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SZÉKELY, CLARK & ENTRINGER’S AND TALENTI’S INEQUALITIES

FOR SUGENO INTEGRAL

B. DARABY1, A. R. KHODADADI1, A. RAHIMI1, §

Abstract. The purpose of this paper is to investigate the Székely, Clark & Entringer’s
and Talenti’s inequalities for Sugeno integral. At the first, by an example, we show that
Székely, Clark & Entringer’s inequality is not valid for Sugeno integral. After that, we
state and prove fuzzy version of this inequality. Finally, we state and prove Talenti’s
inequality for Sugeno integral.
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1. Introduction

In 1974, M. Sugeno introduced fuzzy measures and Sugeno integral for the first time
which was an important analytical method of uncertain information measuring [21]. Sugeno
integral is applied in many fields such as management decision-making, medical decision-
making, control engineering and so on. Many authors such as Ralescu and Adams con-
sidered equivalent definitions of Sugeno integral [18]. Román-Flores et al. examined
level-continuity of Sugeno integral and H-continuity of fuzzy measures [19, 20]. For more
details of Sugeno integral, we refer to [1, 2, 14, 15, 16, 17].

The study of fuzzy integral is attributed to Román-Flores et al. Many inequalities
such as Markov’s, Chebyshev’s, Jensen’s, Minkowski’s, Hölder’s and Hardy’s inequalities
have been studied by Flores-Franulič and Román-Flores for Sugeno integral (see [12, 13]
and their references). Recently, B. Daraby et al. [4, 5, 6, 7, 8, 9, 10, 11] studied some
inequalities for Sugeno integral.
In [3], Székely, Clark & Entringer’s inequality is given as follows:

If f ∈ L([0, 1]), f ≥ 0 and p ≥ 1, then∫ 1

0
f(x)

(∫ 1−x

0
f(t)dt

)p
dx ≤

(∫ 1

0
f(x)

(∫ 1−x

0
f(t)dt

)1/p

dx

)p
. (1)
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Again, in [3], Talenti’s inequality is given as follows:
If a > 0 and f is positive and decreasing on [a, b], then

log

(
1 +

1

1 + af(a)

∫ b

a
f(t)dt

)
≤
∫ b

a

f(t)

1 + tf(t)
dt. (2)

In this paper, we intend to prove Székely, Clark & Entringer’s and Talenti’s inequalities
for the Sugeno integral.
This paper is organized as follows: in Section 2, we fix the notations and collect all results
and preliminaries. In Section 3, we propose the Székely, Clark & Entringer’s and Talenti’s
inequalities for Sugeno integral. Finally, in the last section, a short conclusion is stated.

2. Preliminaries

In this section, we fix some notations and provide some definitions and concepts that
are needed.

Throughout this paper, we let X be a non-empty set and Σ be a σ−algebra of subsets
of X.

Definition 2.1. A set function µ : Σ→ [0,+∞] is called a fuzzy measure if the following
properties are satisfied:

(1) µ(∅) = 0;
(2) A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity);

(3) A1 ⊆ A2 ⊆ . . .⇒ lim
i→∞

µ(Ai) = µ

( ∞⋃
i=1

Ai

)
(continuity from below);

(4) A1 ⊇ A2 ⊇ . . . and µ(A1) < ∞ ⇒ lim
i→∞

µ(Ai) = µ

( ∞⋂
i=1

Ai

)
(continuity from

above).

When µ is a fuzzy measure, the triple (X,Σ, µ) is called a fuzzy measure space.

If f is a non-negative real-valued function onX, we will denote Fα = {x ∈ X | f(x) ≥ α} =

{f ≥ α}, the α-level of f , for α > 0. The set F0 = {x ∈ X | f(x) > 0} = supp(f) is the
support of f .

If µ is a fuzzy measure on X, we define the following:

Fσ(X) = {f : X → [0,∞)| f is µ−measurable} .

Definition 2.2. Let µ be a fuzzy measure on (X,Σ). If f ∈ Fσ(X) and A ∈ Σ, then the
Sugeno integral of f on A is defined by

−
∫
A
fdµ =

∨
α≥0

(α ∧ µ(A ∩ Fα)) ,

where ∨ and ∧ denotes the operations sup and inf on [0,∞], respectively and µ is the
Lebesgue measure. If A = X, the fuzzy integral may also be denoted by −

∫
fdµ.

The following proposition gives some of the most elementary properties of Sugeno inte-
gral.

Proposition 2.1. ([22]). Let (X,Σ, µ) be a fuzzy measure space, A,B ∈
∑

and f, g ∈
Fσ(X). We have

(1) −
∫
A fdµ ≤ µ(A);

(2) −
∫
A kdµ = k ∧ µ(A), for any constant k ∈ [0,∞);

(3) −
∫
A fdµ < α⇔ there exists γ < α such that µ(A ∩ {f ≥ γ}) < α;
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(4) −
∫
A fdµ > α⇔ there exists γ > α such that µ(A ∩ {f ≥ γ}) > α.

Remark 2.1. Consider the distribution function F associated to f on A, that is to say,

F (α) = µ(A ∩ {f ≥ α}).

Then

F (α) = α⇒ −
∫
A
fdµ = α.

Thus, from a numerical (or computational) point of view, the Sugeno integral can be
calculated by solving the equation F (α) = α (if the solution exists).

3. Main results

In this section, we prove Székely, Clark & Entringer’s and Talentie’s inequalities for
Sugeno integral.

3.1. Székely, Clark & Entringer type inequality for Sugeno integral. At the first,
by an example, we show that (1) is not valid for Sugeno integral.

Example 3.1. Let p = 2 and the function f : [0, 1]→ [0, 1] be defined by

f(x) =


0

1

104x

x = 0

0 ≤ x ≤ 1

Then we have

−
∫ 1−x

0
f(x)dx = −

∫ 1−x

0

1

104x
dx

= sup
α∈[0,1−x]

(
α ∧ µ([0, 1− x] ∩

{
x :

1

104x
≥ α

})
= sup

α∈[0,1−x]

(
α ∧ µ([0, 1− x] ∩

[
0,

1

104α

])
= sup

α∈[0,1−x]

(
α ∧ 1

104α

)
=

1

102
,

and

−
∫ 1

0

1

104x
×
(

1

102

)2

dx = −
∫ 1

0

1

108x
dx

= sup
α∈[0,1]

(
α ∧ µ([0, 1] ∩

{
x :

1

108x
≥ α

})
= sup

α∈[0,1]

(
α ∧ µ([0, 1] ∩

[
0,

1

108α

])
= sup

α∈[0,1]

(
α ∧ 1

108α

)
=

1

104
.
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Also,

−
∫ 1

0

1

104x
×
(

1

102

) 1
2

dx = −
∫ 1

0

1

105x
dx

= sup
α∈[0,1]

(
α ∧ µ([0, 1] ∩

{
x :

1

105x
≥ α

})
= sup

α∈[0,1]

(
α ∧ µ([0, 1] ∩

[
0,

1

105α

])
= sup

α∈[0,1]

(
α ∧ 1

105α

)
=

√
1

105
.

Therefore,

1

104
= −
∫ 1

0

1

104x

(
−
∫ 1−x

0

1

104t
dt

)2

dx

≥

(
−
∫ 1

0

1

104x

(
−
∫ 1−x

0

1

104t
dt

)1/2

dx

)2

=
1

105
.

Which means the Székely, Clark & Entringer’s inequality does not hold for the function f
and p = 2.

Theorem 3.1. Let f : [0, 1]→ [0, 1] be a continuous function and p ≥ 1. Then we have

−
∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤ −

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx. (3)

Proof. By applying the property on p, we can write(
−
∫ 1−x

0
f(t)dt

)p
≤
(
−
∫ 1−x

0
f(t)dt

)1/p

,

now, by multiplication f(x) in both sides of above equation, we have

f(x)

(
−
∫ 1−x

0
f(t)dt

)p
≤ f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

.

By fuzzy integration from 0 to 1 of both sides, we get

−
∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤ −

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx.

�

The following example illustrate the above mentioned theorem.

Example 3.2. Let f : [0, 1]→ [0, 1] be defined by f(x) = 1− x and p = 3. We have

−
∫ 1−x

0
(1− t)dt = sup

α∈[0,1−x]
(α ∧ µ ([0, 1− x] ∩ {t : 1− t ≥ α}))

= sup
α∈[0,1−x]

(α ∧ [0, 1− α])

=
1

2
,
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hence

−
∫ 1

0
(1− x)

(
1

2

)3

dx = −
∫ 1

0

1− x
8

dx

= sup
α∈[0,1]

(
α ∧ µ

(
[0, 1− x] ∩

{
x :

1− x
8
≥ α

}))
= sup

α∈[0,1]
(α ∧ [0, 1− 8α])

=
1

9
.

And

−
∫ 1

0
(1− x)

(
1

2

)1/3

dx = −
∫ 1

0
(0.7937)(1− x)dx

= sup
α∈[0,1]

(α ∧ µ ([0, 1] ∩ {x : (0.7937)(1− x) ≥ α}))

= sup
α∈[0,1]

(
α ∧

[
0, 1− α

0.7937

])
= 0.4424.

Therefore, we have

0.1111 =
1

9
≤ 0.4424.

In the following, we investigate the case of inequality, in which inner integrals are fuzzy
integrals and external integrals are Rieman integrals.

Theorem 3.2. Let f : [0, 1]→ [0, 1] be a continuous function and p ≥ 1. Then we have∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx. (4)

Proof. By applying the property on p, we can write(
−
∫ 1−x

0
f(t)dt

)p
≤
(
−
∫ 1−x

0
f(t)dt

)1/p

,

now, by multiplication f(x) in both sides of above equation, we have

f(x)

(
−
∫ 1−x

0
f(t)dt

)p
≤ f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

.

By integration from 0 to 1 of both sides, we get∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx.

Which complete the proof. �

Now, with an example, we show that theorem 3.2 is valid.
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Example 3.3. Let f(x) =
1

1 + x2
and p = 3. We have

−
∫ 1−x

0

1

1 + t2
dt = sup

α∈[0,1−x]

(
α ∧ µ

(
[0, 1− x] ∩

{
x :

1

1 + t2
≥ α

}))

= sup
α∈[0,1−x]

(
α ∧ µ

(
[0, 1− x] ∩

[
0,

√
1− α
α

]))
= 0.6823,

and ∫ 1

0

1

1 + x2
(0.6823)3 dx = (0.6823)3

∫ 1

0

1

1 + x2
dx

= 0.3176
(

tan−1(x)
∣∣1
0

)
= 0.3176× π

4
= 0.2494.

On the other hand, we get∫ 1

0

1

1 + x2
(0.6823)1/3 dx = (0.6823)1/3

(
tan−1(x)

∣∣1
0

)
= 0.8803× 0.7853 = 0.6913.

By replacing in relation (4), we have

0.2494 ≤ 0.6912.

(Notice that, in this example we suppose
π

4
∼= 0.7853).

In the following, we are going to state and prove Talenti’s inequality for Sugeno integral.

3.2. Talenti type inequality for Sugeno integral.

Theorem 3.3. Let f : [a, b]→ [0,∞] be decreasing and positive function. Then

log

(
1 +

1

1 + af(a)
∧ −
∫ b

a
f(t)dt

)
≤ −
∫ b

a

f(t)

1 + tf(t)
dt, (5)

holds, where a > 0.

Proof. Since function f is decresing, we have f(a) ≥ f(t). We can easily see that 1 +
af(a) ≥ 1 + tf(t). Now, by reversing the two sides, we get

f(t)

1 + af(a)
≤ f(t)

1 + tf(t)
.

Now, by fuzzy integration of both sides, we have

−
∫ b

a

f(t)

1 + af(a)
dt ≤ −

∫ b

a

f(t)

1 + tf(t)
dt.

It can be written according to the fuzzy integral properties

1

1 + af(a)
∧ −
∫ b

a
f(t)dt ≤ −

∫ b

a

f(t)

1 + tf(t)
dt.

From properties of log function, we get

log

(
1

1 + af(a)
∧ −
∫ b

a
f(t)dt

)
≤ 1

1 + af(a)
∧ −
∫ b

a
f(t)dt.
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Finally,

log

(
1

1 + af(a)
∧ −
∫ b

a
f(t)dt

)
≤ −
∫ b

a

f(t)

1 + tf(t)
dt.

�

Now, by an example, we show the validity of Theorem 3.3.

Example 3.4. Let f : [1, 2]→ [0, 1] be defined by f(t) =
1

3− t
. Then

−
∫ 2

1

1

3− t
dt = sup

α∈[1,2]

(
α ∧ µ

(
[1, 2] ∩

{
t :

1

3− t
≥ α

}))
= sup

α∈[1,2]

(
α ∧ µ

(
[1, 2] ∩

[
3α− 1

3
, 2

]))
=

7

6
∼= 1.16666,

and

−
∫ 2

1

f(t)

1 + tf(t)
dt = −

∫ 2

1

1
3−t

1 + t
3−t

dt

= −
∫ 2

1

1

3
dt

=
1

3
∼= 0.3333.

Now, by replacing in (5), we get

log (0.6666 ∧ 1.16666) ≤ 0.3333

−0.1761 = log(0.6666) ≤ 0.3333.

4. Conclusion

In this paper, we proved the Székely, Clark & Entringer’s and Talenti’s inequalities for
Sugeno integral. By considering the different initial conditions for the Székely, Clark &
Entringer’s inequality, we proved this inequality for different forms. Indeed, we showed
that:

−
∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤ −

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx.,

holds, where f : [0, 1]→ [0, 1] is continuous function and p ≥ 1. Also the above mentioned
inequality is proved when the inequality consists of inner integrals as fuzzy integrals and
the external integrals are Riemman integrals as following:∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)p
dx ≤

∫ 1

0
f(x)

(
−
∫ 1−x

0
f(t)dt

)1/p

dx,

where f : [0, 1]→ [0, 1] and p ≥ 1.
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