PRIME LABELING IN THE CONTEXT OF SUBDIVISION OF SOME CYCLE RELATED GRAPHS

A. N. KANSAGARA ${ }^{1}$, S. K. PATEL ${ }^{2}$, J. B. VASAVA ${ }^{1}$, §

Abstract

A prime labeling on a graph G of order n is a bijection from the set of vertices of G into the set of first n positive integers such that any two adjacent vertices in G have relatively prime labels. The results about prime labeling of wheel, helm, flower, crown and union of crown graphs are very well-known. In this paper we obtain prime labeling of various graphs resulting from the subdivision of edges in these graphs.

Keywords: Prime labeling, Prime graphs, Subdivision of graphs, barycentric subdivision, Union of graphs.

AMS Subject Classification: 05C78

1. Introduction

We consider only finite, simple and undirected graphs. For a graph $G, V(G)$ and $E(G)$ denote its vertex set and edge set respectively whereas $|V(G)|$ and $|E(G)|$ denote the cardinalities of the respective sets. We refer to Gross and Yellen [5] for graph theoretic terminology and notations and Burton [2] for results related to number theory. We start with the definition of a prime labeling and a prime graph.

Definition 1.1. Let G be a graph with n vertices. A bijection $f: V(G) \rightarrow\{1,2, \ldots, n\}$ is said to be a prime labeling of G if $\operatorname{gcd}(f(u), f(v))=1$ whenever u and v are adjacent vertices of G. A graph that admits a prime labeling is called a prime graph.

The simplest examples of prime graphs are path and cycle graphs whereas a complete graph with four or more vertices is not a prime graph due to following lemma which gives a necessary condition for a graph to be prime.

Lemma 1.1. [3] Let $\beta_{0}(G)$ denote the independence number of G. If $\beta_{0}(G)<\left\lfloor\frac{|V(G)|}{2}\right\rfloor$, then G is not a prime graph.

[^0]Entringer originated prime labeling and Taut et al.[10] discussed it in a paper about thirty five years ago. Since then variety of graphs have been studied for prime labeling. Prime labeling is also extensively studied in the context of various graph operations. Some of the variants of prime labeling like prime cordial labeling [9] and neighborhood-prime labeling [7] are also interesting areas of research these days. For a complete survey of results related to prime labeling and its variants, we refer the reader to the dynamic survey of graph labeling by J. Gallian [4]. Here we shall study prime labeling in the context of graph operation of subdivision whose meaning is explained below.
Definition 1.2. Let e be an edge with end vertices as u and v in a graph G. Then by subdivision of the edge $e=u v$ in G, we mean introduction of a new vertex w in G and where the edge $e=u v$ is replaced by two new edges $e^{\prime}=u w$ and $e^{\prime \prime}=w v$ in G. Thus, subdividing a single edge in G increases the cardinality of its vertex and edge set by one.
Definition 1.3. By subdivision of a graph G, we mean subdivision of all or some of the edges in G. Further, if all the edges of G are subdivided then the resultant subdivision is also known as the Barycentric subdivision of graph G.
In the present paper, we derive prime labeling of graphs resulting from the subdivision of edges of some well-known graphs like wheel, helm, $C_{n} \odot K_{1}$ (i.e. crown graph), $\left(C_{n} \odot\right.$ $\left.K_{1}\right) \cup\left(C_{n} \odot K_{1}\right)$ and flower graph. All the results are supported with appropriate examples and figures so that the theorems and their proofs are better understood. The following lemma which is based on Euclid's division algorithm has been stated over here since it is (directly or indirectly) used frequently throughout the paper.
Lemma 1.2. If a and b are positive integers such that $a<b$, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r),
$$

where r is the remainder obtained on dividing the number b by the number a.

2. Main Results

It is proved in [10] that the wheel graph $W_{n}=C_{n}+K_{1}$ is prime if and only if n is even. Here we derive the results for graphs obtained by taking subdivision of a wheel graph.
Theorem 2.1. The barycentric subdivision of the wheel graph W_{n} is a prime graph for all n.
Proof. Consider the wheel graph W_{n} with vertex set $\left\{u_{0}, v_{2 i-1}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} v_{2 i-1}, v_{2 i-1} v_{2 i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo $2 n$. We call u_{0} the apex vertex of W_{n}. Let G be the barycentric subdivision of W_{n} in which the edges $u_{0} v_{2 i-1}$ and $v_{2 i-1} v_{2 i+1}$ are subdivided by the newly added vertices u_{i} and $v_{2 i}$ respectively for $i=1,2, \ldots, n$. Thus $|V(G)|=3 n+1$. For $i=1,2, \ldots, n$ and $j=1,2, \ldots, 2 n$, define $f: V(G) \rightarrow\{1,2, \ldots, 3 n+1\}$ as

$$
\begin{aligned}
& f\left(u_{0}\right)=1, \\
& f\left(u_{i}\right)=3 i, \quad i \text { is even, } \\
& f\left(u_{i}\right)=3 i-1, \quad i \text { is odd, } \\
& f\left(v_{j}\right)=\frac{3 j+2}{2}, \quad j \text { is even, } \\
& f\left(v_{j}\right)=\frac{3 j+3}{2}, \quad j \equiv 1(\bmod 4), \\
& f\left(v_{j}\right)=\frac{3 j+1}{2}, \quad j \equiv 3(\bmod 4) .
\end{aligned}
$$

We claim that any two adjacent vertices have relatively prime labels.
If $j \equiv 0(\bmod 4)$, then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(\frac{3 j+2}{2}, \frac{3 j+6}{2}\right)=\operatorname{gcd}\left(\frac{3 j+2}{2}, 2\right)=1$.
If $j \equiv 1(\bmod 4)$, then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(\frac{3 j+3}{2}, \frac{3 j+5}{2}\right)=\operatorname{gcd}\left(\frac{3 j+3}{2}, 1\right)=1$.
If $j \equiv 2(\bmod 4)$, then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(\frac{3 j+2}{2}, \frac{3 j+4}{2}\right)=\operatorname{gcd}\left(\frac{3 j+2}{2}, 1\right)=1$.
If $j \equiv 3(\bmod 4)$, then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(\frac{3 j+1}{2}, \frac{3 j+5}{2}\right)=\operatorname{gcd}\left(\frac{3 j+1}{2}, 2\right)=1$ as $\frac{3 j+1}{2}$ is an odd number.
Also $\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{2 n}\right)\right)=\operatorname{gcd}\left(3, \frac{6 n+2}{2}\right)=\operatorname{gcd}(3,3 n+1)=1$. Except these cases, every pair of adjacent vertices in G have either consecutive labels or one of the labels is 1 . Thus f defines a prime labeling on G.

Example 2.1. Prime labeling of the barycentric subdivision of W_{9} is shown in Figure 1.

Figure 1

Theorem 2.2. The graph obtained by taking subdivision of the edges adjacent to the apex vertex of W_{n} is a prime graph for all n.

Proof. Consider the wheel graph W_{n} with vertex set $\left\{u_{0}, v_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} v_{i}, v_{i} v_{i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo n. Let G be a graph obtained from the wheel graph W_{n} by subdividing edges $u_{0} v_{i}$ with the newly added vertices u_{i}. Then $|V(G)|=2 n+1$. For $i=1,2, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 2 n+1\}$ as

$$
\begin{aligned}
& f\left(u_{0}\right)=1 \\
& f\left(u_{1}\right)=3 \\
& f\left(v_{1}\right)=2 \\
& f\left(u_{i}\right)=2 i, \quad i \neq 1, \\
& f\left(v_{i}\right)=2 i+1, \quad i \neq 1 .
\end{aligned}
$$

It is easy to verify that f is a prime labeling of G.
Example 2.2. Prime labeling of the graph obtained from W_{7} by taking subdivision of every edge adjacent to its apex vertex is shown in Figure 2.

Figure 2
Note that the graph obtained by taking the subdivision of cycle edges in W_{n} is a gear graph which is known to be prime.
The helm graph H_{n} is the graph obtained from wheel graph $W_{n}=C_{n}+K_{1}$ by attaching a pendant edge to every vertex of the cycle C_{n} in W_{n}. It is proved in [8] that H_{n} is a prime graph for all n. Our next few results are about subdivision of helm graphs.

Theorem 2.3. Let G be a graph obtained by taking subdivision of every pendant edge in the helm graph H_{n}. Then G is prime if and only if n is even.
Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, u_{i}, w_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} u_{i}, u_{i} w_{i}, u_{i} u_{i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo n. Let G be the graph obtained from H_{n} by subdividing the edges $u_{i} w_{i}$ with the newly added vertices v_{i} for $i=1,2, \ldots n$. Then $|V(G)|=3 n+1$.

First we prove that G is not prime when n is odd. Suppose $n=2 k+1$ for some k. It may be verified that the independence number $\beta_{0}(G)$ of the graph G is equal to $3 k+1$. But $|V(G)|=6 k+4$ and therefore

$$
\beta_{0}(G)<\left\lfloor\frac{|V(G)|}{2}\right\rfloor .
$$

So in view of Lemma 1.1, we conclude that G is not a prime graph.
Now assume that $n=2 k$ for some k. For $i=1,2, \ldots, 2 k$, define $f: V(G) \rightarrow$ $\{1,2, \ldots, 6 k+1\}$ as

$$
\begin{aligned}
f\left(u_{0}\right) & =1, \\
f\left(u_{i}\right) & =3 i-1, \\
f\left(v_{i}\right) & =3 i, \\
f\left(w_{i}\right) & =3 i+1 .
\end{aligned}
$$

Observe that
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(3 i-1,3 i+2)=\operatorname{gcd}(3 i-1,3)=1$.
$\operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{2 k+1}\right)\right)=\operatorname{gcd}(2,3(2 k)-1)=\operatorname{gcd}(2,6 k-1)=1$. Except these cases, any two adjacent vertices in G have either consecutive labels or one of them has 1 as a label. Thus f defines a prime labeling on G.

Example 2.3. Prime labeling of the graph obtained from H_{8} by taking subdivision of every pendant edge, is shown in Figure 3.

Figure 3

Theorem 2.4. The graph obtained from the helm graph H_{n} by subdivision of every edge of the cycle C_{n} in H_{n} is a prime graph.

Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, u_{2 i-1}, v_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} u_{2 i-1}, u_{2 i-1} v_{i}, u_{2 i-1} u_{2 i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo $2 n$. Let G be the graph obtained from H_{n} by subdividing the edges $u_{2 i-1} u_{2 i+1}$ with the newly added vertices $u_{2 i}$ for $i=1,2, \ldots n$.
For $i=1,2,3, \ldots, 2 n$ and $j=1,2,3, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 3 n+1\}$ as

$$
\begin{aligned}
& f\left(u_{0}\right)=1 \\
& f\left(u_{i}\right)=3\left(\frac{i+1}{2}\right), \quad i \equiv 1(\bmod 4) \\
& f\left(u_{i}\right)=3\left(\frac{i+1}{2}\right)-1, \quad i \equiv 3(\bmod 4) \\
& f\left(u_{i}\right)=3\left(\frac{i}{2}\right)+1, \quad i \text { is even } \\
& f\left(v_{j}\right)=3 j-1, \quad j \text { is odd } \\
& f\left(v_{j}\right)=3 j, \quad j \text { is even. }
\end{aligned}
$$

Since $f\left(u_{0}\right)=1$, we see that $\operatorname{gcd}\left(f(u), f\left(u_{0}\right)\right)=1$ for every vertex u which is adjacent to u_{0}. In other cases, it may be verified that the labels of any two adjacent vertices in G are either consecutive integers or consecutive odd integers and so f defines a prime labeling on G.

Example 2.4. Prime labeling of the graph obtained from H_{7} by taking subdivision of every edge of the cycle C_{7} is shown in Figure 4.

Theorem 2.5. The graph obtained from the helm graph H_{n} by subdivision of every edge incident to its apex vertex is a prime graph.

Figure 4
Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, v_{i}, w_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} v_{i}, v_{i} w_{i}, v_{i} v_{i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo n. Let G be the graph obtained from H_{n} by subdividing the edges $u_{0} v_{i}$ with the newly added vertices u_{i} for $i=1,2, \ldots n$.
For $i=1,2,3, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 3 n+1\}$ as

$$
\begin{aligned}
f\left(u_{0}\right) & =1, \\
f\left(u_{i}\right) & =i+2, \quad i=1,2, \\
f\left(v_{i}\right) & =3 i-1, \quad i=1,2 \\
f\left(w_{i}\right) & =8-i, \quad i=1,2 \\
f\left(u_{i}\right) & =3 i-1, \quad \text { all } i>2, \\
f\left(v_{i}\right) & =3 i, \quad i>1 \text { is odd } \\
f\left(w_{i}\right) & =3 i+1, \quad i>1 \text { is odd, } \\
f\left(v_{i}\right) & =3 i+1, \quad i>2 \text { is even, } \\
f\left(w_{i}\right) & =3 i, \quad i>2 \text { is even. }
\end{aligned}
$$

We claim that $\operatorname{gcd}(f(u), f(v))=1$ for any two adjacent vertices u and v.
If n is odd then $\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)=\operatorname{gcd}(2,3 n)=1$.
If n is even then $\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{n}\right)\right)=\operatorname{gcd}(2,3 n+1)=1$.
If $i>1$ is odd then $\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 i, 3(i+1)+1)=\operatorname{gcd}(3 i, 4)=1$.
If $i>2$ is even then $\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 i+1,3(i+1))=\operatorname{gcd}(3 i+1,2)=1$.
The remaining cases are easy to verify and thus we conclude that f is a prime labeling on G.

Example 2.5. Prime labeling of the graph obtained from H_{7} by taking subdivision of every edge incident to its apex vertex, is shown in Figure 5.

Theorem 2.6. The graph obtained from the helm graph H_{n} by subdivision of every pendant edge and every edge of the cycle C_{n} is a prime graph.

Figure 5
Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, u_{2 i-1}, w_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} u_{2 i-1}, u_{2 i-1} w_{i}, u_{2 i-1} u_{2 i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo $2 n$. Let G be the graph obtained from H_{n} by subdividing the edges $u_{2 i-1} u_{2 i+1}$ and $u_{2 i-1} w_{i}$ with the newly added vertices $u_{2 i}$ and v_{i} respectively for $i=1,2, \ldots n$. Thus $|V(G)|=4 n+1$.
For $i=1,2,3, \ldots, 2 n$ and $j=1,2,3, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 4 n+1\}$ as

$$
\begin{aligned}
& f\left(u_{0}\right)=1, \\
& f\left(u_{i}\right)=2 i+2, \quad \text { if } i \equiv 1(\bmod 6) \text { and } i \equiv 3(\bmod 6), \\
& f\left(u_{i}\right)=2 i, \quad i \equiv 5(\bmod 6), \\
& f\left(u_{i}\right)=2 i+1, \quad i \text { is even, } \\
& f\left(v_{j}\right)=4 j-1, \quad \text { all } j, \\
& f\left(w_{j}\right)=4 j-2, \quad j \not \equiv 0(\bmod 3), \\
& f\left(w_{j}\right)=4 j, \quad j \equiv 0(\bmod 3) .
\end{aligned}
$$

Observe that $\operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{2 n}\right)\right)=\operatorname{gcd}(4,2(2 n)+1)=1$.
Further, if i is even with $i \not \equiv 4(\bmod 6)$ then

$$
\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2(i+1)+2)=\operatorname{gcd}(2 i+1,3)=1,
$$

and if i is even with $i \equiv 4(\bmod 6)$ then $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2(i+1))=1$. Moreover, if i is odd with $i \not \equiv 5(\bmod 6)$ then $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i+2,2(i+1)+$ $1)=\operatorname{gcd}(2 i+2,1)=1$ and if i is odd with $i \equiv 5(\bmod 6)$, then $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=$ $\operatorname{gcd}(2 i, 2(i+1)+1)=\operatorname{gcd}(2 i, 3)=1$ because $i \equiv 5(\bmod 6) \Rightarrow i \equiv 2(\bmod 3)$. Almost similar reasons show that if i is odd $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(v_{\frac{i+1}{2}}\right)\right)=1$.
Except these cases, any two adjacent vertices in G^{2} have either consecutive labels or one of them has 1 as a label. Thus f is a prime labeling on G.

Example 2.6. Prime labeling of the graph obtained from H_{7} by taking subdivision of every pendant edge and cycle edge, is shown in Figure 6.

Figure 6
Theorem 2.7. The graph obtained from the helm graph H_{n} by subdivision of every pendant edge and every edge incident to its apex vertex is a prime graph.

Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, v_{i}, x_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} v_{i}, v_{i} x_{i}, v_{i} v_{i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo n. Let G be the graph obtained from H_{n} by subdividing the edges $u_{0} v_{i}$ and $v_{i} x_{i}$ with the newly added vertices u_{i} and w_{i} respectively for $i=1,2, \ldots n$.
For $i=1,2,3, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 4 n+1\}$ as

$$
\begin{aligned}
f\left(u_{0}\right) & =1, \\
f\left(u_{1}\right) & =3, \\
f\left(v_{1}\right) & =2, \\
f\left(w_{1}\right) & =5, \\
f\left(x_{1}\right) & =4, \\
f\left(u_{i}\right) & =4 i-2, \quad i \neq 1 \\
f\left(v_{i}\right) & =4 i-1, \quad i \neq 1 \\
f\left(w_{i}\right) & =4 i, \quad i \neq 1 \\
f\left(x_{i}\right) & =4 i+1, \quad i \neq 1 .
\end{aligned}
$$

The reader may easily verify that f defines a prime labeling on G.
Example 2.7. Prime labeling of the graph obtained from H_{7} by taking subdivision of every pendant edge and every edge incident to its apex vertex, is shown in Figure 7.
Theorem 2.8. The graph obtained from the helm graph H_{n} by subdivision of every edge of the cycle C_{n} and every edge incident to its apex vertex is a prime graph.
Proof. Consider the helm graph H_{n} with vertex set $\left\{u_{0}, v_{2 i-1}, w_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{u_{0} v_{2 i-1}, v_{2 i-1} w_{i}, v_{2 i-1} v_{2 i+1}: i=1,2, \ldots, n\right\}$ where suffixes are read as modulo $2 n$. Let G be the graph obtained from H_{n} by subdividing the edges $v_{2 i-1} v_{2 i+1}$ and $u_{0} v_{2 i-1}$

Figure 7
with the newly added vertices $v_{2 i}$ and u_{i} respectively for $i=1,2, \ldots n$. We consider two cases over here.
Case 1: $n \not \equiv 2(\bmod 3)$.
For $i=1,2, \ldots, n$ and $j=1,2, \ldots, 2 n$, define $f: V(G) \rightarrow\{1,2, \ldots, 4 n+1\}$ as

$$
\begin{aligned}
f\left(u_{0}\right) & =1, \\
f\left(u_{i}\right) & =4 i-2, \\
f\left(w_{i}\right) & =4 i, \\
f\left(v_{j}\right) & =2 j+1 .
\end{aligned}
$$

Since $n \not \equiv 2(\bmod 3), f$ clearly defines a prime labeling. However, if $n \equiv 2(\bmod 3)$, then $\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{2 n}\right)\right)=3$ and so we need to modify f.
Case 2: $n \equiv 2(\bmod 3)$.
Define $g: V(G) \rightarrow\{1,2, \ldots, 4 n+1\}$ as follows:

$$
\begin{aligned}
g(x) & =f(x), \quad x \neq v_{2 n}, w_{n}, \\
g\left(v_{2 n}\right) & =f\left(w_{n}\right), \\
g\left(w_{n}\right) & =f\left(v_{2 n}\right) .
\end{aligned}
$$

Observe that g defines a prime labeling on G when $n \equiv 2(\bmod 3)$.
Example 2.8. Prime labeling of the graph obtained from H_{7} by taking subdivision of every cycle edge and edges incident to its apex vertex, is shown in Figure 8.

The flower graph $F l_{n}$ is a graph obtained from the helm graph H_{n} by joining its each and every pendant vertex to its apex vertex. Seoud et al. [8] proved that $F l_{n}$ is a prime graph for all n. Since flower graph is obtained by adding specific edges to a helm graph, the reader may verify that the prime labelings derived in Theorem 2.3 upto Theorem 2.8 are the prime labelings of the corresponding subdivision in flower graphs also. We now obtain a prime labeling for the barycentric subdivision of flower graph.

Theorem 2.9. The barycentric subdivision of flower graph is a prime graph for all n.

Figure 8

Proof. Consider the flower graph $F l_{n}$ with vertex set $\left\{v_{0}, v_{i}, u_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{v_{0} v_{i}, v_{0} u_{i}, v_{i} u_{i}, v_{i} v_{i+1}: i=1,2, \ldots, n\right\}$, where the suffixes are read as modulo n. Let G be the barycentric subdivision of flower graph in which the edges $v_{0} u_{i}, v_{i} u_{i}, v_{0} v_{i}$ and $v_{i} v_{i+1}$ are subdivided by the newly added vertices $x_{i}, y_{3 i-1}, y_{3 i-2}$ and $y_{3 i}$ respectively. Thus $|V(G)|=6 n+1$. We shall obtain prime labeling of graph G by considering the following two cases.

Case $1 n \not \equiv 4(\bmod 5)$.
In this case define $f: V(G) \rightarrow\{1,2, \ldots 6 n+1\}$ by

$$
\begin{aligned}
& f\left(v_{0}\right)=1, \\
& f\left(v_{i}\right)=6 i-1, \text { for } i=1,2, \ldots, n, \\
& f\left(u_{i}\right)=6 i-3, \text { for } i=1,2, \ldots, n \\
& f\left(x_{i}\right)= \begin{cases}6 i-5, & \text { for } i=2, \ldots, n \\
6 n+1, & \text { for } i=1,\end{cases} \\
& f\left(y_{j}\right)= \begin{cases}2 j-4, & \text { for } j \equiv 0(\bmod 3) ; \\
2 j+4, & \text { for } j \equiv 1(\bmod 3) ; \\
2 j, & \text { for } j \equiv 2(\bmod 3), \text { where } j=1,2, \ldots, 3 n\end{cases}
\end{aligned}
$$

Then for $i=1,2, \ldots, n$

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(v_{0}\right), f\left(y_{3 i-2}\right)\right)=1=\operatorname{gcd}\left(f\left(v_{0}\right), f\left(x_{i}\right)\right) \text { as } f\left(v_{0}\right)=1, \\
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{3 i}\right)\right)=\operatorname{gcd}(6 i-1,6 i-4)=\operatorname{gcd}(3,6 i-4)=1, \\
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{3 i-1}\right)\right)=\operatorname{gcd}(6 i-1,6 i-2)=1, \\
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{3 i-2}\right)\right)=\operatorname{gcd}(6 i-1,6 i)=1, \\
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{3 i-3}\right)\right)=\operatorname{gcd}(6 i-1,6 i-10)=\operatorname{gcd}(9,6 i-10)=1, \text { for } i \geq 2, \\
& \operatorname{gcd}\left(f\left(v_{1}\right), f\left(y_{3 n}\right)\right)=\operatorname{gcd}(5,6 n-4)=1 \text { since } n \not \equiv 4(\bmod 5), \\
& \operatorname{gcd}\left(f\left(x_{i}\right), f\left(u_{i}\right)\right)=\left\{\begin{array}{l}
\operatorname{gcd}(6 i-5,6 i-3)=1 \text { for } i \neq 1 ; \\
\operatorname{gcd}(6 n+1,3)=1 \text { for } i=1,
\end{array}\right. \\
& \operatorname{gcd}\left(f\left(u_{i}\right), f\left(y_{3 i-1}\right)\right)=\operatorname{gcd}(6 i-3,6 i-2)=1
\end{aligned}
$$

Case $2 n \equiv 4(\bmod 5)$.
In this case define $g: V(G) \rightarrow\{1,2, \ldots 6 n+1\}$ by

$$
\begin{aligned}
g(u) & =f(u), \text { for } u \neq y_{3 n}, y_{3 n-3}, \\
g\left(y_{3 n}\right) & =f\left(y_{3 n-3}\right) \\
g\left(y_{3 n-3}\right) & =f\left(y_{3 n}\right) .
\end{aligned}
$$

Observe that g is a prime labeling on G in this case.

Example 2.9. Prime labeling of barycentric subdivision of flower graph $F l_{6}$ is shown in Figure 9.

Figure 9
The crown graph with $2 n$ vertices and $2 n$ edges is a graph obtained by attaching a pendant edge to each vertex of the cycle C_{n}. It is also viewed as a corona product of the cycle C_{n} and K_{1} and it is denoted by $C_{n} \odot K_{1}$. It is known that crown graph $C_{n} \odot K_{1}$ and also union of its two copies are prime graphs for all n. See for instance [10] and [6]. Here we consider the subdivision of crown graph as well as the subdivision of union of crown graphs and derive the results regarding prime labeling of the resultant graphs.

Theorem 2.10. The graph obtained by taking subdivision of pendant edges in crown graph $C_{n} \odot K_{1}$ is prime for all n.

Proof. Consider the crown graph $C_{n} \odot K_{1}$ with vertex set $\left\{v_{i}, u_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{v_{i} v_{i+1}, v_{i} u_{i}: i=1,2, \ldots, n\right\}$, where suffixes are read as modulo n. Let G be the graph obtained from $C_{n} \odot K_{1}$ by subdividing its pendant edges $u_{i} v_{i}$ with the newly added vertices y_{i}. Thus $V(G)=\left\{u_{i}, v_{i}, y_{i}: i=1,2, \ldots, n\right\}$.

For $i=1,2, \ldots, n$, define $f: V(G) \rightarrow\{1,2, \ldots, 3 n\}$ as

$$
f\left(v_{i}\right)=3 i-2, f\left(u_{i}\right)=3 i, f\left(y_{i}\right)=3 i-1 .
$$

Then for $i=1,2, \ldots, n, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{i}\right)\right)=\operatorname{gcd}(3 i-2,3 i-1)=1$ and $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(y_{i}\right)\right)=$ $\operatorname{gcd}(3 i, 3 i-1)=1$. Also for $i<n, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 i-2,3 i+1)=\operatorname{gcd}(3,3 i+1)=$ 1 and $\operatorname{gcd}\left(f\left(v_{n}\right), f\left(v_{1}\right)\right)=\operatorname{gcd}(3 n-2,1)=1$. Thus f is a prime labeling on G.
Example 2.10. Prime labeling of the graph obtained from $C_{4} \odot K_{1}$ by taking subdivision of its pendant edges is shown the Figure 10.

Figure 10
Theorem 2.11. The graph obtained by taking subdivision of every edge of cycle in crown graph $C_{n} \odot K_{1}$ is prime for all n.
Proof. Consider the crown graph $C_{n} \odot K_{1}$ with vertex set $\left\{v_{i}, u_{i}: i=1,2, \ldots, n\right\}$ and edge set $\left\{v_{i} v_{i+1}, v_{i} u_{i}: i=1,2, \ldots, n\right\}$, where suffixes are read as modulo n. Let G be the graph obtained from $C_{n} \odot K_{1}$ by subdividing edges $v_{i} v_{i+1}$ with the newly added vertices x_{i} for $i=1,2, \ldots, n$. Thus $V(G)=\left\{u_{i}, v_{i}, x_{i}: i=1,2, \ldots, n\right\}$.
Now define $f: V(G) \rightarrow\{1,2, \ldots, 3 n\}$ as

$$
\begin{aligned}
& f\left(x_{i}\right)=3 i \text { for all } i, \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-1 ; i \text { is even, } \\
3 i-2 ; i \text { is odd },
\end{array}\right. \\
& f\left(u_{i}\right)= \begin{cases}3 i-1 ; i \text { is odd, } \\
3 i-2 ; i \text { is even. }\end{cases}
\end{aligned}
$$

It is not difficult to verify that f is a prime labeling on G and so we skip the details. Then one can check that $\operatorname{gcd}(f(u), f(v))=1$ whenever u and v are adjacent. Thus G is a prime graph.
Example 2.11. Prime labeling of the graph obtained by taking subdivision of every edge of cycle in crown graph $C_{6} \odot K_{1}$ is shown in Figure 11.

Figure 11

Theorem 2.12. Let G be the graph obtained by subdividing the pendant edges in $\left(C_{n} \odot\right.$ $\left.K_{1}\right) \cup\left(C_{n} \odot K_{1}\right)$. Then G is a prime graph if and only if n is even.

Proof. Let $H=\left(C_{n} \odot K_{1}\right) \cup\left(C_{n} \odot K_{1}\right)$, where the vertex set and edge set of H are as follows: $V(H)=\left\{v_{i}, u_{i}: i=1,2, \ldots, n\right\} \cup\left\{v_{i}, u_{i}: i=n+1, n+2, \ldots, 2 n\right\}$ and $E(H)=\left\{v_{i} v_{i+1}, v_{i} u_{i}: i=1,2, \ldots n\right\} \cup\left\{v_{i} v_{i+1}, v_{i} u_{i}: i=n+1, n+2, \ldots 2 n\right\}$, where suffixes in the first set of $E(H)$ are read as modulo n and in second set as modulo $2 n$. Let G be the graph obtained from H by subdividing all its pendant edges $u_{i} v_{i}$ with the help of the newly added vertices y_{i} for $i=1,2, \ldots, 2 n$. Thus $V(G)=\left\{u_{i}, v_{i}, y_{i}: i=1,2, \ldots, 2 n\right\}$ and $|V(G)|=6 n$.

If n is odd, then it may be verified that $\beta_{0}(G)=3 n-1$ and so

$$
\beta_{0}(G)<\left\lfloor\frac{V(G)}{2}\right\rfloor=3 n
$$

Hence by Lemma $1.1, G$ is not a prime graph.
Now assume that n is even. We show that $f: V(G) \rightarrow\{1,2, \ldots, 6 n\}$ defined by

$$
f\left(v_{i}\right)=3 i-2, f\left(u_{i}\right)=3 i, f\left(y_{i}\right)=3 i-1
$$

is a prime labeling on G. For all $i \neq n, 2 n$;

$$
\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 i-2,3 i+1)=\operatorname{gcd}(3 i-2,3)=1
$$

whereas $\operatorname{gcd}\left(f\left(v_{n}\right), f\left(v_{1}\right)\right)=\operatorname{gcd}(3 i-2,1)=1$ and $\operatorname{gcd}\left(f\left(v_{2 n}\right), f\left(v_{n+1}\right)\right)=\operatorname{gcd}(6 n-2,3 n+$ $1)=\operatorname{gcd}(3 n-3,3 n+1)=\operatorname{gcd}(3 n-3,4)=1$ because $3 n-3$ is odd (since n is even). The remaining pairs of adjacent vertices have consecutive labels and so we are through.

Example 2.12. Prime labeling of the graph obtained by taking subdivision of pendant edges of $\left(C_{8} \odot K_{1}\right) \cup\left(C_{8} \odot K_{1}\right)$ is shown in Figure 12

Theorem 2.13. Let G be the graph obtained by subdividing cycle edges in $\left(C_{n} \odot K_{1}\right) \cup$ $\left(C_{n} \odot K_{1}\right)$. Then G is prime graph.

Proof. Let $H=\left(C_{n} \odot K_{1}\right) \cup\left(C_{n} \odot K_{1}\right)$, whose vertex set and edge set are defined as in Theorem 2.12. Let G be the graph obtained from H by subdividing all its (cycle) edges $v_{i} v_{i+1}$ with the help of the newly added vertices x_{i} for $i=1,2, \ldots, 2 n$. Thus $V(G)=\left\{u_{i}, v_{i}, x_{i}: i=1,2, \ldots, 2 n\right\}$ and $|V(G)|=6 n$.

Figure 12

For $i=1,2, \ldots, 2 n$, define $f: V(G) \rightarrow\{1,2, \ldots, 6 n\}$ as

$$
\begin{aligned}
& f\left(x_{i}\right)=3 i, \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-1 ; i \text { is even, } i \neq n+1 ; \\
3 i-2 ; i \text { is odd, } i \neq 1, n+1,
\end{array}\right. \\
& f\left(u_{i}\right)= \begin{cases}3 i-1 ; & i \text { is odd, } i \neq 1, n+1 ; \\
3 i-2 ; & i \text { is even. } i \neq n+1,\end{cases}
\end{aligned}
$$

and further define

$$
\begin{aligned}
f\left(v_{n+1}\right) & =1, \\
f\left(u_{n+1}\right) & =2, \\
f\left(v_{1}\right) & =3 n+1, \\
f\left(u_{1}\right) & =3 n+2 .
\end{aligned}
$$

Then it is not difficult to check that f is prime labeling on G. Thus G is a prime graph.
Example 2.13. Prime labeling of the graph obtained by taking subdivision of cycle edges of $\left(C_{8} \odot K_{1}\right) \cup\left(C_{8} \odot K_{1}\right)$ is shown in Figure 13.

Theorem 2.14. The barycentric subdivision of the union of two copies of crown graph $C_{n} \odot K_{1}$ is a prime graph for all n.

Proof. Let $H=\left(C_{n} \odot K_{1}\right) \cup\left(C_{n} \odot K_{1}\right)$, whose vertex set and edge set are defined as in Theorem 2.12. Let G be the barycentric subdivision of H in which the edges $v_{i} v_{i+1}$ and $v_{i} u_{i}$ are subdivided with the help of the newly added vertices x_{i} and y_{i} respectively. Thus $V(G)=\left\{u_{i}, v_{i}, y_{i}, x_{i}: i=1,2, \ldots, 2 n\right\}$ and $|V(G)|=8 n$.

Figure 13

For $i=1,2, \ldots, 2 n$, define $f: V(G) \rightarrow\{1,2, \ldots, 8 n\}$ as

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}4 i, & \text { if } i \not \equiv 2(\bmod 3) \text { and } i<2 n ; \\
4 i-2, & \text { if } i \equiv 2(\bmod 3) \text { and } i<2 n ; \\
8 n, & \text { if } i=2 n,\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}4 i-2, & \text { if } i \not \equiv 2(\bmod 3) \text { and } i<2 n ; \\
4 i, & \text { if } i \equiv 2(\bmod 3) \text { and } i<2 n \\
8 n-2, & \text { if } i=2 n,\end{cases} \\
& f\left(x_{i}\right)= \begin{cases}4 i+1, & \text { if } i \neq n, 2 n ; \\
1, & \text { if } i=n ; \\
4 n+1, & \text { if } i=2 n,\end{cases} \\
& f\left(y_{i}\right)=4 i-1 .
\end{aligned}
$$

Then for $i=1,2, \ldots, n-1, n+1, \ldots, 2 n-1$;

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(x_{i}\right), f\left(v_{i}\right)\right) & = \begin{cases}\operatorname{gcd}(4 i+1,4 i-2)=1, & \text { if } i \not \equiv 2(\bmod 3) ; \\
\operatorname{gcd}(4 i+1,4 i)=1, & \text { if } i \equiv 2(\bmod 3),\end{cases} \\
\operatorname{gcd}\left(f\left(x_{i}\right), f\left(v_{i+1}\right)\right) & = \begin{cases}\operatorname{gcd}(4 i+1,4 i+2)=1, & \text { if } i+1 \not \equiv 2(\bmod 3) ; \\
\operatorname{gcd}(4 i+1,4 i+4)=1, & \text { if } i+1 \equiv 2(\bmod 3) .\end{cases}
\end{aligned}
$$

Also, $\operatorname{gcd}\left(f\left(x_{n}\right), f\left(v_{n}\right)\right)=1=\operatorname{gcd}\left(f\left(x_{n}\right), f\left(v_{1}\right)\right)$ as $f\left(x_{n}\right)=1$ and

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(x_{2 n}\right), f\left(v_{2 n}\right)\right) & = \begin{cases}\operatorname{gcd}(4 n+1,8 n-2)=1, & \text { if } n \not \equiv 1(\bmod 3) ; \\
\operatorname{gcd}(4 n+1,8 n)=1, & \text { if } n \equiv 1(\bmod 3),\end{cases} \\
\operatorname{gcd}\left(f\left(x_{2 n}\right), f\left(v_{n+1}\right)\right) & = \begin{cases}\operatorname{gcd}(4 n+1,4 n+2)=1, & \text { if } n+1 \not \equiv 2(\bmod 3) ; \\
\operatorname{gcd}(4 n+1,4 n+4)=1, & \text { if } n+1 \equiv 2(\bmod 3) .\end{cases}
\end{aligned}
$$

Further, for $i=1,2, \ldots, 2 n ; \operatorname{gcd}\left(f\left(u_{i}\right), f\left(y_{i}\right)\right)=\operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{i}\right)\right)=1$ as they are consecutive integers. Hence f is a prime labeling on G.

Example 2.14. Prime labeling of barycentric subdivision of $\left(C_{8} \odot K_{1}\right) \cup\left(C_{8} \odot K_{1}\right)$ is shown in Figure 14.

Figure 14
Note that the restriction of the function f to the first copy of crown graph in Theorem 2.14 , gives a prime labeling of barycentric subdivision of crown graph.

3. Conclusions:

We have studied prime labeling in the context of various subdivision of cycle related graphs. There are many more graph families in which this type of investigation can be carried out.

References

[1] Ashokkumar, S. and Maragathavalli, S., (2015), Prime Labeling of Some Special Graphs, IOSR-J. of Math., 11(1) pp. 01-05.
[2] Burton, D., (1990), Elementary Number Theory, Brown Publishers, Second Edition.
[3] Fu, H. and Huang, K., (1994), On prime labelings, Discrete Math., 127 pp. 181-186.
[4] Gallian, J., (2018), A dynamic survey of graph labeling, The Electron. J. Combin., 19.
[5] Gross, J. and Yellen, J., (1999), Graph theory and its applications, CRC press.
[6] Patel, S. and Kansagara, A., (2019), Prime labeling of Union Graphs, Int. J. of Scientific Research in Mathematical and Statistical Sciences, 6(1) pp. 86-93.
[7] Patel, S. and Shrimali, N., (2015), Neighborhood-prime labeling, Int. J. Math. Soft Comput., 5 pp. 17-25.
[8] Seoud, M., Diab, A. and Elsahawi, E., (1998), On strongly-C harmonious, relatively prime, odd graceful and cordial graphs, Proc. Math. Phys. Soc. Egypt, 73 pp. 33-55.
[9] Sundaram, M., Ponraj, R. and Somasundaram, S., (2005), Prime cordial labeling of graphs, J. Indian Acad. Math., 27 pp. 373-390.
[10] Tout, A., Dabboucy, A. and Howalla, K., (1982), Prime Labeling of Graphs, Nat. Acad. Sci. Lett., 11 pp. 365-368.

A. N. Kansagara is a research scholar at the Department of Mathematics, Gujarat University, India. He has been an assistant professor in Mathematics at D.K.V. Arts and Science College-Jamnagar affiliated to Saurashtra University, India since October 2012. His area of research is Graph theory. He passed the National Eligibility Test for Lectureship and Junior Research Fellowship (NET-JRF) examination conducted by UGC-CSIR India in 2008.

Dr. S. K. Patel is a professor of mathematics at the Government Engineering College-Bhuj affiliated to the Gujarat Technological University. His current research area is Graph theory. He has solved many problems posted in American Mathematical Monthly, Mathematics Magazine and College Mathematics Journal which are published by the Mathematical Association of America and his solutions are acknowledged in these journals. Recently, he has been honored by Gujarat University Department of Mathematics Alumni Association for his achievements and contributions to the Mathematics community of Gujarat.

J. B. Vasava is a research scholar in the Department of Mathematics, Gujarat University, India. He is a lecturer in Mathematics at Dr. S. and S. S. Ghandhy College of Engineering and Technology-Surat affiliated to the Gujarat Technological University, India. His area of interest is Graph theory. He passed the National Eligibility Test for Lectureship and Junior Research Fellowship (NET-JRF) examination conducted by UGC-CSIR India in 2015.

[^0]: ${ }^{1}$ Department of Mathematics, Gujarat University, Ahmedabad-380009, India. ankur.dkv.maths@gmail.com; ORCID: https//orcid.org/0000-0003-4530-7711. jayeshvasava1910@gmail.com; ORCID: https//orcid.org/0000-0002-0361-3078.
 ${ }^{2}$ Department of Mathematics, Government Engineering College, Bhuj-370001, India. skp275@gmail.com; ORCID: https//orcid.org/0000-0003-0295-4177.
 § Manuscript received: May 15, 2019; accepted: January 23, 2020. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 2 © Işık University, Department of Mathematics, 2021; all rights reserved.

