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A NOVEL FINITE DIFFERENCE SCHEME FOR TIME FRACTIONAL

DIFFUSION-WAVE EQUATION WITH SINGULAR KERNEL

K. BOUGUETOF1, K. HAOUAM1, §

Abstract. In this paper, we suggest a novel numerical approximation of the Caputo-
Fabrizio fractional derivative of order α (1 < α < 2). Our novel discretization is found

by using discret fractional derivative at t = tk with new coefficients e−
(α−1)(tk−t

m+1
2

)

2−α −

e−
(α−1)(tk−t

m− 1
2

)

2−α . Also, we prove that the difference scheme is unconditionally stable.
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1. Introduction

In recent years, fractional differential equations have interested in real-life phenomena.
It describes diverse phenomena in the sciences and engineering fields. They appear nat-
urally in viscoelasticity, porous media, chemistry, electromagnetism physics[6], mechanics
and biology[3]. So more applications have been found. The solution of non -integer order
partial differential equations (PDE) has important property, it describes future and present
states. But in many cases, it is difficult to find the solution. Therefore, several researchers
have suggested numerical methods for studying PDE with fractional order: finite element
methods[5, 7], mixed finite element methods[9, 10], finite difference methods[13, 14], finite
volume methods[4]. In 2015, Caputo and Fabrizio[1] proposed a new derivative. This
derivative is a product of convolution of f ′(t) (derivative of function f(t)) and exponential

function (e
−α
1−α t) where 0 < α < 1.

The fractional diffusion -wave equation plays an important role to modeling the dif-
fusion and wave in fluid flow, oil strata..ect. In recent years, many eminent researchers
innovated some numerical methods to study this kind of equations. In 2005, Sun and
Wu[15] showed a novel finite difference discret scheme for a diffusion-wave system. They
proved the stability and L∞ convergence by using the energy method.

Our target is to extend diffusion-wave equation to the scope of fractional calculus using
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of Mathematics, 2021; all rights reserved.

681



682 TWMS J. APP. AND ENG. MATH. V.11, N.3, 2021

Caputo-Fabrizio derivative with fractional order and we give a novel discretization for this
new equation.

The paper is organized as follows. In section 2, we recall some definitions of fractional
calculus. Section 3 is concerned to study the existence and uniqueness of solution. sec-
tion 4, we give the novel finite difference discretization scheme. Section 5, we discuss the
stability of the fractional numerical scheme and we give some numerical examples.

2. Preliminary definitions

In this section, we present certain relevant definitions of fractional derivatives and anti-
derivatives. For more details, we refer to [1, 2, 11].

Definition 2.1. Let f ∈ L1(0,∞), and α ∈ (0, 1) then, the Caputo derivative is defined
as

Dα
0|tf(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−α

∂f(τ)

∂τ
dτ, (1)

where Γ is the gamma function.

The anti- derivative of Caputo derivative is given in the following definition.

Definition 2.2. Consider a function f : [0,∞) → R. The Riemann-Liouville fractional
integral is defined by

CIα0|tf(t) =
1

Γ(1− α)

∫ t

0
(t− τ)α−1f(τ)dτ, (2)

for t > 0 and 0 < α < 1.

We recall the new definition of the Caputo fractional derivative.

Definition 2.3. Let f ∈ H1(0,∞) and α ∈ (0, 1) then, the definition of the new Caputo
derivative (Caputo -Fabrizio) is given as

Dα0|tf(t) =
1

1− α

∫ t

0
e−

α(t−τ)
1−α

∂f(τ)

∂τ
dτ. (3)

The anti- derivative of the Caputo- Fabrizio derivative is recalled as

Definition 2.4. Let 0 < α < 1. The fractional integral of a function f is given as

CF Iα0|tf(t) = (1− α)f(t) + α

∫ t

0
f(τ)dτ. (4)

Lemma 2.1 ([1]). Let 0 < α < 1, then

(1) CF Iα0|tD
α
0|tf(t) = f(t)− f(0),

(2) Dα0|tD
nf(t) = Dα+n0|t f(t).

3. Diffusion wave equation with Caputo-Fabrizio fractional derivative

In this section, we apply Picard-Lindelof method to prove the existence and the unique-
ness of the solution.

We consider the following time-fractional diffusion-wave equation

Dα0|tu(x, t) =
∂2u(x, t)

∂x2
+ q(x, t). (5)



K. BOUGUETOF, K. HAOUAM: A NOVEL FINITE DIFFERENCE SCHEME... 683

Over region Ω = [0, L]× [0, T ], 1 < α < 2 with the initial conditions

u(x, 0) = f(x), Dtu(x, t)

∣∣∣∣
t=0

= 0, (6)

and homogeneous boundary conditions

u(0, t) = u(L, t) = 0. (7)

Obviously, the Caputo-Fabrizio operator Dα0|t is the composition of Dα−10|t and Dt, i.e.

Dα0|tu(x, t) = Dα−10|t Dtu(x, t).

Setting v = Dtu, we have the following formulation{
Dα−10|t v(x, t) = ∂2u(x,t)

∂x2
+ q(x, t),

v(x, t) = Dtu(x, t), v(x, 0) = 0.
(8)

By applying the anti- derivative operator CF Iα0|t on the both side of Eq.(8), we get

v(x, t) = (2− α)×
{
∂2u(x, t)

∂x2
+ q(x, t)

}
+ (α− 1)×

∫ t

0

{
∂2u(x, y)

∂x2
+ q(x, y)

}
dy. (9)

For simplicity, let us put

u(x, t) = F (t).

Then, equation (9) can be re-write as

v(x, t) = (2− α)×
{
∂2F (t)

∂x2
+ q(x, t)

}
+ (α− 1)×

∫ t

0

{
∂2F (y)

∂x2
+ q(x, y)

}
dy. (10)

For more simplicity, we defined the operator H as following

H(F, t) =
∂2F (t)

∂x2
+ q(x, t).

Let

C[c, v] = [t0 − c, t0 + c]× [F0 − v, F0 + v], L = sup ‖H(F, t)‖C[c,v]

‖F (t)‖∞ = sup
t∈[t0−c,t0+c]

|F (t)|. (11)

We define the Picard’s operator P : C[c, v]→ C[c, v] as

P (DtF, t) = (2− α)H(F, t) + (α− 1)

∫ t

0
H(F, y)dy.

First, we prove P is well posed. By using (11) we have

‖P (DtF (t))‖ 6 (2− α)‖H(F, t)‖+ (α− 1)

∫ t

0
‖H(F, y)‖dy

6 (2− α)L+ (α− 1)cL.

We choose c small enough such that

(2− α)L+ (α− 1)cL 6 L.
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Second, we show that P is a contraction map. For DtF,DtG ∈ C[c, v], we have∥∥P (DtF (t))− P (DtG(t))
∥∥ =

∥∥∥∥(2− α){H(F, t)−H(G, t)}+ (α− 1)

∫ t

0
{H(F, y)−H(G, y)}dy

∥∥∥∥
6 (2− α)

∥∥∥∥H(F, t)−H(G, t)‖+ (α− 1)

∫ t

0
‖H(F, y)−H(G, y)

∥∥∥∥dy
6M

{
(2− α) + (α− 1)c

}
‖F −G‖.

Due to the following inequality

‖H(F, t)−H(G, t)‖ 6M‖F −G‖.
We choose c such that

M
{

(2− α) + (α− 1)c
}
< 1.

Therefore, P is a strict contraction on C[c, v].According to the Banach fixed point theorem,
then problem (5)− (7) admits a unique solution.

0 0.2 0.4 0.6 0.8 1
−5

0

5
x 10

79

x

u(
x,

t)

Numerical simulation for alpha=1.5

 

 

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10

178

x

u(
x,

t)

Numerical simulation for α=1.2

 

 

4. A novel finite difference scheme

In this section, we investigate the approximate numerical solution of problem (5),
using implicit finite differences. To achieve this aim, we need to numerically approximate
to the Caputo-Fabrizio derivative.

For some positive integers N,M , the gird sizes in time for finite difference technique
is defined by K = 1

M , the grid points in the time interval [0, T ] are labeled tj = jK, j =
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0...TM , while the grid points in the space interval [0, L] are numbers xi = ih where h = 1
N

it is grid sizes in the space. Denotes uji the approximate value of u(xi, tj) and f i is the
value of f(xi). Define

δxui− 1
2

=
ui − ui−1

h
, δ2xui =

δxui+ 1
2
− δxui− 1

2

h
and δtu

n =
un − un−1

K
.

The standard central difference scheme

v
k+ 1

2
i =

uk+1
i − uki
K

+O(K2). (12)

The approximate numerical of Caputo-Fabrizio derivative Dα−10|t v(x, t) obtained by the

following formula

Dα−10|t v(xi, tk) =
1

2− α

∫ tk

0
e−

(α−1)(tk−τ)
2−α

∂v(xi, τ)

∂τ
dτ

=
1

2− α

[ ∫ tk

t
k− 1

2

e−
(α−1)(tk−τ)

2−α
∂v(xi, τ)

∂τ
dτ +

∫ t
k− 1

2

t 1
2

e−
(α−1)(tk−τ)

2−α
∂v(xi, τ)

∂τ
dτ

+

∫ t 1
2

0
e−

(α−1)(tk−τ)
2−α

∂v(xi, τ)

∂τ
dτ

]
=

1

2− α

[ ∫ tk

t
k− 1

2

e−
(α−1)(tk−τ)

2−α
∂v(xi, τ)

∂τ
dτ +

k−1∑
m=0

∫ t
m+1

2

t
m− 1

2

e−
(α−1)(tk−τ)

2−α
∂v(xi, τ)

∂τ
dτ

−
∫ 0

t−1
2

e−
(α−1)(tk−τ)

2−α
∂v(xi, τ)

∂τ
dτ

]

=
1

2− α

[ ∫ tk

t
k− 1

2

e−
(α−1)(tk−τ)

2−α

[
v
k− 1

2
i − vk−

3
2

K
+O(K)

]
dτ

−
∫ 0

t−1
2

e−
(α−1)(tk−τ)

2−α

[
v0i − v

− 1
2

i

K
+O(K)

]
dτ

]

+
1

2− α

k−1∑
m=0

∫ t
m+1

2

t
m− 1

2

e−
(α−1)(tk−τ)

2−α

[
v
m+ 1

2
i − vm−

1
2

i

K
+

(
∂v(xi, τ)

∂τ
−
v
m+ 1

2
i − vm−

1
2

i

K

)
dτ

]
.

(13)

Denote that u−1i = u0i −Kv0i for i > 0. Then

v
−1
2
i =

u0i − u
−1
i

K
+O(K2) = v0i +O(K2). (14)
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Substituting (12) and (14) into (13), we get

Dα0|tu(xi, tk) =
1

2− α

[
uki − 2uk−1i + uk−2i

K2

] ∫ tk

t
k− 1

2

e−
(α−1)(tk−τ)

2−α dτ − 1

2− α

∫ 0

t−1
2

e−
(α−1)(tk−τ)

2−α O(K)dτ

+
1

2− α

k−1∑
m=0

(
um+1
i − 2umi + um−1

K2

)∫ t
m+1

2

t
m− 1

2

e−
(α−1)(tk−τ)

2−α dτ

+
1

2− α

k−1∑
m=0

∫ t
m+1

2

t
m− 1

2

e−
(α−1)(tk−τ)

2−α

(
∂v(xi, τ)

∂τ
−
v
m+ 1

2
i − vm−

1
2

i

K

)
dτ. (15)

Setting

ςK =
1

(α− 1)K2
, wk,α =

(
1− e−

(α−1)(tk−tk− 1
2
)

2−α

)
, dm,α =

(
e−

(α−1)(tk−tm+1
2
)

2−α − e−
(α−1)(tk−tm− 1

2
)

2−α

)
,

R =
1

2− α

k−1∑
m=0

∫ t
m+1

2

t
m− 1

2

e−
(α−1)(tk−τ)

2−α

(
∂v(xi, τ)

∂τ
−
v
m+ 1

2
i − vm−

1
2

i

K

)
dτ.

Therefore

Dα0|tu(xi, tk) = ςK

(
uki − 2uk−1i + uk−2i

)
wk,α + ςK

k−1∑
m=0

(
um+1
i − 2umi + um−1

)
dm,α

+O(K3−α) +R. (16)

Also, the second partial derivative with respect to x at the grid point (i, k) given as

∂2u(xi, tk)

∂t2
=
uki+1 − 2uki + uki−1

h2
+O(h2). (17)

Using (16) and (17) to discretize problem (5) at point (xi, tk) as

ςK

(
uki − 2uk−1i + uk−2i

)
wk,α + ςK

k−1∑
m=0

(
um+1
i − 2umi + um−1i

)
dm,α +R

=
uki+1 − 2uki + uki−1

h2
+ qki +O(K3−α + h2). (18)

The first initial condition, can be written as

u(xi, 0) = f(xi) = fi i = 0...N. (19)

Approximating the second initial condition, we obtain

Dtu(xi, tk)

∣∣∣∣
t0=0

'
u0i − u

−1
i

K
= 0, i = 0...N. (20)

Similarly method used in [8]. We denote |R| = O(K3−α).

5. Stability analysis

In this section, we etablish the stability of the numerical method by using Fourier
method.
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Let βik = uik − U ik where U ik is the approximate of uik. Assume that the βik is written
as follows

βik = ξke
qiwh, (21)

where ξk = |βik|, w real number and q =
√
−1. We will prove the following result.

Theorem 5.1. Let 1 < α < 2, the numerical method described in (18) to address the
solvability of problem (5)− (6), is unconditionally stable.

Proof. Substituting (21) into (18), we obtain

wk,α(ξk − 2ξk−1 + ξk−2) +

k−1∑
m=0

(ξm+1 − 2ξm + ξm−1)dm,α =
−4

h2ςK
ξk sin2

(
wh

2

)
.

By a simple calculation, we get

ξk

[
4

h2ςK
sin2

(
wh

2

)
+ (wk,α + dk−1,α)

]
= (ξk−2 − 2ξk−1)(wk,α + dk−1,α) +

k−2∑
m=0

(ξm+1 − 2ξm + ξm−1)dm,α. (22)

Then

ξk =
(−ξk−2 + 2ξk−1)(wk,α + dk−1,α) +

∑k−2
m=0(−ξm+1 + 2ξm − ξm−1)dm,α

4
h2ςK

sin2

(
wh
2

)
+ (wk,α + dk−1,α)

.

For k = 1, then(
w1,α + d0,α

)
ξ1 < ξ1

(
w1,α + d0,α +

4

h2ςK
sin2

(
wh

2

))
= ξ0

(
w1,α + d0,α

)
.

For k = 2, we get

(w2,α + d1,α)ξ2 < ξ0(w2,α + d1,α).

Repeating the process until N we obtain

ξN < ξ0. (23)

Note that

|βik| = ξk < ξ0 = |fi|.

Consequently, ‖β‖L2 ≤ ‖f‖L2 .
�

6. Conclusion

In this work, we consider a novel finite difference discretization scheme to solve
numerically the diffusion-wave equation involving a Caputo- Fabrizio fractional derivative
supplemented with initial and boundary conditions. Also, we prove this new scheme is
unconditionally stable in L2.
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