Theorem 2.18. The first R index of GD(pn) is n2(n+ 1)(n2 + n2n−2 + 2nn).

Proof: Here V (GD(pn)) =
{

1, p, p2, ..., pn
}

.
Therefore |V (GD(pn))| = n+ 1 and deg(u) = n,∀u ∈ V (GD(pn)) since GD(pn) is complete,

each vertex is adjacent to remaining n vertices. For an arbitrary vertex pi,

Spi =
∑

pj∈N(pi)

deg(pj)

= n+ n+ ...+ n

Hence, Spi = n2, ∀pi ∈ V (GD(pn)).

Also,Mpi =
∏

pj∈N(pi)

deg(pj)

=
∏

pj∈N(pi)

n

Mpi = nn, ∀pi ∈ V (GD(pn))

Then, r(pi) = Spi +Mpi = n2 + nn,∀pi ∈ V (GD(pn)).

Hence,R1(GD(pn)) =
∑

pi∈GD(pn)

(r(pi))2

R1(GD(pn)) =
∑

pi∈GD(pn)

(n2 + nn)2

=
∑

pi∈GD(pn)

n4 + n2n + 2nn+2

= (n+ 1)(n4 + n2n + 2nn+2)

Hence,R1(GD(pn)) = n2(n+ 1)(n2 + n2n−2 + 2nn).
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Theorem 2.19. The second R index of GD(pn) is n3(n+1)(n2+n2n−2+2nn)
2 .

Proof: Clearly, Sv = n2, Mv = nn and so r(v) = Sv +Mv = n2 + nn,∀v ∈ V (GD(pn)).

Hence,R2(GD(pn)) =
∑

pipj∈E(GD(pn))

r(pi)r(pj)

R2(GD(pn)) =
∑

pipj∈E(GD(pn))

(n2 + nn)(n2 + nn)

= mn2(n2 + n2n−2 + 2nn)

Therefore,R2(GD(pn)) =
n3(n+ 1)(n2 + n2n−2 + 2nn)

2
.

Theorem 2.20. The third R index of GD(pn) is n(n+ 1)(n2 + nn).
Proof:

R3(GD(pn)) =
∑

pipj∈E(GD(pn))

[r(pi) + r(pj)]

R3(GD(pn)) =
∑

pipj∈E(GD(pn))

(n2 + nn + n2 + nn)

= 2m(n2 + nn)

= n(n+ 1)(n2 + nn)

R3(GD(pn)) = n3(n+ 1)(nn−2 + 1).

Theorem 2.21. The Balaban index of GD(pn) is n(n+1)2

2(n2−n+4)
.

Proof: Clearly, deg(pi) = n, 0 ≤ i ≤ n+ 1 and µ = m− n+ c = m− n+ 1, since c = 1.
By the definition of Balaban index,

J =
m

µ+ 1

∑
(pi,pj)∈E(G)

[deg(pi)deg(pj)]
−1
2

=
m

m− n+ 2

∑
(pi,pj)∈E(G)

1

n

=
m

m− n+ 2
×m× 1

n

=
n2(n+ 1)2

22n(n(n+1)
2 − n+ 2)

, since m =
n(n+ 1)

2

=
n(n+ 1)2

2(n2 − n+ 4)
.

3. Sum of two divisor function graphs

Theorem 3.1. If n1 or n2 or both are prime then the sum of divisor function graphs
GD(n1) and GD(n2) is a simple graph, (GD(n1) + GD(n2)) = (p1 + p2, q). The number of
edges in sum of two divisor function graphs (say) q = q1 + q2 + p2 + |S|+ 1
where S = V (GD(n2)) ∩ P and P = {x/x = n1.n, n ∈ N,n ≤ n2}
Proof: Without loss of generality, let n1 ≤ n2.
Suppose n1|n2. Assume n1 is prime.
case-1: n2 is prime
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since n1|n2 and both are prime which implies n1 = n2.
By definition of sum of graphs, V (GD(n1) +GD(n2)) = p1 + p2.
By the definition of sum of graphs there are q1 edges of GD(n1) and q2 edges of GD(n2) and
since 1 is the divisor of n1 in GD(n1), 1 is adjacent with p2 vertices.
Also, here P = {n1, 2n1, 3n1, ...., n2n1} (By definition of P given above).
V (GD(n2)) = {1, n2} and S = {1, n2} ∩ {n1, 2n1, 3n1, ..., n2n1}
since n1 = n2, S = {1, n2} ∩ {n2, 2n2, 3n2, ..., n2n2}
Therefore, S = {n2} which implies |S| = 1.
Suppose S is empty. P = {n1, 2n1, ..., n2n1} is the set of multiples of n1.
V (GD(n2)) = {d1 = 1, d2, d3, ..., dn = n2} is the set of divisors of n2. Since n1|n2, n1 must
be in the set V (GD(n2)). Therefore, there exist at least one element in S = V (GD(n2)) which
is a contradiction to the fact that S is empty. Hence, P and V (GD(n2)) has at least one
element in common.
Also since, 1 is the divisor of n2 in GD(n2), 1 is adjacent to n1 in GD(n1).
Hence, q = q1 + q2 + p2 + |S|+ 1.
Using the graph, V (GD(n1)) = p1 = 2;V (GD(n2)) = p2 = 2;
E(GD(n1)) = q1 = 1;E(GD(n2)) = q2 = 1 and |S| = 1.
Therefore V (GD(n1) +GD(n2)) = p = p1 + p2 = 2 + 2 = 4 and
E(GD(n1) +GD(n2)) = q = 1 + 1 + 2 + 1 + 1 = 6.
Therefore the result is true in this case.

case-2: n2 is composite.
Given n1 is prime. Since n1|n2, n2 is a multiple of n1. By definition of GD(n1) +GD(n2),
V (GD(n1) +GD(n2)) = p1 +p2. To find q: By definition of sum of graphs there are q1 edges
of GD(n1) and q2 edges of GD(n2) in GD(n1) +GD(n2) and since 1 is the divisor of n1, 1 is
adjacent with p2 vertices.
Now,P = {n1, 2n1, ..., n2n1} and V (GD(n2)) = {1, d2, d3, ..., n2} which implies
S = V (GD(n2)) ∩ P ≥ 1. If S = φ for 1 ≤ j ≤ n, dj /∈ S = P ∩ V (GD(n2)) which is a
contradiction since P and V (GD(n2)) has n1 as common element as n1|n2.
Therefore |S| ≥ 1. As 1 is the divisor of n2 in GD(n2), 1 is adjacent to n1 in GD(n1).
Hence, q = q1 + q2 + p2 + |S|+ 1.

Suppose n1 does not divide n2, where n1 is prime.
case-3: n2 is prime
By definition of sum of graphs, V (GD(n1) +GD(n2)) = p1 + p2.
To find the number of edges q, By definition of sum of graphs, q1 edges of GD(n1) and q2
edges of GD(n2) are in GD(n1) + GD(n2) and since 1 is the divisor of n1 in GD(n1), 1 is
adjacent to p2 vertices. Since n1 does not divides n2, S = P ∩ V (GD(n2)) = φ. Therefore,
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|S| = 0. As 1 is the vertex of GD(n2), it is adjacent to n1 in GD(n1).
Hence q = q1 + q2 + p2 + |S|+ 1.
Also, q1 = 1, q2 = 1, p1 = 2, p2 = 2 and |S| = 0
Therefore q = 1 + 1 + 2 + 0 + 1 = 5. The graph also has 5 edges.
The result is true in this case.

case 4: n2 is composite
By definition of sum of graphs, V (GD(n1) +GD(n2)) = p1 + p2. To find q: By definition of
sum of graphs we have q1 edges of GD(n1) and q2 edges of GD(n2). Since 1 is the divisor of
n1 in GD(n1), 1 is adjacent to p2 vertices and as 1 is the vertex of GD(n2), it is adjacent to
n1 in GD(n1). Also, S = V (GD(n2)) ∩ P = φ (since n1 does not divide n2) which implies
|S| = 0. Hence q = q1 + q2 + p2 + |S|+ 1.
Therefore the result is true in all cases.
Hence the theorem.

Remark 3.1. Note that in case-1 of above theorem two edges need to delete for obtaining
a divisor function graph, one edge is from 1 in GD(n1) to 1 in GD(n2) and the other edge
from n1 in GD(n1) to n2 in GD(n2) are deleted since n1 = n2 in case-1. In all other cases,
the edge from 1 in GD(n1) to 1 in GD(n2) is deleted to get the simple graph as a divisor
function graph.

4. Energy and Independent function of GD(pn), GD(pq)

Theorem 4.1. If p is prime and n is any positive integer then Energy of GD(pn) is 2n.
Proof: We know that |V (GD(pn))| = n+ 1. The adjacency matrix for GD(pn) is,

A[GD(pn)] =


0 1 . . . 1
1 0 . . . 1
. . . .
1 1 . 0


(n+1)×(n+1)

.

That is, all the (i, j)th entries are units except the leading diagonal.
The characteristic equation of the A[GD(pn)] = f(λ) = det(λIn −A[GD(pn)]) = 0 is

⇒ det


λ −1 . . . −1
−1 λ . . . −1
. . . .
−1 −1 . λ


(n+1)×(n+1)

= 0.

⇒ (λ− 1)n × (λ+ n) = 0.
Therefore, the eigen values are 1, 1, .., 1(n times). That is, Algebraic Multiplicity of 1 is

n and (−n) is also an eigen value. As the energy, E(G), of a simple graph G is defined
to be the sum of the absolute values of the eigen values of G.

Therefore, Energy of GD(pn) =
n+1∑
i=1
|λi|.

= 1 + 1 + ...+ 1 + | − n|
Energy of GD(pn) = 2n.
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Theorem 4.2. Energy of a semi prime GD(pq) is 2 +
√

17 where p 6= q be distict primes.
Proof: Clearly, GD(pq)

∼= Kn − e, for any edge e ∈ E(GD(q)) and its adjacency matrix is
given by A(GD(pq))=

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 which is a singular matrix of order 4× 4.

Then its characteristic equation of A[GD(pn)] = f(λ) = det(λIn −A[GD(pq)]) = 0 is

⇒ det


λ+ 1 0 0 1

1 −λ 0 1
1 0 −λ 1
1 1 1 −λ

=0.

On further simplification, the latent roots are 0,-1 and 1±
√
17

2 . Its energy is 2 +
√

17.

Definition 4.1. [7] Let G(V,E) be a graph. A function f : V → [0, 1] is called an
Independent function(IF), if for every vertex v ∈ V with f(v) > 0, we have

∑
u∈N [v]

f(u) = 1

Theorem 4.3. If f : V → [0, 1] such that f(v) = 1,∀v ∈ I, then f becomes an Independent
function of GD(n) for some independent set I.
Proof: Let us prove the theorem for two cases.
case-1: n is prime
Clearly, V (Gdeg(p)) = {1, p}. So, pendant vertices in the graph forms an Independent set.
Also, N [1] = {p} and N [p] = {1}.
⇒ f(1) = 1 and f(p) = 1
Hence,

∑
u∈N [v]

f(u) = 1

case-2: n is composite
Let n = pα1

1 pα2
2 ...pαn

n and take I as the set of all prime divisors of n which clearly an
independent set such that d in number.
Let the number of divisors of n be τ(n) = (α1 + 1)(α2 + 1)...(αn + 1) = n1 (say). And
so τ(n) − d non-prime divisors which doesnot forms an independent set . Clearly |I| >
1,∀v ∈ I such that f(v) > 0, that is, there exist at least one Independent function f. Since
each vertex in I is prime, by repeatedly applying case-1 we obtain the result.

5. Conclusion and Future Scope

In this article, we estimated several indices for special case of a divisor function graph
such as prime powers and semiprime.

Also, We estimated the energy for prime power and semiprime divisor function graphs
to be 2n and 2 +

√
17.

Our future works are to evaluate the indices of GD(n) other than semiprime and
prime powers and to determine the size of other operations on the divisor function graph.
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