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THE RE-NND SOLUTIONS OF THE MATRIX EQUATION AXB = C

WITH REFERENCE TO INDEFINITE INNER PRODUCT

D. KRISHNASWAMY1, A. NARAYANASAMY1, §

Abstract. In this paper, we first consider the matrix equation AXA[∗] = C , where
A ∈ Cn×m, C ∈ Cn×n and establish necessary and sufficient conditions for the existence
of Re-nnd solutions. Further, we determine the necessary and sufficient conditions for
the existence of Re-nnd solutions of the equation AXB=C.
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1. Introduction

An indefinite inner product in Cn is a conjugate symmetric sesquilinear form [x, y]
together with the regularity condition that [x, y] = 0, ∀y ∈ Cn

J only when x = 0. Any
indefinite inner product is associated with a unique invertible complex matrix J (called a
weight) such that [x, y] = 〈x, Jy〉, where 〈·, ·〉 denotes the Euclidean inner product on Cn.
We also make an additional assumption on J , that is, J2 = I, to present the results with
much algebraic ease.

Investigations of linear maps on indefinite inner product employ the usual multiplication
of matrices which is induced by the Euclidean inner product of vectors [3, 20]. This causes
a problem as there are two different values for dot product of vectors. To overcome this
difficulty, Kamaraj, Ramanathan and Sivakumar introduced a new matrix product called
indefinite matrix multiplication and investigated some of its properties in [20]. More
precisely, the indefinite matrix product of two matrices A and B of sizes m× n and n× l
complex matrices, respectively, is defined to be the matrix A ◦B = AJnB. The adjoint of
A, denoted by A[∗] is defined to be the matrix JnA

∗Jm, where Jm and Jn are weights.
Many properties of this product are similar to that of the usual matrix product [20].

Moreover, it not only rectifies the difficulty indicated earlier, but also enables us to recover
some interesting results with reference to Indefinite Inner Product in a manner analogous
to that of the Euclidean case. Kamaraj, Ramanathan and Sivakumar also established in
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of Mathematics, 2021; all rights reserved.
This paper is supported by the University Grants Commission Rajiv Gandhi National Fellowship for
SC students (UGC-RGNFSC), Grant no: F1-17.1/2016-17/RGNF-2015-17-SC-TAM-17791.

795



796 TWMS J. APP. AND ENG. MATH. V.11, N.3, 2021

[20] that in the setting of indefinite inner product spaces, the indefinite matrix product is
more appropriate that of the usual matrix product. Range symmetric (EP) matrices with
respect to indefinite inner product have been intensively studied in [10, 12, 13, 14, 15, 16,
26].

Recall that the Moore-Penrose inverse exists if and only if rank(AA∗) = rank(A∗A) =

rank(A). If we take A =

(
1 1
1 1

)
, J =

(
1 0
0 −1

)
, then AA[∗] and A[∗]A are both the zero

matrix and so rank(AA[∗]) < rank(A), thereby proving that the Moore-Penrose inverse
does not exist with respect to the usual matrix product. However, it can be easily verified
that with respect to the indefinite matrix product, rank(A ◦ A[∗]) = rank(A[∗] ◦ A) =
rank(A). Thus, the Moore-Penrose J-inverse with real or complex entries exists over an
indefinite inner product, whereas a similar result is false with respect to the usual matrix
multiplication. It is therefore really pertinent to extend the study of generalized inverses
to the setting of indefinite inner product.

The Hermitian part of X is defined as H(X) = 1
2(X + X∗). We say that X is Re-

nnd if H(X) ≥ 0 and X is Re-pd if H(X) > 0. The Hermitian part of X is defined as

H(X) = 1
2(JXJ + X [∗]) with reference to indefinite inner product. We will say that X is

Re-nnd if H(X) ≥ 0 and X is Re-pd if H(X) > 0.
Many authors have studied the well-known equation AXB = C with the unknown

matrix X, such that X belongs to some special class of matrices. For example, in [4] and
[19] the existence of reflexive and anti-reflexive, with respect to a generalized reflection
matrix P , solutions of the matrix equation AXB = C was considered, while in [5, 11, 17,
18] necessary and sufficient conditions for the existence of symmetric and antisymmetric
solutions of the equation AXB = C were investigated.

The Hermitian nonnegative definite solutions for the equation AXA∗ = B were inves-
tigated by Khatri and Mitra [11], Baksalary [1], Dai and Lancaster [6], Groß [9], Zhang
and Cheng [25] and Zhang [24].

Wu [22] studied Re-pd solutions of the equation AX = C, and Wu and Cain [23] found
the set of all complex Re-nnd matrices X such that XB = C and presented a criterion for
Re-nndness. Groß [8] gave an alternative approach, which simultaneously delivers explicit
Re-nnd solutions and gave a corrected version of some results from [23]. Some results from
[23] were extended in the paper of Wang and Yang [21], in which the authors presented
criteria for 2×2 and 3×3 partitioned matrices to be Re-nnd, found necessary and sufficient
conditions for the existence of Re-nnd solutions of the equation AXB = C and derived
an expression for these solutions. In addition to these papers many other papers have
dealt with the problem of finding the Re-nnd and Re-pd solutions of some other forms of
equations.

2. PRELIMINARIES

We first recall the notion of an indefinite multiplication of matrices.

Definition 2.1. [20] Let A ∈ Cm×n
Jm,Jn

, B ∈ Cn×k
Jn,Jk

. Let Jn be an arbitrary but fixed n× n

complex matrix such that Jn = J∗n = J−1n . The indefinite matrix product of A and B
(relative to Jn) is defined by A ◦B = AJnB.

Definition 2.2. [20] For A ∈ Cm×n
Jm,Jn

, A[∗] = JnA
∗Jm is the adjoint of A relative to Jn

and Jm.

Definition 2.3. [20] A matrix A ∈ Cn×n
Jn

is said to be J-invertible if there exists X ∈
Cn×n
Jn

, such that A ◦X = X ◦A = Jn. Such an X is denoted by A[−1] = JA−1J .
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Remark 2.1. For the identity matrix J, it reduces to a generalized inverse of A and
AJ{1} = A{1}. It can be easily verified that X is a generalized inverse of A under the
indefinite matrix product if and only if JnXJm is a generalized inverse of A under the
usual product of matrices. Hence AJ{1} = {X : JnXJm is a generalized inverse of A}.

Definition 2.4. [10] For A ∈ Cm×n
Jm,Jn

, and X ∈ Cn×m
Jn,Jm

is called the Moore - Penrose
J-inverse of A if it satisfies the following equations:

(i) A ◦X ◦A = A ({1} inverse)
(ii) X ◦A ◦X = X ({2} inverse)
(iii)(A ◦X)[∗] = A ◦X ({3} inverse)
(iv) (X ◦A)[∗] = X ◦A. ({4} inverse)

such an X is denoted by A[†] and represented as A[†] = JnA
†Jm.

Definition 2.5. [15] The range space A ∈ Cm×n
Jm,Jn

is defined by Ra(A) = {y = A ◦ x ∈
Cm : x ∈ Cn}. The null space of A ∈ Cm×n

Jm,Jn
is defined by Nu(A) = {x ∈ Cn : A ◦ x = 0}.

Property 2.1. [15] Let A ∈ Cm×n
Jn

. Then

(i) (A[∗])[∗] = A.

(ii) (A[†])[†] = A.

(iii) (AB)[∗] = B[∗]A[∗].

(iv) Ra(A[∗]) = Ra(A[†]).

(v) Ra(A ◦A[∗]) = Ra(A), Ra(A[∗] ◦A) = Ra(A[∗]).

(vi) Nu(A ◦A[∗]) = Nu(A[∗]), Nu(A[∗] ◦A) = Nu(A).

Definition 2.6. [15] A is range symmetric in Cn×n
J if and only if Ra(A) = Ra(A[∗]) (or)

equivalently Nu(A) = Nu(A[∗]).

Remark 2.2. In particular for J = In, this reduces to the definition of range symmetric
matrix in unitary space (or) equivalently to an EP matrix.

Theorem 2.1. [15] For A ∈ Cn×n
Jn

, the following are equivalent:

(i) A is range symmetric in Cn×n
J .

(ii) AJ is EP .
(iii) JA is EP .

(iv) Nu(A) = Nu(A[∗]).

(v) A ◦A[†] = A[†] ◦A.

(vi) (A†A)[∗] = JA†AJ = AA†.
(vii) A is J-EP.

3. The Re-nnd solutions of the Matrix equation AXB = C

Lemma 3.1. [13] Let A,B ∈ Cm×n, then N(A∗) ⊆ N(B∗) if and only if Nu(A[∗]) ⊆
Nu(B[∗]).

Theorem 3.1. [12] Let M ∈ C(n+m)×(n+m) be an J-symmetric matrix given by M =(
A B

B[∗] D

)
, where A ∈ Cn×n and D ∈ Cm×m. Then M ≥ 0 if and only if A ≥ 0, AA[†]B =

B, D −B[∗]A[†]B ≥ 0.

Next, we give necessary and sufficient conditions for the matrix equation AX = B to
have a Re-nnd solution X, where A and B are given matrices of suitable size and presents
a possible explicit expression for X with reference to indefinite inner product.
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Theorem 3.2. Let A ∈ Cn×m, B ∈ Cn×m. Then there exists a Re-nnd matrix X ∈ Cm×m

satisfying AX = B if and only if AA[†]B = B and AB[∗] is Re-nnd.

Proof. Suppose A ∈ Cn×m, B ∈ Cn×m. Assume that there exists a Re-nnd matrix X ∈
Cm×m satisfying AX = B implies that X = A[†]B. Therefore AA[†]B = B.
Next we show that AB[∗] is Re-nnd.
For if AB[∗] = A(AX)[∗] = AX [∗]A[∗] = (A[∗])[∗]X [∗]A[∗] = (AXA[∗])[∗] ≥ 0.

Hence AB[∗] is Re-nnd.
Conversely, let us assume that AA[†]B = B and AB[∗] is Re-nnd.
It suffices to show that AX = B for any Re-nnd matrix X ∈ Cm×m.

AX = A(X0 + (I −A[†]A)Y (I −A[†]A)),

where X0 is one of the Re-nnd solutions of AX = B

= AX0 + (AY −AA[†]AY )(I −A[†]A)

= AX0 + (AY −AY )(I −A[†]A)

= AX0

= B.

�

Our main aim is to generalize these results to the equation AXB = C and to present a
general form of Re-nnd solutions of it. First we will consider the equation

AXA[∗] = C (1)

and find necessary and sufficient conditions for the existence of Re-nnd solutions. The next
auxiliary result presents a general form of a solution X of (1) which satisfies H(X) = 0.

Lemma 3.2. If A ∈ Cn×m, then X ∈ Cm×m is a solution of the equation

AXA[∗] = 0 (2)

which satisfies H(X) = 0 if and only if

X = W (I −A[†]A)− (I −A[†]A)W [∗] (3)

for some W ∈ Cm×m.

Proof. Denote r = rank(A). Let us suppose that X is a solution of the equation AXA[∗] =

0 and H(X) = 0. Using a singular value decomposition of A = U [∗](D ⊕ 0)V , where
U ∈ Cn×n, V ∈ Cm×m are unitary and D ∈ Cr×r is an invertible matrix, we have that

A[†] = V [∗](D[−1] ⊕ 0)U and X = V [∗]
(
X1 X2

X3 X4

)
V , for some X1 ∈ Cr×r and X4 ∈

C(m−r)×(m−r).
From AXA[∗] = 0 we obtain that X1 = 0 and, by H(X) = 0 that X3 = −X [∗]

2 and

H(X4) = 0. Hence X = V [∗]
(

0 X2

−X [∗]
2 X4

)
V .

Taking into account that H(X4) = 0, for W = V [∗]
(
I X2

0 1
2X4

)
V , we have that X =

W (I −A[†]A)− (I −A[†]A)W [∗].
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In the other direction we have to check that for arbitrary W ∈ Cm×m, X defined by
X = W (I −A[†]A)− (I −A[†]A)W [∗] is a solution of the equation AXA[∗] = 0. That is

AXA[∗] = A(W (I −A[†]A)− (I −A[†]A)W [∗])A[∗]

= A(W −WA[†]A−W [∗] + A[†]AW [∗])A[∗]

= AWA[∗] −AWA[†]AA[∗] −AW [∗]A[∗] + AA[†]AW [∗]A[∗]

= AWA[∗] −AWA[†]AA[∗] −AW [∗]A[∗] + AW [∗]A[∗] (By Definition 2.4)

= AWA[∗] −AWA[∗] −AW [∗]A[∗] + AW [∗]A[∗] (By Theorem 3.2)

= 0.

H(X) =
1

2
(JXJ + X [∗])

=
1

2
(J(W (I −A[†]A)− (I −A[†]A)W [∗])J + (W (I −A[†]A)− (I −A[†]A)W [∗])[∗])

=
1

2
(J(W −WA[†]A)− (W [∗] −A[†]AW [∗])J + (W −WA[†]A−W [∗] + A[†]AW [∗])[∗])

=
1

2
(J(W −W )− (W [∗] −W [∗])J + (W −W −W [∗] + W [∗])[∗]) (By Theorem 3.2)

= 0.

�

Theorem 3.3. Let A ∈ Cn×m, C ∈ Cn×n be given matrices such that the equation (1) is
consistent and let r = rank H(C). Then there exists a Re-nnd solution of the equation
(1) if and only if C is Re-nnd. In this case the general Re-nnd solution is given by

X = (A=CA=)[∗] + (I −A[†]A)UU [∗](I −A[†]A)[∗] + W (I −A[†]A)− (I −A[†]A)W [∗] (4)

with
A= = A[†] + (I −A[†]A)Z((H(C))

1
2 )[†], (5)

where A[†] and (H(C)
1
2 )[†] are arbitrary but fixed Moore-Penrose inverses of A and (H(C)

1
2 ),

respectively, and Z ∈ Cm×n, U ∈ Cm×(m−r), W ∈ Cm×m are arbitrary matrices.

Proof. If X is a Re-nnd solution of the equation (1), then AH(X)A[∗] = H(C) ≥ 0.

In the other direction, if C is Re-nnd, then X0 = A[†]C(A[†])[∗] is a Re-nnd solution of the
equation (1).
Let us prove that a representation of the general Re-nnd solution is given by (4). If X is

defined by (4), then X is Re-nnd and AXA[∗] = AA[†]C(AA[†])[∗] = C.
If X is an arbitrary Re-nnd solution of (1), then H(X) is a J-symmetric non-negative

definite solution of the equation AZA[∗] = H(C),

H(X) = A=H(C)(A=)[∗] + (I − A[†]A)UU [∗](I − A[†]A)[∗], where A= is given by (5), for

some Z ∈ Cm×n and U ∈ Cm×(m−r).
Note that, H(X) = H(A=C(A=)[∗] + (I −A[†]A)UU [∗](I −A[†]A)[∗]),

implying X = A=C(A=)[∗] + (I − A[†]A)UU [∗](I − A[†]A)[∗] + Z, where H(Z) = 0 and

AZA[∗] = 0.
Using Lemma 3.2, we have that Z = W (I−A[†]A)− (I−A[†]A)W [∗], for some W ∈ Cm×n.
Hence, we obtain that X has a representation as in (1). �

Now, let us consider the equation

AXB = C, (6)
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where A ∈ Cn×m, B ∈ Cm×n and C ∈ Cn×n are given matrices and find necessary and
sufficient conditions for the existence of a Re-nnd solution.

This follows from the fact that whenever AXB = C is solvable then X is a solution
of that equation if and only if X is a solution of the equation A[∗]AXBB[∗] = A[∗]CB[∗].
Hence from now on, we assume that A and B are non-negative definite matrices from the
space Cn×n. when m = n is particular.

The following theorem presents necessary and sufficient conditions for the equation
AXB = C to have a Re-nnd solution.

Theorem 3.4. Let A,B,C ∈ Cn×n be given matrices such that A and B are non negative
definite and the equation (6) is consistent. Then there exists a Re-nnd solution of (6) if

and only if T = B(A+B)[†]C(A+B)[†]A is Re-nnd, where (A+B)[†] is a M-P inverse of
(A + B). In this case a general Re-nnd solution is given by

X =


(A + B)=(C + Y + Z + W )((A + B)=)[∗]

+(I − (A + B)[†](A + B))UU [∗](I − (A + B)[†](A + B))[∗]

+Q(I − (A + B)[†](A + B))− (I − (A + B)[†](A + B))Q[∗],

(7)

where Y,Z,W are arbitrary solutions of the equations
Y (A + B)[†]B = C(A + B)[†]A,

A(A + B)[†]Z = B(A + B)[†]C,

A(A + B)[†]W (A + B)[†]B = T,

(8)

such that C + Y + Z + W is Re-nnd, (A + B)= is defined by

(A + B)= = (A + B)[†] + (I − (A + B)[†](A + B))P ((H(C + Y + Z + W ))
1
2 ),

where U ∈ Cn×(n−r), Q ∈ Cn×n, P ∈ Cn×n are arbitrary, r = rank(C + Y + Z + W ).

Proof. Denote by E = (A + B)[†]B,F = C(A + B)[†]A,

K = A(A + B)[†], L = B(A + B)[†]C.
Now equations (8) are equivalent to

Y E = F,KZ = L,KWE = T. (9)

Using Definition 2.4 and the fact that E is invertible with reference to indefinite inner
product and E[†] = B[†](A + B), we have that

FE[†]E = C(A + B)[†]AB[†](A + B)(A + B)[†]B

= C(A + B)[†]AB[†]B

= C(A + B)[†]A
= F ,

which implies that the equation Y E = F is consistent. In a similar way, we can prove that
the other two equations from (9) are consistent. Furthermore, T [∗] = F [∗]E = KL[∗] is
Re-nnd which implies by Theorem 3.2, that the first two equations from (9) have Re-nnd
solutions.
Now, suppose that the equation (6) has a Re-nnd solution X. Then

H(T ) = H(B(A + B)[†]AXB(A + B)[†]A)

= (B(A + B)[†]A)H(X)(B(A + B)[†]A)[∗] ≥ 0.
Conversely, let T be Re-nnd. We can check that

X0 = (A + B)[†](C + Y + Z + W )(A + B)[†], (10)
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is a solution of the equation (1), where Y,Z,W are arbitrary solutions of the equation (6).
This follows from
AX0B = (A + B)(A + B)[†]C(A + B)[†](A + B)

= (A + B)(A + B)[†]AA[†]CB[†]B(A + B)[†](A + B)

= AA[†]CB[†]B
= C.

Now, we have to prove that for some choice of Y,Z,W , the matrix C + Y + Z + W is
Re-nnd which would imply that X0 is Re-nnd.
Let Y = FE[†] − (FE[†])[∗] + (E[†])[∗]F [∗]EE[†] + (I − EE[†])[∗](I − EE[†]),

Z = K [†]L− (K [†]L)[∗] + K [†]KL[∗](K [†])[∗] + (I −K [†]K)Q(I −K [†]K)[∗],

W = K [†]TE[†] − (I −K [†]K)S − S(I − EE[†]),

where Q = (C [∗] −K [†]T [∗]E[†])(C [∗] −K [†]T [∗]E[†])[∗] and S = K [†]KC [∗] + C [∗]EE[†].
Obviously, Y,Z,W are solutions of the equation (1) and

H(Y ) = (E[†])[∗]H(T )E[†] + (I − EE[†])[∗](I − EE[†])

H(Z) = K [†]H(T )(K [†])[∗] + (I −K [†]K)H(Q)(I −K [†]K)[∗]

H(W ) = K [†]TE[†] + (E[†])[∗]T [∗](K [†])[∗] −H(C [∗]EE[†] + K [†]KC [∗] − 2K [†]T [∗]E[†]).
Using
K [†]KK [†]T [∗]E[†] = K [†]KK [†]KL[∗]E[†] = K [†]KL[∗]E[†] = K [†]T [∗]E[†],
K [†]T [∗]E[†]EE[†] = K [†]F [∗]EE[†]EE[†] = K [†]F [∗]EE[†] = K [†]T [∗]E[†],
KC [∗]E = KL[∗] = T [∗],
we compute,
H(C + Y + Z + W ) = ((E[†])[∗] + K [†])H(T )((E[†])[∗] + K [†])[∗]

+ [(I − EE[†])[∗](I −K [†]K)]D

(
I − EE[†]

(I −K [†]K)[∗]

)
,

where D =

(
I C − (E[†])[∗]T (K [†])[∗]

C [∗] −K [†]T [∗]E[†] H(Q)

)
.

By Theorem 3.1, it follows that D is nonnegative definite, so H(C + Y + Z + W ) ≥ 0.
Hence, with such a choice of Y, Z,W , it can be seen that X0 defined by (10) is Re-nnd
solutions of (6). So, we proved the sufficient part of the theorem.
Let X be an arbitrary Re-nnd solutions of (6). It is evident that Y = AXA,Z = BXB
and W = BXA are solutions of (9), and that (A + B)X(A + B) = C + Y + Z + W is
Re-nnd. Now, using Theorem 3.3, we get that X has the representation (7).
Note that if the equation AX = C is consistent then X is a solution of it if and only
if A[∗]AX = A[∗]C. By Theorem 3.4, we get that there exists a Re-nnd solution of the
equation AX = C if and only if T = (A[∗]A + I)[−1]A[∗]C(A[∗]A + I)[−1]A[∗]A is Re-nnd.

Note that in this case (I + A[∗]A) is invertible matrix.

Let us prove that T is Re-nnd if and only if CA[∗] is Re-nnd. By (A[∗]A + I)[−1]A[∗]A =

A[∗]A(A[∗]A + I)[−1],

we have that T = (A[∗]A + I)[−1]A[∗](CA[∗])((A[∗]A + I)[−1]A[∗])[∗] , That is H(T ) =

((A[∗]A+ I)[−1]A[∗])H(CA[∗])((A[∗]A+ I)[−1]A[∗])[∗]. From the last equality, H(CA[∗]) ≥ 0
implies that H(T ) ≥ 0.
Now, suppose that H(T ) ≥ 0, then, by the consistence of the equation AX = C, it

follows that AA[†]C = C which implies that (A[†])[∗](A[∗]A + I)T ((A[†])[∗](A[∗]A + I))[∗] =

(A[†])[∗]A[∗]CA[∗]AA[†] = AA[†]CA[∗] = CA[∗].

That is H(CA[∗]) = ((A[†])[∗](A[∗]A + I))H(T )((A[†])[∗](A[∗]A + I))[∗] ≥ 0. �
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Example:

Let us consider A =

(
0 0
1 1

)
, B =

(
1 1
0 0

)
, C =

(
4 4
4 4

)
and J

(
0 1
1 0

)
.

A∗ =

(
0 1
0 1

)
, A∗A =

(
0 1
0 1

)(
0 0
1 1

)
, trace(A∗A) = 2, A† = A∗

trace(A∗A) = 1
2

(
0 1
0 1

)
,

(A + B)[†] = J(A + B)†J = 1
4

(
1 1
1 1

)
. Hence B(A + B)[†]C(A + B)[†]A is Re-nnd.

4. Conclusion

In this paper we consider some special cases and give a complete characterization of
the set of Re-nnd solution of AXA[∗] = C. The necessary and sufficient conditions for the
existence of Re-nnd solutions of the equation AXB = C with reference to indefinite inner
product is determined.

Acknowledgement. The authors would like to thank the anonymous referees for their
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