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SHARP INEQUALITIES FOR UNIVALENCE OF MEROMORPHIC

FUNCTIONS IN THE PUNCTURED UNIT DISK

OQLAH AL-REFAI, §

Abstract. A new class of meromorphic functions f that are univalent in the punctured
unit disk U∗ = {z : 0 < |z| < 1} is introduced. This class is denoted by MU and
consisting of functions f defined by |1 + f ′(z)/f2(z)| < 1 and zf(z) 6= 0, whenever
z ∈ U = {z : |z| < 1}. For every n ≥ 2, sharp bound for the nth derivative of 1/(zf(z))
that implies univalency of f in U∗ is established. In particular, the best improvements for
known univalence criteria are obtained. Distortion and growth estimates are investigated.
Further, various sufficient coefficient conditions and a necessary coefficient condition for
f to be in MU are derived and best radii of univalence are obtained for certain cases.

Keywords: univalent functions, meromorphic functions, distortion theorem, coefficient
bounds, area theorem.
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1. Introduction and preliminaries

Let Σn denotes the class of meromorphic functions of the form

f(z) =
1

z
+ anz

n + an+1z
n+1 + · · ·, (n ∈ N ∪ {0}),

which are analytic in the punctured unit disk U∗ = {z : 0 < |z| < 1}. For simplicity, write
Σ0 := Σ. In [1], Macgregor proved that a normalized analytic function g is univalent in
U = {z : |z| < 1} if

|g′(z)− 1| < 1, (z ∈ U). (1)

Earlier, Aksentév [2] proved for F (ζ) = ζ+
∑∞

n=0 anζ
−n that the condition |F ′(ζ)−1| < 1,

for ζ ∈ ∆ = {η : 1 < |η| <∞} is sufficient for F to be univalent in ∆. Liu [3] proved for
f ∈ Σn with zf(z) 6= 0 in U∗ that∣∣∣∣∣

(
1

zf(z)

)(n+2)
∣∣∣∣∣ < 1− (n+ 2)|an|

2
, (z ∈ U, n ∈ N ∪ {0}), (2)
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is sufficient condition for f to be univalent in U∗. Note that condition (2) is not sharp and
same result was obtained in [4, Theorem 8], for the case n = 0. The interesting problems
of finding sufficient and necessary conditions for meromorphic univalent functions have
been extensively studied by many authors, see [5-10]. To fulfill this aim, in this paper, the
following new subclasses of meromorphic functions are studied.

Definition 1.1. Let MU denotes the subclass of meromorphic functions f ∈ Σ defined by∣∣∣∣ f ′(z)f2(z)
+ 1

∣∣∣∣ < 1, (z ∈ U), (3)

and zf(z) 6= 0 in U.

Definition 1.2. Let MPn (n ≥ 2) denotes the subclass of meromorphic functions f ∈ Σ
defined by zf(z) 6= 0 in U and∣∣∣∣∣

(
1

zf(z)

)(n)
∣∣∣∣∣ ≤ βn, (z ∈ U), (4)

where

βn =
n!

n+ 1

(
1−

n−1∑
k=1

k + 1

k!
|αk|

)
and αk =

(
1

zf(z)

)(k)

|z=0 .

In fact, Theorem 2.1 shows that the functions of MU are univalent in U∗ and the
bound 1 of condition (3) is best possible for univalence. Motivated by results due to Al-
Refai and Darus [11] and Obradović and Ponnusamy [12], Theorem 2.3 proves for every
n ≥ 2 thatMPn ⊆MU and condition (4) is sharp for univalence. In particular, the best
improvement of condition (2) due to Liu [3] is obtained, where the upper bound can not
be replaced by a larger one. For n = 2, condition (4) reduces to∣∣∣∣( 1

zf(z)

)′′∣∣∣∣ ≤ 2

3
(1− 2|a0|),

which is the best improvement of [4, Theorem 8] and the bound is best possible for
univalence. Moreover, for f ∈ Σ with zf(z) 6= 0 in U and

1

zf(z)
= 1 + b1z + b2z

2 + · · ·, (5)

various sufficient coefficient conditions and a necessary coefficient condition for f to be in
MU are derived.

2. Univalence Criteria

Considering g(z) = 1/f(z) in condition (1), where zf(z) 6= 0 in U, implies that f ∈ Σ
is meromorphic univalent in U∗. For completeness,

Theorem 2.1. The functions of MU are meromorphic univalent in U∗ and the bound 1
of condition (3) is best possible for univalence.

Proof. Let f ∈MU . Evidently, the function h(z) = (1/f(z))− z is analytic in U∗ and for
z1, z2 ∈ U∗ with z1 6= z2, it can be seen that(

1

f(z2)
− z2

)
−
(

1

f(z1)
− z1

)
= h(z2)− h(z1) =

∫ z2

z1

h′(z)dz (6)
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Putting z = z1 + t(z2 − z1), (0 ≤ t ≤ 1) in (6) gives(
1

f(z2)
− 1

f(z1)

)
− (z2 − z1) =

∫ 1

0
(z2 − z1)h′(z)dt. (7)

Therefore, from (7) and (3), it follows that∣∣∣∣∣
1

f(z2)
− 1

f(z1)

z2 − z1
− 1

∣∣∣∣∣ =

∣∣∣∣∫ 1

0
h′(z) dt

∣∣∣∣
≤

∫ 1

0
|h′(z)| dt <

∫ 1

0
dt = 1.

This shows that (1/f(z2)) − (1/f(z1)) 6= 0 and hence f is meromorphic univalent in U∗.
To show that the bound 1 is best possible for univalence, notice that the functions

f(z) =
1

z ± (1/n)zn
, (n = 2, 3, ...)

are satisfying (3). However, for every ε > 0 and

fε(z) =
1

z + 1+ε
n zn

,

it can be found that ∣∣∣∣ f ′ε(z)f2ε (z)
+ 1

∣∣∣∣ = |(1 + ε)zn−1| < 1 + ε

and there exists

z0 =

(
−1

1 + ε

) 1
n−1

∈ U∗

such that f ′ε(z0) = 0. Thus fε is not univalent in U∗ and the proof is complete. �

Setting f(z) = F (1/z) in Theorem 2.1 leads to the following result

Corollary 2.1. Let F (ζ) = ζ +
∑∞

n=0 anζ
−n with F (ζ)/ζ 6= 0 and∣∣∣∣ζ2F ′(ζ)

F 2(ζ)
− 1

∣∣∣∣ < 1, (8)

for ζ ∈ ∆. Then F is univalent in ∆. The bound 1 is best possible for univalence and the
functions F (ζ) = ζ/(1± (1/n)ζ1−n) are extreme for every n = 2, 3, ....

Proof. Let f(z) ∈MU be given by f(z) = F (1/z). Then∣∣∣∣ f ′(z)f2(z)
+ 1

∣∣∣∣ =

∣∣∣∣−(1/z2)F ′(1/z)

F 2(1/z)
+ 1

∣∣∣∣ < 1,

which is equivalent to (8), for ζ = 1/z. Therefore F (1/z) is univalent for z ∈ U∗, i.e F (ζ)
is univalent in ∆. To prove the sharpness, let

Fε(ζ) =
ζ

1 + 1+ε
n ζ1−n

, (ε ≥ 0).

A computation shows that ∣∣∣∣ζ2F ′0(ζ)

F 2
0 (ζ)

− 1

∣∣∣∣ = |ζ|1−n < 1.

However, for every ε > 0, ∣∣∣∣ζ2F ′ε(ζ)

F 2
ε (ζ)

− 1

∣∣∣∣ = (1 + ε)|ζ|1−n < 1 + ε
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and F ′ε
(
(−1− ε)1/(n−1)

)
= 0. So Fε is not univalent in ∆, for every ε > 0. �

In the following theorem, estimates for the bounds of functions inMU and their deriva-
tives are found.

Theorem 2.2 (Growth and Distortion). Let f ∈MU and z ∈ U∗. Then

1

|z|+ 1
2 |z|2

≤ |f(z)| ≤ 1

|z| − 1
2 |z|2

, (9)

1− |z|
|z|2

(
1 + 1

2 |z|
)2 ≤ |f ′(z)| ≤ 1 + |z|

|z|2
(
1− 1

2 |z|
)2 . (10)

The estimates (9) and (10) are precise for the functions

f(z) =
1

z + az2
, |a| = 1

2
.

Proof. Let f ∈MU and z ∈ U∗. Then, by Schwarz’s lemma,∣∣∣∣( 1

f(z)

)′
− 1

∣∣∣∣ ≤ |z|. (11)

Therefore, ∣∣∣∣ 1

f(z)
− z
∣∣∣∣ =

∣∣∣∣∫ z

0

((
1

f(u)

)′
− 1

)
du

∣∣∣∣
≤ |z|

∫ 1

0

∣∣∣∣( 1

f(zt)

)′
− 1

∣∣∣∣ dt ≤ |z| ∫ 1

0
|z|t dt =

1

2
|z|2.

Hence,

|z| − 1

2
|z|2 ≤

∣∣∣∣ 1

f(z)

∣∣∣∣ ≤ |z|+ 1

2
|z|2

and (9) follows. From (11), it can be observed that

1− |z| ≤
∣∣∣∣( 1

f(z)

)′∣∣∣∣ ≤ 1 + |z|

and so

(1− |z|)|f(z)|2 ≤
∣∣f ′(z)∣∣ ≤ (1 + |z|)|f(z)|2. (12)

Therefore, (9) and (12) yield (10). By an application of the triangle inequality, it is clear
that the estimates (9) and (10) are precise for the functions

f(z) =
1

z + az2
, |a| = 1

2
.

�

The estimate (9) gives

Corollary 2.2. The range of any f ∈MU must cover the punctured disk whose radius is
2/3. That is {

w : 0 < |w| < 2

3

}
⊆ f(U∗).

The following result proves that the functions of MPn are univalent in U∗. Indeed,
they are included in MU .
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Theorem 2.3 (Inclusion). For every n ≥ 2, MPn ⊆ MU . Moreover, inequality (4) is
sharp for univalence, where equality attained for the functions

fn(z) =
1

z ± (1/n)zn
and fn+1(z) =

1

z ± (1/(n+ 1))zn+1
.

Proof. Let f ∈MPn, (n ≥ 2). Then, for n = 2, condition (4) is equivalent to(
1

zf(z)

)′′
= β2φ1(z), (13)

where φ1 is analytic in U and |φ1(z)| ≤ 1 in U. It is easy to see that ”if ω(z) is analytic
in U and |ω(z)| ≤ 1 in U, then for each m ≥ 1, the function Φm(z) defined by

Φm(z) =

∫ z

0
mum−1ω(u)du = zm

∫ 1

0
mtm−1ω(tz)dt = zmΨm(z) (14)

is clearly analytic in U and moreover, Ψm(z) is analytic in U such that |Ψ(z)| ≤ 1 in U”.
This fact will be used in the sequel. By integrating (13) from 0 to z and making use of
(14), it can be seen that(

1

zf(z)

)′
= α1 + β2z

∫ 1

0
φ1(tz) dt := α1 + β2zφ2(z). (15)

The relation (15), by integration and then multiplying by z, gives

1

f(z)
− z = α1z

2 + β2z

∫ z

0
uφ2(u) du. (16)

By differentiating both sides of (16) and making use of (14),(
1

f(z)

)′
− 1 = 2α1z + β2

(
z2φ2(z) +

∫ z

0
uφ2(u) du

)
= 2α1z + β2

(
z2φ2(z) +

1

2
z2
∫ 1

0
2tφ2(tz) dt

)
.

Therefore, ∣∣∣∣ f ′(z)f2(z)
+ 1

∣∣∣∣ =

∣∣∣∣( 1

f(z)

)′
− 1

∣∣∣∣ < 2|α1|+
3

2
|β2| = 1,

and hence f ∈MU . For n = 3, (
1

zf(z)

)′′′
= β3ψ1(z), (17)

where ψ1 is analytic in U and |ψ1(z)| ≤ 1 in U. By integration (17) from 0 to z,(
1

zf(z)

)′′
= α2 + β3z

∫ 1

0
ψ1(tz) dt := α2 + β3zψ2(z). (18)

The relation (18), by integration, gives(
1

zf(z)

)′
= α1 + α2z + β3

z2

2

∫ 1

0
2tψ2(tz) dt := α1 + α2z +

β3
2
z2ψ3(z). (19)

Integrating (19) and then multiplying by z, gives

1

f(z)
− z = α1z

2 +
1

2
α2z

3 +
β3
2
z

∫ z

0
u2ψ3(u) du. (20)
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By differentiating both sides of (20) and making use of (14),(
1

f(z)

)′
− 1 = 2α1z +

3

2
α2z

2 +
β3
2

(
z3ψ3(z) +

∫ z

0
u2ψ3(u) du

)
= 2α1z +

3

2
α2z

2 +
β3
2

(
z3ψ3(z) +

1

3
z3
∫ 1

0
3t2ψ3(tz) dt

)
.

Therefore, ∣∣∣∣( 1

f(z)

)′
− 1

∣∣∣∣ < 2|α1|+
3

2
|α2|+

2

3
|β3| = 1,

and hence f ∈MU . In general, if f ∈MPn, then(
1

f(z)

)′
− 1 =

n−1∑
k=1

k + 1

k!
αkz

k +
1

(n− 1)!
βn

(
znϕn(z) +

zn

n

∫ 1

0
ntn−1ϕn(tz) dt

)
.

Therefore, ∣∣∣∣( 1

f(z)

)′
− 1

∣∣∣∣ < n−1∑
k=1

k + 1

k!
|αk|+

1

(n− 1)!

(
1 +

1

n

)
|βn| = 1,

and hence f ∈MU . To show that the result is sharp for n ≥ 2, consider

fε(z) =
1

z + 1+ε
n+1z

n+1
, (ε ≥ 0). (21)

A computation shows that(
1

zfε(z)

)(k)

= (1 + ε)(n+ 1)−1n(n− 1) · · · (n+ 1− k)zn−k, for 1 ≤ k ≤ n.

Therefore, (
1

zfε(z)

)(n)

=
n!

n+ 1
(1 + ε) and |αk| = 0, for 1 ≤ k ≤ n− 1. (22)

Letting ε = 0 in (22) implies that the equality in (4) holds. However, for every ε > 0, it
can be seen that

f ′ε

((
−1

1 + ε

) 1
n

)
= 0.

Hence fε is not univalent in U∗, for every ε > 0 and the result is sharp. Note that the
functions fn(z) = 1/(z ± (1/n)zn) are also satisfying the equality in (4), where both sides
will be zeros. This completes the proof of Theorem 2.3. �

Setting n = 2 in Theorem 2.3 yields the following result which is the best improvement
of [4, Theorem 8].

Corollary 2.3. Let f ∈ Σ with zf(z) 6= 0 and∣∣∣∣( 1

zf(z)

)′′∣∣∣∣ ≤ 2

3
(1− 2|a0|) , (z ∈ U).

Then f is meromorphic univalent in U∗. The result is sharp, where equality attained for
the functions

f2(z) =
1

z ± (1/2)z2
and f3(z) =

1

z ± (1/3)z3
.

Setting n = 3 in Theorem 2.3 gives the following result.
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Corollary 2.4. Let f ∈ Σ with zf(z) 6= 0 and∣∣∣∣( 1

zf(z)

)′′′∣∣∣∣ ≤ 3

2

(
1− 2|a0| − 3|a1 − a20|

)
, (z ∈ U).

Then f is meromorphic univalent in U∗. The result is sharp, where equality attained for
the functions

f3(z) =
1

z ± (1/3)z3
and f4(z) =

1

z ± (1/4)z4
.

The following corollary establishes the best improvement of (2) due to Liu [3] and the
sharp bound for univalence of f ∈ Σn.

Corollary 2.5. For n ≥ 0, let f ∈ Σn with zf(z) 6= 0 and∣∣∣∣∣
(

1

zf(z)

)(n+2)
∣∣∣∣∣ ≤ (n+ 2)!

n+ 3
(1− (n+ 2)|an|), (z ∈ U).

Then f ∈ MPn+2 and hence it is meromorphic univalent in U∗. The result is sharp,
where equality attained for the functions

fn(z) =
1

z ± 1
n+2z

n+2
and fn+1(z) =

1

z ± 1
n+3z

n+3
.

Proof. Let g(z) = zf(z) = 1 + anz
n+1 + an+1z

n+2 + · · ·. Then

g(z) · 1

zf(z)
= 1. (23)

Differentiating (23) gives

g(z)

(
1

zf(z)

)′
+ g′(z)

(
1

zf(z)

)
= 0.

One can easily observe, for n = 0, that |α1| = |g′(0)| = |a0|. Differentiating (23) twice
gives

g(z)

(
1

zf(z)

)′′
+ 2g′(z)

(
1

zf(z)

)′
+ g′′(z)

(
1

zf(z)

)
= 0.

Therefore, for n = 1, α1 = g′(0) = 0 and |α2| = |g′′(0)| = 2|a1|. In general, differentiating
(23) (n+ 1)-times gives

n+1∑
k=0

(
n+ 1

k

)
g(k)(z)

(
1

zf(z)

)(n+1−k)
= 0.

Therefore, |αk| = |g(k)(0)| = 0, for k = 1, .., n and |αn+1| = |g(n+1)(0)| = (n + 1)! |an|.
Hence,

βn+2 =
(n+ 2)!

n+ 3
(1− (n+ 2)|an|)

and the result follows. �

From Theorem 2.3, one can derive the following

Corollary 2.6. Let f ∈ Σ be of the form (5) with zf(z) 6= 0 in U and

n−1∑
k=1

(k + 1)|bk|+ (n+ 1)
∞∑
k=n

(
k

n

)
|bk| ≤ 1, (24)

for some n ≥ 2. Then f ∈MPn.
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Proof. In view of (5) and by a simple computation,(
1

zf(z)

)(n)

= n! bn +
∞∑

k=n+1

k!

(k − n)!
bkz

k−n,

and so αm = m! bm, for 1 ≤ m ≤ n− 1. It follows that∣∣∣∣∣
(

1

zf(z)

)(n)
∣∣∣∣∣ ≤

∞∑
k=n

k!

(k − n)!
|bk|. (25)

From (25) and (24), it can be seen that the assumption of Theorem 2.3 holds and the
proof is complete. �

It is worth to state, for n = 2, that condition (24) reduces to

∞∑
k=2

k(k − 1)|bk| ≤
2

3
(1− 2|a0(f)|).

Example 2.1. From Corollary 2.6, it is easily to check that the functions

f(z) =
1

z +
∑n

k=1 bkz
k+1

where zf(z) 6= 0 in U and
∑n

k=1(k + 1)|bk| ≤ 1, are meromorphic univalent in U∗.

3. Coefficient conditions

Motivated by the Gronwall Area Theorem which states that
∑∞

n=1 n|an|2 ≤ 1 is a
necessary condition for f ∈ Σ to be univalent in U∗, (see [14, p.29] and [15, Theorem
1]), sufficient coefficient conditions and a necessary coefficient condition are derived for
functions of the form (5) to be inMU . In addition, best radii of univalence are investigated
for certain cases.

Theorem 3.1. Let f have the representation (5) with zf(z) 6= 0 in U and let

∞∑
n=1

(n+ 1)|bn| ≤ 1. (26)

Then f ∈MU . The constant 1 is best possible for univalence.

Proof. Evidently, using the representation (5) and the coefficients condition (26), it can
be seen that∣∣∣∣ f ′(z)f2(z)

+ 1

∣∣∣∣ =

∣∣∣∣z( 1

zf(z)

)′
+

1

zf(z)
− 1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

(n+ 1)bnz
n

∣∣∣∣∣ <
∞∑
n=1

(n+ 1)|bn| ≤ 1.

Therefore, f ∈MU . In order to prove the sharpness, consider the function

fε(z) =
1

z + 1+ε
k zk

, (k ≥ 2, ε ≥ 0).

Letting ε = 0 yields that f0(z) satisfies the equality in (26). However, for fε with ε > 0, a
computation shows that

∞∑
n=1

(n+ 1)|bn| = k|bk−1| = k

(
1 + ε

k

)
= 1 + ε
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and

f ′ε

((
−1

1 + ε

) 1
n−1

)
= 0.

Hence, fε is not meromorphic univalent in U∗, for every ε > 0. The proof is complete. �

The condition (26) is sufficient but not necessary for the function f , which has the
representation (5), to be in MU . For instance, consider the function f given by

1

zf(z)
= 1 +

1

9
z2 +

√
5

12
iz3 +

1

15
z4.

It can be observed that∣∣∣∣ 1

zf(z)

∣∣∣∣ ≥ 1− 1

3
|z|2

∣∣∣∣∣13 +

√
5

4
iz +

1

5
z2

∣∣∣∣∣ ≥ 1− 1

3

(
1

3
+

√
5

4
+

1

5

)
> 0

and so 1/(zf(z)) is non-vanishing in the unit disk U. Also∣∣∣∣ f ′(z)f2(z)
+ 1

∣∣∣∣ =
1

3
|z|2|1 +

√
5iz + z2|.

Next, the function ψ(z) = 1 +
√

5iz + z2 is univalent in U with ψ(0) = 1. It was shown in
[13] that max|z|=1 |ψ(z)| = 3, indeed

max
|z|=1

|ψ(z)| = max
0≤θ≤2π

|2 cos θ +
√

5i| = max
0≤θ≤2π

√
4 cos2 θ + 5 = 3.

This shows that f ∈MU . On the other hand,
∞∑
n=1

(n+ 1)|bn| =
1

3
+

√
5

3
+

1

3
> 1.

The following theorem introduces a necessary condition for functions in MU .

Theorem 3.2 (Necessary condition). Let f ∈MU have the form (5). Then
∞∑
n=1

(n+ 1)2|bn|2 ≤ 1.

Proof. The power series representation of f yields that∣∣∣∣ f ′(z)f2(z)
+ 1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

(n+ 1)bnz
n

∣∣∣∣∣ < 1, (z ∈ U).

Letting z = reiθ for r ∈ (0, 1) and 0 ≤ θ ≤ 2π, the last inequality gives

∞∑
n=1

(n+ 1)2|bn|2r2n =
1

2π

∫ 2π

0

∣∣∣∣∣
∞∑
n=1

(n+ 1)bnz
n

∣∣∣∣∣
2

dθ < 1.

The desired result follows by letting r → 1−. �

Theorem 3.3. Let f have the representation (5) with zf(z) 6= 0 in U and let
∞∑
n=1

(n+ 1)|bn|2 ≤ 1. (27)

Then f is meromorphic univalent in the disk 0 < |z| < r0 =
√

1− 1√
2
≈ 0.541196 and

the radius is the best possible.
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Proof. Consider the function g(z) = rf(rz) where 0 < r ≤ 1. Then

1

zg(z)
= 1 +

∞∑
n=1

bnr
nzn.

By the Cauchy-Schwarz inequality,

∞∑
n=1

(n+ 1)|bn|rn ≤

( ∞∑
n=1

(n+ 1)|bn|2
) 1

2
( ∞∑
n=1

(n+ 1)r2n

) 1
2

≤

( ∞∑
n=1

(n+ 1)r2n

) 1
2

=
r
√

2− r2
1− r2

≤ 1 (28)

whenever 0 < r ≤ r0 =
√

1− 1√
2
. From Theorem 3.1, (28) yields g ∈ MU , whenever

0 < r ≤ r0. Therefore, f is meromorphic univalent in 0 < |z| ≤ r0. To prove the
sharpness, consider the function f0(z) given by

f0(z) =
1− r0z
z − 2r0z2

,

(
r0 =

√
1− 1√

2

)
.

Therefore,

1

zf0(z)
=

1− 2r0z

1− r0z
= 1−

∞∑
n=1

rn0 z
n

and
∞∑
n=1

(n+ 1)|bn|2 =

∞∑
n=1

(n+ 1)r2n0 = 1.

Hence, f0 is meromorphic univalent in the disk 0 < |z| < r0, but not in a larger one,
because

f ′0(z) =
4r0z − 2r20z

2 − 1

(z − 2r0z2)2

yields f ′0(r0) = 0 and this completes the proof of Theorem 3.3.
�

Theorem 3.4. Let f have the representation (5) with zf(z) 6= 0 in U and let

∞∑
n=1

(n+ 1)2|bn|2 ≤ 1. (29)

Then f is meromorphic univalent in the disk 0 < |z| < r0 = 1/
√

2 ≈ 0.707107 and the
radius r0 is the best possible.

Proof. Consider the function g(z) = rf(rz) where 0 < r ≤ 1. Then

1

zg(z)
= 1 +

∞∑
n=1

bnr
nzn.



260 TWMS J. APP. AND ENG. MATH. V.11, N.1, 2021

By the Cauchy-Schwarz inequality,

∞∑
n=1

(n+ 1)|bn|rn ≤

( ∞∑
n=1

(n+ 1)2|bn|2
) 1

2
( ∞∑
n=1

r2n

) 1
2

≤

( ∞∑
n=1

r2n

) 1
2

=
r√

1− r2
≤ 1

whenever 0 < r ≤ r0 = 1/
√

2. It follows that Theorem 3.1 yields g ∈ MU , whenever
0 < r ≤ r0, and so f is meromorphic univalent in the disk 0 < |z| < r0. To prove the
sharpness, consider the function f0(z) defined by

1

zf0(z)
= 1 +

∞∑
n=1

rn0
n+ 1

zn = 2 +
1

r0z
ln(1− r0z).

Now,
∞∑
n=1

(n+ 1)2|bn|2 =
∞∑
n=1

r2n =
r20

1− r20
= 1.

For 0 < |z| < r0, it can be seen that∣∣∣∣ f ′0(z)f20 (z)
+ 1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

rn0 z
n

∣∣∣∣∣ =

∣∣∣∣ r0z

1− r0z

∣∣∣∣ < r20
1− r20

= 1,

while for r0 < z = r < 1,∣∣∣∣ f ′0(r)f20 (r)
+ 1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

rn0 r
n

∣∣∣∣∣ =

∣∣∣∣ r0r

1− r0r

∣∣∣∣ > 1.

It follows that g0(z) = rf0(rz) belongs to MU , for 0 < r ≤ r0 and so f0 is meromorphic
univalent in 0 < |z| < r0, but not in a larger disk, because

f ′0(z) =
(1− r0z)−1 − 2(

2z + 1
r0

ln(1− r0z)
)2

implies that f ′0(r0) = 0 and the proof is complete. �

4. Conclusion

Finding sharp sufficient and necessary conditions for univalent functions plays a main
role in the geometric function theory. In this paper, various sharp univalence criteria for
meromorphic functions in the punctured unit disk are derived. Some results establish the
best improvements of known sufficient conditions for univalence. A necessary coefficient
condition as well as sufficient coefficient conditions for functions in the class MU are
derived and best radii of univalance are obtained for certain cases. For future research,
the classes MU and MPn can be studied for further properties.
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