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ON OSCILLATORY SECOND ORDER NONLINEAR IMPULSIVE

DELAY DYNAMIC EQUATIONS ON TIME SCALES

G. N. CHHATRIA1, §

Abstract. In this study, we have found some sufficient conditions for the oscillation of a
class of second order impulsive delay dynamic equations on time scale by using impulsive
inequality and Riccati transformation technique. Some examples are given to illustrate
our main results.
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1. Introduction

Many evolution processes in nature are characterized by the fact that at certain mo-
ments of time called impulse, they experience an abrupt change of state. Impulsive differ-
ential/difference equations has many applications in real life situations. These equations
arises in population dynamics, vibrating masses attached to an elastic bar, networks con-
taining lossless transmission lines etc. ([12], [15]). In the last few decade, the oscillation
theory for impulsive difference/differential equations has been extensively developed (see
for e.g. [6], [14], [12]). In the literature, most of the results obtained for difference equa-
tions is the discrete analogues of differential equations and vice versa. Hence it was an
immediate question to find a way for which one can unify the qualitative properties of
both equations. In 1988 Stefen Hilger introduced the concept of time scales calculus,
which unify the continuous and discrete calculus in his Ph.D. thesis [8].

In [11], Huang has considered the second order impulsive dynamic equation of the form
[r(t)(u∆(t))γ ]∆ + f(t, uσ(t)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= τk, t ≥ t0,
u(τ+

k ) = Ik(u(τk)), u
∆(τ+

k ) = Jk(u
∆(τk)), k ∈ N,

u(t+0 ) = u0, u
∆(t+0 ) = u∆

0

and improve the results of [9] and [10].
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In [5], Chhatria has studied the oscillation properties of the solution of second order
impulsive delay dynamic equations of the form

[r(t)(u∆(t))γ ]∆ + p(t)x(σ(t)− δ)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= τk, t ≥ t0,
u(τ+

k ) = Ik(u(τk)), u
∆(τ+

k ) = Jk(u
∆(τk)), k ∈ N,

u(t+0 ) = u0, u
∆(t+0 ) = u∆

0

and improve the results of [11].
To the best of our knowledge, there is no work on the oscillation of impulsive nonlinear

delay dynamic equations on time scales. Following this trends, we consider a class of
second order impulsive nonlinear dynamic equations of the form:

(E)


[r(t)(x∆(t))γ ]∆ + q(t)f(x(t− δ)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= θk, t ≥ t0, (1)

x(θ+
k ) = gk(x(θk)), x

∆(θ+
k ) = hk(x

∆(θk)), k ∈ N, (2)

x(t) = φ(t), t0 − δ ≤ t ≤ t0 (3)

where γ ≥ 1 is the quotient of odd positive integers, T is an unbouned above time scale
with 0 ∈ T and θk ∈ T are the fixed moment of impulsive effect satisfying the properties
0 ≤ t0 < θ1 < θ2 < · · · < θk, limk→∞ θk =∞.

x(θ+
k ) = lim

h→0+
x(θk + h), x∆(θ+

k ) = lim
h→0+

x∆(θk + h),

which represent the right limit of x(t) at t = θk in the sense of time scale, if θk is right
scattered, then x(θ+

k ) = x(θk), x
∆(θ+

k ) = x∆(θk). Similarly, we can define x(θ−k ), x∆(θ−k );
Through out this paper, we suppose that the following conditions hold:

(H1) r(t) > 0, δ ∈ R+, t− δ ∈ T;
(H2) q(t) ∈ Crd(T, [t0,∞)T) and f(u) ∈ C(R+,R), f(u) is nondeceasing, uf(u) > 0 for

u 6= 0;
(H3) gk, hk : R → R are continuous function and there exist positive numbers ak, a

∗
k,

bk, b
∗
k such that a∗k ≤

gk(u)
u ≤ ak, b∗k ≤

hk(u)
u ≤ bk, u 6= 0, k ∈ N;

In this work, our objective is to extend the work of [11] and [5] to the second order
nonlinear impulsive delay dynamic equations (1)-(3). About the time scale concept and
fundamentals of time scale calculus we refer the monographs [3] and [4] and the references
cited there in.
ACi={x : JT → R is i-times ∆-differentiable, whose i th delta derivative x∆(i)

is
absolutely continuous}.
PC={x : JT → R is rd-continuous at the points θk, k ∈ N for which x(θ−k ), x(θ+

k ), x∆(θ−k )

and x∆(θ+
k ) exist with x(θ−k )=x(θk), x

∆(θ−k )=x∆(θk)}.

Definition 1.1. A solution of x(t) of (E) is said to be regular if it is defined on some
half line [θx,∞)T ⊂ [t0,∞)T and sup{|x(t)| : t ≥ tx} > 0. A regular solution x(t) of
(E) is said to be eventually positive (eventually negative), if there exists t1 > 0 such that
x(t) > 0 (x(t) < 0), for t ≥ t1.

Definition 1.2. A function x(t) ∈ PC ∩ AC2(JT \ {θ1, θ2, · · · },R) is called a solution of
(E) if: (i) it satisfies (1) a.e on JT \ {θk}, k ∈ N (ii) for t = θk, k ∈ N, x(t) satisfies (2)
(iii) and satisfies the initial condition (3).

Definition 1.3. A nontrivial solution x(t) of (E) is said to be nonoscillatory, if there
exists a point t0 ≥ 0 such that x(t) has a constant sign for t ≥ t0. Otherwise, the solution
x(t) is said to be oscillatory.
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2. Preliminary Results

We need the time scale version of the following well known results for our use in the
sequel.

Lemma 2.1. [1] Let y, f ∈ Crd and p ∈ R. Then

y∆(t) ≤ p(t)y(t) + f(t),

implies that for all t ∈ T

y(t) ≤ y(t0)ep(t, t0) +

∫ t

t0

ep(t, σ(s))f(s)∆s.

Lemma 2.2. [10] Assume that m ∈ PC ∩AC1(JT \ {θk},R) satisfies

m∆(t) ≤ p(t)m(t) + v(t), t ∈ JT = [0,∞) ∩ T, t 6= θk

m(θ+
k ) ≤ dkm(θk) + ek.

for k ∈ N and t ≥ t0. Then the following inequality holds

m(t) ≤ m(t0)
∏

t0<θk<t

dkep(t0, t) +

∫ t

t0

∏
s<θk<t

dkep(t, σ(s))v(s)∆s

+
∑

t0<θk<t

( ∏
θk<θj<t

djep(t, θk)
)
ek, t ≥ t0.

Lemma 2.3. Let x(t) be a solution of (E). Assume that there exists T ≥ t0 such that
x(t) > 0(< 0) for t ≥ T and

(H4)
∫∞
T

1

r
1
γ (s)

∏
T<θk<s

b∗k
ak

∆s =∞

hold. Then x∆(θ+
k ) ≥ 0(≤ 0) and x∆(t) ≥ 0(≤ 0) for t ∈ (θk, θk+1]T and θk ≥ T .

Proof. The proof of the lemma is same as that in [Lemma 2.3, [5]]. �

3. Main Results

Theorem 3.1. Let all conditions of Lemma 2.3 hold. Furthermore, assume that

(H5) there exists λ > 0 such that |f(u)| ≥ λ|uγ |;
(H6) there exists a function β(t) ∈ Crd([0,∞)T, [0,∞)T) such that∫ t

t0

∏
t0<θk<s

1

bγk

λq(s)β(s)− (β∆(s))2r(s− δ)

4γ
(
s−δ

2

)γ−1
β(s)

∆s =∞.

Then every solution of (E) oscillates..

Proof. Let x(t) be a nonoscillatory solution of (E). Without loss of generality, assume
that x(t) > 0, x(t − δ) > 0 for t ≥ t1. Due to Lemma 2.3, there exists t2 > t1 such that
x∆(t) > 0 for t ∈ (θk, θk+1]T, k ∈ N and θk ≥ t2. Using (H5) in (E), we get{

[r(t)(x∆(t))γ ]∆ + λq(t)xγ(t− δ) ≤ 0, t 6= θk, t ≥ t2,
x(θ+

k ) = gk(x(θk)), x
∆(θ+

k ) = hk(x
∆(θk)), k ∈ N.

Let

w(t) = β(t)
r(t)(x∆(t))γ

xγ(t− δ)
. (4)
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Then w(θ+
k ) ≥ 0 and w(t) ≥ 0 for θk ≥ t3. From (4), for t 6= θk we have

w∆(t) = [r(t)(x∆(t))γ ]∆
β(t)

xγ(t− δ)
+ r(σ(t))(x∆(σ(t)))γ

[β∆(t)xγ(t− δ)− β(t)(xγ(t− δ))∆

xγ(t− δ)xγ(σ(t)− δ)

]
≤ −λq(t)β(t) +

β∆(t)r(σ(t))(x∆(σ(t)))γ

xγ(σ(t)− δ)
− β(t)r(σ(t))(x∆(σ(t)))γ(xγ(t− δ))∆

xγ(t− δ)xγ(σ(t)− δ)

= −λq(t)β(t) +
β∆(t)

β(σ(t))
w(σ(t))− β(t)r(σ(t))(x∆(σ(t)))γ(xγ(t− δ))∆

xγ(t− δ)xγ(σ(t)− δ)
.

Therefore,

w∆(t) ≤ −λq(t)β(t) +
β∆(t)

β(σ(t))
w(σ(t))− β(t)r(σ(t))(x∆(σ(t)))γ(xγ(t− δ))∆

xγ(t− δ)xγ(σ(t)− δ)
. (5)

Since

(xγ(t))∆ =
xγ(σ(t))− xγ(t)

µ(t)

and using the inequality [7]

xl − yl ≥ lyl−1(x− y)l for all x, y ≥ 0, l ≥ 1,

we have

(xγ(t− δ))∆ =
xγ(σ(t)− δ)− xγ(t− δ)

µ(t− δ)

≥ γxγ−1(t− δ)
µ(t− δ)

(x(σ(t)− δ)− x(t− δ))

and hence

(xγ(t− δ))∆ ≥ γxγ−1(t− δ)x∆(t− δ). (6)

Using (6) in (5), we get

w∆(t) ≤ −λq(t)β(t) +
β∆(t)

β(σ(t))
w(σ(t))− β(t)r(σ(t))(x∆(σ(t)))γγxγ−1(t− δ)x∆(t− δ)

xγ(t− δ)xγ(σ(t)− δ)
.

(7)

Clearly, (r(t)(x∆(t))γ)∆ ≤ 0, r(t) ≥ 0 and x∆(t) ≥ 0 for all t ≥ t2. Therefore, for t3 ≥ 2t2

x(t) =x(t2) +

∫ t

t2

x∆(s)∆s ≥
∫ t

t2

x∆(s)∆s

≥ x∆(t)

∫ t

t2

∆s = x∆(t)(t− t2),

that is,

x(t− δ) ≥
( t− δ

2

)
x∆(t− δ) for all t ≥ t4 > t3,

that is,

γxγ−1(t− δ) ≥ γ
( t− δ

2

)γ−1
(x∆(t− δ))γ−1,

that is,

γxγ−1(t− δ)x∆(t− δ) ≥ γ
( t− δ

2

)γ−1
(x∆(t− δ))γ , (8)



G. N. CHHATRIA: IMPULSIVE DELAY DYNAMIC EQUATIONS 693

Also, (r(t)(x∆(t))γ)∆ < 0 implies that r(t)(x∆(t))γ ≥ r(σ(t))(x∆(σ(t)))γ and hence

(x∆(t− δ))γ ≥ r(σ(t)− δ)
r(t− δ)

(x∆(σ(t)− δ))γ (9)

Using (8) and (9) in (7), we get

w∆(t) ≤ −λq(t)β(t) +
β∆(t)

β(σ(t))
w(σ(t))−

γ
(
t−δ

2

)γ−1
β(t)(w(σ(t))2

β2(σ(t))r(t− δ)
.

Using the fact that y −my2 ≤ 1
4m the preceding inequality reduces to

w∆(t) ≤ −λq(t)β(t) +
β∆(t)

β(σ(t))
w(σ(t)) +

β∆(t)

β(σ(t))

[
w(σ(t))−

γ
(
t−δ

2

)γ−1
β(t)(w(σ(t))2

β∆(t)β(σ(t))r(t− δ)

]
≤ −λq(t)β(t) +

(β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

,

that is,

w∆(t) ≤ −

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

 , t 6= θk. (10)

For t = θk,

w(θ+
k ) =

r(θ+
k )(x∆(θ+

k ))γ

xγ(θ+
k − δ)

≤
bγkr(θk)(x

∆(θk))
γ

xγ(θk − δ)
= bγkw(θk).

Therefore, we have

w∆(t) ≤ −λq(t)β(t) +
(β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

, t 6= θk

w(θ+
k ) ≤ bγkw(θk), k ∈ N

and by Lemma 2.2, we get

w(t) ≤ w(t4)
∏

t4<θk<t

bγk −
∫ t

t4

∏
s<θk<t

bγk

λq(s)β(s)− (β∆(s))2r(s− δ)

4γ
(
s−δ

2

)γ−1
β(s)

∆s

≤
∏

t4<θk<t

bγk

w(t4)− λ
∫ t

t4

∏
t4<θk<s

1

bγk

λq(s)β(s)− (β∆(s))2r(s− δ)

4γ
(
s−δ

2

)γ−1
β(s)


∆s

→ −∞ as t→∞

due to (H7), a contradiction to w(t) > 0 for t ∈ (θk, θk+1]T, k ∈ N. This completes the
proof of the theorem. �

Theorem 3.2. Let all conditions of Lemma 2.3 hold. Assume that there exists a positive
integer k0 such that a∗k ≥ 1, bk ≤ 1 for k ≥ k0, θk+1 − θk > δ. Furthermore, assume that

(H7)
∫ ±∞
±c

du
f(u) <∞, c > 0

and
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(H8)
∑∞

k=0

∫ θk+1

θk
1

r
1
γ (s−δ)

( ∫∞
T

∏
T<θk<v

1
bγk
q(v)∆v

)
∆s =∞

hold. Then every solution of (E) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (E). By Lemma 2.3, we have x∆(t) > 0
and x∆(θ+

k ) > 0 for t ∈ (θk, θk+1]T, k ∈ N, t ≥ t2. Due to a∗k ≥ 1, k ∈ N, we get

x(θk) ≤ x(θ+
k )

and thus x(t) is nondecreasing for t ∈ (θk, θk+1]T, k ∈ N. Especially,

x(t+2 ) ≤ x(θ1) ≤ x(θ+
1 ) ≤ x(θ2) < · · · (11)

and hence x(t) is nondecreasing for t ∈ [t2,∞)T. From (E), we get{
[r(t)(x∆(t))γ ]∆ = −q(t)f(x(t− δ)), t 6= θk, t ≥ t2
x∆(θ+

k ) ≤ bkx∆(θk), k ∈ N.

let m(t) = r(t)(x∆(t))γ , then{
m∆(t) = −q(t)f(x(t− δ)), t 6= θk, t ≥ t2
m∆(θ+

k ) ≤ bγkm(θk), k ∈ N.

Due to Lemma 2.2, we get

m∆(t) ≤ m∆(s)
∏

s<θk<t

bγk −
∫ t

s

∏
u<θk<t

bγkq(u)f(x(u− δ))∆u, s ≥ t2,

that is,

r(t)(x∆(t))γ ≤ r(s)(x∆(s))γ
∏

s<θk<t

bγk −
∫ t

s

∏
u<θk<t

bγkq(u)f(x(u− δ))∆u, s ≥ t2 (12)

implies that

x∆(s) ≥ 1

r
1
γ (s)

∫ t

s

∏
s<θk<u

1

bγk
q(u)f(x(u− δ))∆u

 1
γ

.

Consequently,

x∆(s)

f
1
γ (x(s− δ))

≥ 1

r
1
γ (s)

∫ t

s

∏
s<θk<u

1

bγk
q(u)∆u

 1
γ

.

We may note that, (12) implies that r(t)(x∆(t))γ ≤ r(s)(x∆(s))γ
∏
s<θk<t

bk, s ≥ t2.
Ultimately,

r(s)(x∆(s))γ ≤ r(s− δ)(x∆(s− δ))γ
∏

s−σ<θk<t
bk, s ≥ t2 + δ. (13)

Let s ∈ (θk, θk+1]T. Using the fact that θk+1 − θk > δ, bk ≤ 1 and due to (13), we get∫ θk+1

θk

r
1
γ (s)x∆(s)

r
1
γ (s− δ)f

1
γ (x(s− δ))

∆s ≤
∫ θk+1

θk

∏
s−σ<θk<s

bk
x∆(s− δ)

f
1
γ (x(s− δ))

∆s

≤
∫ θk+1

θk

x∆(s− δ)

f
1
γ (x(s− δ))

∆s =

∫ x(θk+1−δ)

x(θk−δ)

∆v

f
1
γ (v)

,
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that is, ∫ θk+1

θk

1

r
1
γ (s− δ)

(∫ t

s

∏
s<θk<u

1

bγk
q(u)∆u

)
∆s ≤

∫ x(θk+1−δ)

x(θk−δ)

∆v

f
1
γ (v)

.

Since (11) holds, the above inequality becomes
∞∑
k=1

∫ θk+1

θk

1

r
1
γ (s− δ)

(∫ t

s

∏
s<θk<u

1

bγk
q(u)∆u

)
∆s ≤

∫ ∞
x(θ1−δ)

∆v

f
1
γ (v)

<∞

due to (H7), a contradiction to (H8). This completes the proof of the theorem. �

Theorem 3.3. Let all conditions of Lemma 2.3 hold. Assume that there exists a positive
integer k0 such that bk ≤ 1 for k ≥ k0. Furthermore, assume that (H7), f(ab) ≥ f(a)f(b)
for any ab > 0, θk+1 − θk = δ and

(H9)
∑∞

k=0

∫ θk+1

θk
1

r
1
γ (s−δ)

( ∫∞
T

∏
T<θk<v

1
dk
q(v)∆v

)
∆s =∞,

where

dk =

{
bγ1 , if k = 1,

bγk
f(a∗k−1) , if k = 2, 3, · · ·

hold. Then every solution of (E) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (E). By Lemma2.3, we get x∆(t) > 0 and
x∆(θ+

k ) > 0 for t ∈ (θk, θk+1]T, k ∈ N, t ≥ t2. Indeed, x∆(t − δ) > 0 for t ≥ t3 ≥ t2 + δ.
Let

w(t) =
r(t)(x∆(t))γ

f(x(t− δ))
.

Then w(θ+
k ) ≥ 0 and w(t) ≥ 0 for θk ≥ t3. From (4), for t 6= θk we have

w∆(t) =
[r(t)(x∆(t))γ ]∆f(x(t− δ))− r(σ(t))(x∆(σ(t)))γf∆(x(t− δ))

f(x(t− δ))f(x(σ(t)− δ))

≤ [r(t)(x∆(t))γ ]∆

f(x(t− δ))
− r(σ(t))(x∆(σ(t)))γf∆(x(t− δ))

f(x(t− δ))f(x(t− δ))
≤ −q(t),

where we have used the fact that x∆(t) > 0, σ(t) ≥ t and f(t) is nonincreasing. Now for
t = θk , if k = 1

w(θ+
1 ) =

r(θ+
1 )(x∆(θ+

1 ))γ

f(x(θ+
1 − δ))

≤ bγ1r(θ1)(x∆(θ1))γ

f(x(θ1 − δ))
= d1w(θ1).

If k = 2, 3, · · · .

w(θ+
k ) =

r(θ+
k )(x∆(θ+

k ))γ

f(x(θ+
k − δ))

≤
bγkr(θk)(x

∆(θk))
γ

f(x(θ+
k−1 − δ))

≤
bγkr(θk)(x

∆(θk))
γ

f(a∗k−1x(θk−1 − δ))

≤
bγkr(θk)(x

∆(θk))
γ

f(a∗k−1)f(x(θk−1 − δ))
≤

bγkr(θk)(x
∆(θk))

γ

f(a∗k−1)f(x(θk − δ))
= dkw(θk).

Consider the impulsive dynamic inequality

w∆(t) ≤ −q(t), t 6= θk, t ≥ t3
w∆(θ+

k ) ≤ dkw(θk), k ∈ N.
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By Lemma 2.2, we get

w(t) ≤ w(s)
∏

s<θk<t

dk −
∫ t

s

∏
u<θk<t

dkq(u)∆u, s ≥ t3.

The rest of the proof follows from the proof of the Theorem 3.2 and hence the details are
omitted. �

Theorem 3.4. Let all the conditions of Lemma 2.3 and bk ≥ 1 hold. Assume that

(H10) lim sup
k→∞

1

tm

∫ θk+1

t0

(t− s)m

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

∆s =∞ for some m > 1,

then every solution of (E) oscillates.

Proof. Proceeding as in the proof of Theorem 3.1, we get

w∆(t) ≤ −

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

 , for t 6= θk.

Multiplying (t− s)m (t > s) to the preceding inequality and integrating from θk to θk+1,
we get

∫ θk+1

θk

(t− s)mw∆(s)ds ≤ −
∫ θk+1

θk

(t− s)m

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

∆s.

Indeed, ∫ θk+1

θk

(t− s)mw∆(s)∆s

= (t− s)mu(s)|θk+1

θk
−
∫ θk+1

θk

((t− s)m)∆sw(s)∆s

=

∫ θk+1

θk

m(t− s)m−1w(s)∆s+ (t− θk+1)mw(θk+1)− (t− θk)mw(θ+
k ),

because ((t− s)m)∆s = −m(t− s)m−1. As a result,∫ θk+1

θk

(t− s)mw∆(s)∆s ≥ −(t− θk)mw(θ+
k ).

Therefore,

∫ θk+1

θk

(t− s)m

Lq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

∆s ≤ −
∫ θk+1

θk

(t− s)mw∆(s)∆s

≤ (t− θk)mw(θ+
k )

≤ bk(t− θk)mw(θk)
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that is,

1

tm

∫ θk+1

θk

(t− s)m

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

∆s ≤ bk
(
t− θk
t

)m
w(θk).

and hence

lim sup
k→∞

1

tm

∫ θk+1

θk

(t− s)m

λq(t)β(t)− (β∆(t))2r(t− δ)

4γ
(
t−δ

2

)γ−1
β(t)

∆s <∞,

a contradiction to (H10). This completes the proof of the theorem. �

4. Discussion and Examples

Example 4.1. Consider{
x∆∆(t) + λ

(t+2)2
x(t− 2) = 0, t > 2, t 6= θk,

x(θ+
k ) = k+1

k x(θk), x∆(θ+
k ) = x∆(θk), k ∈ N,

(14)

where γ = 1, r(t) = 1, δ = 2, q(t) = 1
(2+t)2

≥ 0, a∗k = ak = k+1
k , b∗k = bk = 1, θk = 3k,

θk+1 − θk = 3 > 2, k ∈ N, f(u) = λu, λ > 0. Let’s choose β(t) = t+ 2. Then, from (H4)∫ ∞
T

∏
T<θk<s

b∗k
ak

∆s

=

∫ ∞
2

∏
2<θk<s

k

k + 1
ds

=

∫ θ1

2

∏
2<θk<s

k

k + 1
∆s+

∫ θ2

θ+1

∏
2<θk<s

k

k + 1
∆s+

∫ θ3

θ+2

∏
2<θk<s

k

k + 1
∆s+ · · ·

=
1

2
(θ1 − 2) +

1

2
× 2

3
(θ2 − θ1) +

1

2
× 2

3
× 3

4
(θ3 − θ2) + · · ·

=
1

2
× 2 +

1

3
× 3 +

1

4
× 3 +

1

5
× 3 + · · ·

≥ 1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑
i=2

1

i
=∞

and from (H6)∫ ∞
2

∏
2<θk<s

1

bγk

[ λ

(s+ 2)
− 1

4(s+ 2)

]
∆s

=
[ ∫ θ1

2

∏
2<θk<s

+

∫ θ2

θ+1

∏
2<θk<s

+ · · ·+
∫ ∞
θ+k−1

∏
2<θk<s

]( λ

(s+ 2)
− 1

4(s+ 2)

)
∆s

→∞ if λ >
1

4
.

Therefore, all conditions of Theorem 3.1 are satisfied and hence (14) has a oscillatory
solution.
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Example 4.2. Consider
[ 1
t+1x

∆(t)]∆ + (1 + 1
t )x

3(t− 1) = 0, t > 1, t 6= θk,

x(θ+
k ) = k−1

k x(θk), k ∈ N, k > k0,
x∆(θ+

k ) = 1
kx

∆(θk), k ∈ N, k > k0,

(15)

where γ = 1, δ = 1, r(t) = 1
t+1 , q(t) = 1 + 1

t ≥ 0, a∗k = ak = k−1
k , b∗k = bk = 1

k , θk = 2k,

θk+1 − θk = 2k > 1, k ∈ N, k > k0 = 1, f(u) = u3. Clearly, from (H4) we have∫ ∞
T

∏
T<θk<s

b∗k
ak

∆s

=

∫ ∞
1

∏
1<θk<s

1

k − 1
∆s

=

∫ θ2

1

∏
1<θk<s

1

k − 1
∆s+

∫ θ3

θ+2

∏
1<θk<s

1

k − 1
∆s+

∫ θ4

θ+3

∏
1<θk<s

1

k − 1
∆s+ · · ·

= (θ2 − 1) +
1

2
× (θ3 − θ2) +

1

2
× 1

3
× (θ4 − θ3) + · · ·

= 2 +
1

2
× 22 +

1

2
× 1

3
× 23 +

1

2
× 1

3
× 1

4
× 24 + · · ·

≥ 1 +
1

2
+

1

3
+

1

4
+ · · · = 1 +

∞∑
i=2

1

i
=∞

and from (H8),

∞∑
k=2

∫ θk+1

θk

1

t

(∫ ∞
1

[ ∏
1<θk<v

k
(

1 +
1

v

)]
∆v
)

∆s =∞.

All conditions of Theorem 3.2 are satisfied for (15) and hence (15) has a oscillatory
solution.

4.1. Future Directions. To the best of the author’s r knowledge, this is the first investi-
gation of nonlinear impulsive delay dynamic equations with deviating arguments on times
scales. That means there are many directions in which future investigations can proceed.
We mention only a few here.

(1) Are there other kinds of non-linearities which are of interest for (E) and for which
results can be found?

(2) What can be said about the forced oscillation, that is, the oscillation of

[r(t)(x∆(t))γ ]∆ + q(t)f(x(t− δ)) = g(t), t ∈ JT := [0,∞) ∩ T, t 6= θk, t ≥ t0,
x(θ+

k ) = gk(x(θk)), x
∆(θ+

k ) = hk(x
∆(θk)), k ∈ N,

x(t) = φ(t), t0 − δ ≤ t ≤ t0,

where g(t) is oscillatory?
(3) What can be said about the positive solution of (E) and its various generalization?
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