CERTAIN SUBCLASS OF PASCU-TYPE BI-STARLIKE FUNCTIONS IN PARABOLIC DOMAIN

K. VIJAYA¹, §

ABSTRACT. Estimates on the coefficients $|a_2|$ and $|a_3|$ are obtained for normalized analytic function f in the open disk with f and its inverse $g = f^{-1}$ satisfy the condition that $\frac{zf'(z) + \lambda z^2f''(z)}{(1-\lambda)f(z) + \lambda zf'(z)}$ and $\frac{zg'(z) + \lambda z^2g''(z)}{(1-\lambda)g(z) + \lambda zg'(z)}$ $(0 \le \lambda \le 1)$ are both subordinate to an analytic function in parabolic region. Furthermore, we estimate the Fekete-Szegö functional for $f \in \mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$.

Keywords: Analytic functions, univalent functions, bi-univalent functions, bi-starlike functions, bi-convex functions, and subordination.

AMS Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

normailzed by the conditions f(0) = 0 = f'(0) - 1 defined in the open unit disk $\triangle = \{z \in \mathbb{C} : |z| < 1\}$. A function $f \in \mathcal{A}$ is said to be bi-univalent in \triangle if both f and f^{-1} are univalent in \triangle . Let Σ denote the class of bi-univalent functions defined in the unit disk \triangle . Since $f \in \Sigma$ has the Maclaurian series given by (1), a computation shows that its inverse $g = f^{-1}$ has the expansion

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots$$
 (2)

An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is an analytic function w defined on Δ with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g(w(z)). Ma and Minda [8] unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f'(z)}{f(z)}$ or $1 + \frac{z f''(z)}{f'(z)}$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function φ with positive real part in the unit disk $\Delta, \varphi(0) = 1, \varphi'(0) > 0$, and φ maps Δ onto a

¹ School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India. e-mail: kvijaya@vit.ac.in; ORCID: http://orcid.org/0000-0002-3216-7038.

[§] Manuscript received: April 10, 2109; accepted: May 5, 2020. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No.2 © Işık University, Department of Mathematics, 2021; all rights reserved.

region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of functions $f \in \mathcal{A}$ satisfying the subordination $\frac{z f'(z)}{f(z)} \prec \varphi(z)$. Similarly, the class of Ma-Minda convex functions of functions $f \in \mathcal{A}$ satisfying the subordination $1 + \frac{z f''(z)}{f'(z)} \prec \varphi(z)$. A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex. These classes are denoted respectively by $\mathcal{S}^*_{\Sigma}(\varphi)$ and $\mathcal{K}_{\Sigma}(\varphi)$. In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk \triangle , satisfying $\varphi(0) = 1, \varphi'(0) > 0$, and $\varphi(\triangle)$ is symmetric with respect to the real axis. Such a function has a series expansion of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \quad (B_1 > 0). \tag{3}$$

Ali and Singh [2] introduced a new class of parabolic starlike functions denoted by $S_p(\alpha)$ of order $\alpha(0 \le \alpha < 1)$ salifies the following:

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < (1 - 2\alpha) + \Re\left(\frac{zf'(z)}{f(z)}\right). \tag{4}$$

Equivalently,

$$f \in \mathcal{S}_p(\alpha) \Longleftrightarrow \left(\frac{zf'(z)}{f(z)}\right) \in \Omega_\alpha,$$

where Ω_{α} denotes the parabolic region in the right half-plane

$$\Omega_{\alpha} = \{ w = u + iv : v^2 < 4(1 - \alpha)(u - \alpha) \} = \{ w : |w - 1| < (1 - 2\alpha) + \Re(w) \}.$$
 (5)

Ali and Singh [2]showed that the normalized Riemann mapping function $\varphi_{\alpha}(z)$ from the open unit disk \triangle onto Ω_{α} is given by

$$\varphi_{\alpha}(z) = 1 + \frac{4(1-\alpha)}{\pi^2} \left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right]^2$$

$$= 1 + \frac{16}{\pi^2} (1-\alpha)z + \frac{32}{3\pi^2} (1-\alpha)z^2 + \frac{368}{45\pi^2} (1-\alpha)z^3 + \cdots$$

$$= 1 + \sum_{k=1}^{\infty} B_k z^k, \tag{6}$$

where

$$B_k = \frac{16(1-\alpha)}{k\pi^2} \sum_{j=0}^{k-1} \frac{1}{2j+1} \quad (k \in \mathbb{N}).$$
 (7)

Due to Ma and Minda [8], we state the following Lemma.

Lemma 1.1. If a function $f \in \mathcal{S}_p(\alpha)$, then

$$\left(\frac{zf'(z)}{f(z)}\right) \in \varphi_{\alpha}(z),$$

where φ_{α} is given by (6).

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \triangle . In fact, the Koebe one-quarter theorem [6] ensures that the image of \triangle under every univalent function $f \in \mathcal{S}$ of the form (1), contains a disk of radius $\frac{1}{4}$. Thus every univalent function $f \in \mathcal{S}$ has an inverse f^{-1} which is defined by

$$f^{-1}(f(z)) = z \quad (z \in \triangle)$$

and

$$f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); r_0(f) \ge \frac{1}{4} \right).$$

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \cdots$$
 (8)

Several authors have introduced and investigated subclasses of bi-univalent functions Σ and obtained bounds for the initial coefficients (see [4, 3, 10, 12]). Motivated by the work of Ali et al. [2, 7],in this paper, we introduce a new subclass $\mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$ of bi-univalent functions and obtain the estimates on the coefficients $|a_2|$ and $|a_3|$ by subordination. Furthermore, we estimate the Fekete-Szegő functional for $f \in \mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$.

Definition 1.1. A function $f \in \Sigma$ is said to be in the class $\mathcal{P}_{\Sigma,p}(\lambda,\varphi_{\alpha})$ if the following subordination hold:

$$\left| \frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} - 1 \right| < (1 - 2\alpha) + \Re\left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} \right) \quad (z \in \triangle)$$
 (9)

and

$$\left| \frac{wg'(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) + \lambda wg'(w)} - 1 \right| < (1 - 2\alpha) + \Re\left(\frac{wg'(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) + \lambda wg'(w)} \right) \quad (w \in \triangle).$$
 (10)

Due to Lemma 1.1 and by the above the definition we can state

$$\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} \prec \varphi_{\alpha}(z) \quad (z \in \triangle)$$
(11)

and

$$\frac{wg'(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) + \lambda wg'(w)} \prec \varphi_{\alpha}(w) \quad (w \in \triangle), \tag{12}$$

where φ_{α} is given by (6).

We note that $\mathcal{P}_{\Sigma,P}(0,\varphi_{\alpha}) = \mathcal{S}_{\Sigma,P}^*(\varphi_{\alpha})$ [5] and $\mathcal{P}_{\Sigma,P}(1,\varphi_{\alpha}) = \mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$ as illustrated below:

Example 1.1. [5] A function $f \in \Sigma$ is said to be in the class $S_{\Sigma,P}(\varphi_{\alpha})$ if the following subordination hold:

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < (1 - 2\alpha) + \Re\left(\frac{zf'(z)}{f(z)}\right) \quad (z \in \triangle)$$

and

$$\left| \frac{wg'(w)}{g(w)} - 1 \right| < (1 - 2\alpha) + \Re\left(\frac{wg'(w)}{g(w)}\right) \quad (w \in \triangle).$$

Due to Lemma1.1 and by the above the definition we can state

$$\frac{zf'(z)}{f(z)} \prec \varphi_{\alpha}(z)$$
 and $\frac{wg'(w)}{g(w)} \prec \varphi_{\alpha}(w)$

where $\varphi_{\alpha}(z)$ is given by (6) and $z, w \in \Delta$.

Example 1.2. A function $f \in \Sigma$ is said to be in the class $\mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$ if the following subordination hold:

$$\left|\frac{zf''(z)}{f'(z)}\right| < (1 - 2\alpha) + \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) \quad (z \in \triangle)$$

and

$$\left|\frac{wg''(w)}{g'(w)}\right|<(1-2\alpha)+\Re\left(1+\frac{wg''(w)}{g'(w)}\right)\quad (w\in\triangle).$$

Due to Lemma1.1 and by the above the definition we can state

$$1 + \frac{zf''(z)}{f'(z)} \prec \varphi_{\alpha}(z)$$
 and $1 + \frac{wg''(w)}{g'(w)} \prec \varphi_{\alpha}(w)$

where $\varphi_{\alpha}(z)$ is given by (6) and $z, w \in \Delta$. In order to prove our main results, we require the following Lemma due to [11].

Lemma 1.2. If $h \in \mathcal{P}$, then $|c_k| \leq 2$ for each k, where \mathcal{P} is the family of all functions h analytic in Δ for which $\Re\{h(z)\} > 0$, where $h(z) = 1 + c_1 z + c_2 z^2 + \cdots$ for $z \in \Delta$.

2. Section

Coefficient estimates for the function class $\mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$

Theorem 2.1. Let f given by (1) be in the class $\mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$. Then

$$|a_2| \le \frac{B_1 \sqrt{B_1}}{\sqrt{|(1+2\lambda-\lambda^2)B_1^2 + (1+\lambda)^2(B_1 - B_2)|}}$$
(13)

and

$$|a_3| \le B_1 \left(\frac{B_1}{(1+\lambda)^2} + \frac{1}{2(1+2\lambda)} \right).$$
 (14)

where $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ from (7).

Proof. Let $f \in \mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$ and $g = f^{-1}$. Then there are analytic functions $u, v : \triangle \longrightarrow \triangle$, with u(0) = 0 = v(0), satisfying

$$\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} = \varphi_{\alpha}(u(z))$$
(15)

and

$$\frac{wg'(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) + \lambda wg'(w)} = \varphi_{\alpha}(v(w)). \tag{16}$$

Define the functions p(z) and q(z) by

$$p(z) := \frac{1 + u(z)}{1 - u(z)} = 1 + p_1 z + p_2 z^2 + \cdots$$

and

$$q(z) := \frac{1 + v(z)}{1 - v(z)} = 1 + q_1 z + q_2 z^2 + \cdots$$

or, equivalently,

$$u(z) := \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \cdots \right]$$
 (17)

and

$$v(z) := \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[q_1 z + \left(q_2 - \frac{q_1^2}{2} \right) z^2 + \cdots \right].$$
 (18)

Then p(z) and q(z) are analytic in \triangle with p(0) = 1 = q(0). Since $u, v : \triangle \rightarrow \triangle$, the functions p(z) and q(z) have a positive real part in \triangle , and $|p_i| \leq 2$ and $|q_i| \leq 2$. Using (17) and (18) in (15) and (16) respectively, we have

$$\frac{zf'(z) + \lambda z^2 f''(z)}{(1-\lambda)f(z) + \lambda z f'(z)} = \varphi\left(\frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2}\right) z^2 + \cdots \right] \right)$$

$$\tag{19}$$

and

$$\frac{wg'(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) + \lambda wg'(w)} = \varphi\left(\frac{1}{2}\left[q_1 w + \left(q_2 - \frac{q_1^2}{2}\right)w^2 + \cdots\right]\right). \tag{20}$$

In light of (1) - (3), from (19) and (20), it is evident that

$$1 + (1 + \lambda)a_2z + \left[2(1 + 2\lambda)a_3 - (1 + \lambda)^2 a_2^2\right]z^2 + \cdots$$
$$= 1 + \frac{1}{2}B_1p_1z + \left[\frac{1}{2}B_1(p_2 - \frac{p_1^2}{2}) + \frac{1}{4}B_2p_1^2\right]z^2 + \cdots$$

and

$$1 - (1 + \lambda)a_2w - [2(1 + 2\lambda)a_3 + (\lambda^2 - 6\lambda - 3)a_2^2]w^2 + \cdots$$
$$= 1 + \frac{1}{2}B_1q_1w + [\frac{1}{2}B_1(q_2 - \frac{q_1^2}{2}) + \frac{1}{4}B_2q_1^2]w^2 + \cdots$$

which yields the following relations.

$$(1+\lambda)a_2 = \frac{1}{2}B_1p_1 \tag{21}$$

$$-(1+\lambda)^2 a_2^2 + 2(1+2\lambda)a_3 = \frac{1}{2}B_1(p_2 - \frac{p_1^2}{2}) + \frac{1}{4}B_2p_1^2$$
 (22)

$$-(1+\lambda)a_2 = \frac{1}{2}B_1q_1 (23)$$

and

$$-(\lambda^2 - 6\lambda - 3)a_2^2 - 2(1+2\lambda)a_3 = \frac{1}{2}B_1(q_2 - \frac{q_1^2}{2}) + \frac{1}{4}B_2q_1^2.$$
 (24)

From (21) and (23), it follows that

$$p_1 = -q_1 \tag{25}$$

and

$$8(1+\lambda)^2 a_2^2 = B_1^2 (p_1^2 + q_1^2). \tag{26}$$

From (22), (24) and (26), we obtain

$$a_2^2 = \frac{B_1^3(p_2 + q_2)}{4[(1 + 2\lambda - \lambda^2)B_1^2 + (1 + \lambda)^2(B_1 - B_2)]}.$$
 (27)

Applying Lemma 1.2, for the coefficients p_2 and q_2 , we immediately got the desired estimate on $|a_2|$ as asserted in (2.2).

By subtracting (24) from (22) and using (25) and (26), we get

$$a_3 = a_2^2 + \frac{B_1(p_2 - q_2)}{8(1+2\lambda)} = \frac{B_1^2(p_1^2 + q_1^2)}{8(1+\lambda)^2} + \frac{B_1(p_2 - q_2)}{8(1+2\lambda)}.$$
 (28)

Applying Lemma 1.2 once again for the coefficients p_1, p_2, q_1 and q_2 , we get the desired estimate on $|a_3|$ as asserted in (2.2)

Remark 2.1. For $\lambda = 0$ and $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ the inequality (2.2) reduces to the estimate of $|a_2|$ and $|a_3|$. [5].

By taking $\lambda = 1$ we get the following result for $f \in \mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$

Theorem 2.2. Let f given by (1) be in the class $\mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$. Then

$$|a_2| \le \frac{B_1\sqrt{B_1}}{\sqrt{2B_1^2 + |4(B_1 - B_2)|}}$$

and

$$|a_3| \le \frac{B_1^2}{4} + \frac{B_1}{6}.$$

where $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ from (7).

2.1. **Subsection.** Fekete-Szegö inequalities for the Function Class $\mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$ Making use of the values of a_2^2 and a_3 , and motivated by the recent work of Zaprawa [13], we prove the following Fekete-Szegö result for the function class $f \in \mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$.

Theorem 2.3. Let the function f(z) be in the class $\mathcal{P}_{\Sigma,P}(\lambda,\varphi_{\alpha})$ and $\mu \in \mathbb{C}$, then

$$|a_3 - \mu a_2^2| \le 2B_1 \left| \left(\Theta(\mu) + \frac{1}{8(1+2\lambda)} \right) + \left(\Theta(\mu) - \frac{1}{8(1+2\lambda)} \right) \right|,$$
 (29)

where

$$\Theta(\mu) = \frac{B_1^2(1-\mu)}{4[(1+2\lambda-\lambda^2)B_1^2+(1+\lambda)^2(B_1-B_2)]}, B_1 > 0.$$

where $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ from (7)

Proof. From (28), we have

$$a_3 = a_2^2 + \frac{B_1(p_2 - q_2)}{8(1+2\lambda)}.$$

Using (27), by simple calculation we get

$$a_3 - \mu a_2^2 = B_1 \left[\left(\Theta(\mu) + \frac{1}{8(1+2\lambda)} \right) p_2 + \left(\Theta(\mu) - \frac{1}{8(1+2\lambda)} \right) q_2 \right],$$

where $\Theta(\mu) = \frac{B_1^2(1-\mu)}{4[(1+2\lambda-\lambda^2)B_1^2+(1+\lambda)^2(B_1-B_2)]}$. Since all B_j are real and $B_1 > 0$, we have

$$|a_3 - \mu a_2^2| \le 2B_1 \left| \left(\Theta(\mu) + \frac{1}{8(1+2\lambda)} \right) + \left(\Theta(\mu) - \frac{1}{8(1+2\lambda)} \right) \right|,$$

which completes the proof.

Remark 2.2. Specializing $\lambda = 0$ we can obtain the Fekete-Szegö inequality for the function class $S_{\Sigma,P}(\varphi_{\alpha})$ as in [5].

Specializing $\lambda = 1$ we can obtain the Fekete-Szegö inequality for the function class $\mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$ as given below.

Corollary 2.1. Let the function f(z) be in the class $\mathcal{K}_{\Sigma,P}(\varphi_{\alpha})$ and $\mu \in \mathbb{C}$, then

$$|a_3 - \mu a_2^2| \le 2B_1 \left| \left(\Theta(\mu) + \frac{1}{24} \right) + \left(\Theta(\mu) - \frac{1}{24} \right) \right|,$$

where

$$\Theta(\mu) = \frac{B_1^2(1-\mu)}{4[2B_1^2 + 4(B_1 - B_2)]}, B_1 > 0.$$

where $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ from (7)

3. Conclusions

By taking $B_1 = \frac{16}{\pi^2}(1-\alpha)$ and $B_2 = \frac{32}{3\pi^2}(1-\alpha)$ and specializing the parameter $\lambda = 1$ we state the results for the class of bi convex functions in parabolic domain which has not been studied. Further by specializing $\lambda = 0$ we can obtain the results for bi-starlike functions in parabolic domain as in [5].

References

- Ali R.M. and Singh V., (1994), Coefficients of parabolic starlike functions of order α, Computational Methods and Function Theory(Penang), Ser. Approx. Decompos., Vol.5, pp.23–36. World Scientific Publishing, New Jersey(1995).
- [2] Ali R.M., Leo S.K., Ravichandran V., Supramaniam S., (2012), Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett. 25, pp344 -351.
- [3] Brannan D.A., Clunie J., (1970), W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22, pp476 - 485.
- [4] Brannan D.A., Taha T.S., (1986), On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2), pp 70 - 77.
- [5] Bulut S., (2018), Coefficient estimates for a subclass of parabolic bi-starlike functions, Afr. Mat. 29 Issue 34, pp 331–338.
- [6] Duren P.L., (1983), Univalent Functions, in: Grundlehren der Mathematischen Wissenchaften, Vol. 259, Springer, New York.
- [7] Lewin M.,(1967) On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, pp 63
- [8] Ma W.C., Minda D., (1992), A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin,, pp 157 - 169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
- [9] Netanyahu E.,(1969), The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 32 pp 100 -112.
- [10] Murugusundaramoorthy, G., Cho, N.E., (2019) On λ pseudo bi-starlike functions in parabolic domain, Nonlinear Functional Analysis and Applications, 24(1), pp. 185-194
- [11] Pommerenke Ch., (1975), Univalent functions, Vandenhoeck and Rupercht, Göttingen,.
- [12] Srivastava H.M., Mishra A.K., Gochhayat P., (2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) pp 1188 - 1192.
- [13] Zaprawa P. ,(2014), On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21(1), pp1–192.
- [14] Erdelyi, A., (1956), Asymptotic expansions, Dover publications, New York.
- [15] Anderson, J. D., Campbell, J. K., Ekelund, J. E., Ellis, J. and Jordan, J. F., (2008), Physical Review Letters, 100, 091102.
- [16] Mould, R. A., (1994), Basic Relativity, Springer-Verlag Newyork Inc.
- [17] Thompson, K. W., (1987), Time dependent boundary conditions for hyperbolic systems, J. Comp. Phys., 68, pp. 1-24.
- [18] Hixon, R. and Turkel, E., (2000), Compact implicit MacCormack-type schemes with high accuracy, J. Comp. Phys., 158, pp. 51-70.
- [19] Fan, E. and Jian, Z., (2002), Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (6), pp. 383-392.

Vijaya Kaliyappan for the photography and short autobiography, see TWMS J. App. and Eng. Math., V.11, N.2, 2021, p.469-479