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HARMONIC RECIPROCAL STATUS INDEX AND COINDEX OF

GRAPHS

HARISHCHANDRA S. RAMANE 1, SAROJA Y. TALWAR1, §

Abstract. The reciprocal status of a vertex u is defined as the sum of reciprocal of the
distances between u and all other vertices of a graph G. In this paper we have defined the
harmonic reciprocal status index and coindex of a graph and obtained the bounds for it.
Further the harmonic reciprocal status index and coindex of some graphs are obtained.
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index.
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1. Introduction

The harmonic index, based on the degrees of the vertices is well studied in the literature
[2, 3, 6, 8, 9, 15, 17, 18]. In this paper we study the harmonic index, based on the reciprocal
distances in graphs.

Let G be a connected, nontrivial graph on n vertices and m edges. Let V (G) be the
vertex set and E(G) be the edge set of G. The edge joining the vertices u and v is denoted
by uv. The degree of a vertex u is the number of edges incident to it and is denoted by
d(u). If all the vertices of G have same degree equal to r, then G is called a regular graph
of degree r. The distance between the vertices u and v, denoted by d(u, v), is the length
of the shortest path joining u and v in G. The eccentricity of a vertex u in a graph G is
defined as e(u) = max{d(u, v) | v ∈ V (G)}. The maximum distance between any pair of
vertices in G is called the diameter of G and is denoted by diam(G) [1].

The status [5] of a vertex u is defined as the sum of its distances from every other vertex
of G and is denoted by σ(u). That is,

σ(u) =
∑

v∈V (G)

d(u, v).
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In [14], the first and second status connectivity indices of a connected graph G are
defined respectively as

S1(G) =
∑

uv∈E(G)

[σ(u) + σ(v)] and S2(G) =
∑

uv∈E(G)

σ(u)σ(v).

The reciprocal status of a vertex u is defined as the sum of reciprocal of its distances
from every other vertex of G and is denoted by rs(u). That is,

rs(u) =
∑

v∈V (G), u 6=v

1

d(u, v)
.

The Harary index HI(G) of a connected graph G is defined as the sum of reciprocal of
the distances between all pairs of vertices of G [7]. That is,

HI(G) =
∑

{u,v}⊆V (G), u 6=v

1

d(u, v)
=

1

2

∑
u∈V (G)

rs(u).

For more about Harary index one can refer [10, 16].
The first reciprocal status connectivity index RS1(G) and second reciprocal status con-

nectivity index RS2(G) of a connected graph G are defined respectively as [12, 13]

RS1(G) =
∑

uv∈E(G)

[rs(u) + rs(v)] and RS2(G) =
∑

uv∈E(G)

rs(u)rs(v).

The harmonic index of a graph G is defined as [4]

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

Recent results on the harmonic index can be found in [2, 3, 6, 8, 9, 15, 17, 18].
The Harmonic status index of a graph G is defined as [11]

HS(G) =
∑

uv∈E(G)

2

σ(u) + σ(v)
.

Motivated by the harmonic index and harmonic status index of a graph, we introduce
and study here the harmonic reciprocal status index and harmonic reciprocal status co-
index of connected graphs.

The harmonic reciprocal status index of a connected graph G is defined as

HRS(G) =
∑

uv∈E(G)

2

rs(u) + rs(v)

and harmonic reciprocal status coindex of a connected graph G is defined as

HRS(G) =
∑

uv/∈E(G)

2

rs(u) + rs(v)
.

For a graph given in Fig. 1, HRS(G) = 913
420 ≈ 2.1738 and HRS(G) = 8

13 ≈ 0.6153.
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Figure 1

2. Harmonic Reciprocal Status Index

First we give bounds for the harmonic reciprocal status index.

Theorem 2.1. Let G be a connected graph with n vertices and let diam(G) = D. Then∑
uv∈E(G)

2

n− 1 + 1
2 [d(u) + d(v)]

≤ HRS(G) ≤
∑

uv∈E(G)

2
2
D (n− 1) +

(
1− 1

D

)
[d(u) + d(v)]

.

Equality on both sides holds if and only if diam(G) ≤ 2.

Proof. Upper bound: For any vertex u of G, there are d(u) vertices which are at distance
1 from u and the remaining n− 1− d(u) vertices are at distance at most D. Therefore for
any vertex u ∈ V (G),

rs(u) ≥ d(u) +
1

D
(n− 1− d(u)) =

1

D
(n− 1) + d(u)

(
1− 1

D

)
.

Therefore

HRS(G) =
∑

uv∈E(G)

2

rs(u) + rs(v)

≤
∑

uv∈E(G)

2
2
D (n− 1) +

(
1− 1

D

)
(d(u) + d(v))

.

Lower bound: For any vertex u of G, there are d(u) vertices which are at distance 1 from
u and the remaining n − 1 − d(u) vertices are at distance at least 2. Therefore for any
vertex u ∈ V (G),

rs(u) ≤ d(u) +
1

2
(n− 1− d(u)) =

1

2
[d(u) + n− 1] .

Therefore

HRS(G) =
∑

uv∈E(G)

2

rs(u) + rs(v)

≥
∑

uv∈E(G)

2

(n− 1) + 1
2 [d(u) + d(v)]

.

For equality: If the diameter of G is 1 or 2 then the equality holds.
Conversely, let

HRS(G) =
∑

uv∈E(G)

2

(n− 1) + 1
2 [d(u) + d(v)]

.
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Suppose, diam(G) ≥ 3, then there exists at least one pair of vertices, say u1 and u2
such that d(u1, u2) ≥ 3.

Therefore

rs(u1) ≤ d(u1) +
1

3
+

1

2
(n− 2− d(u1)) =

n

2
− 2

3
+
d(u1)

2
.

Similarly rs(u2) ≤ n
2 −

2
3 + d(u2)

2 and for all other vertices u of G, rs(u) ≤ n
2 −

1
2 + d(u)

2 .
Partition the edge set of G into three sets E1, E2 and E3, such that

E1 =

{
u1v | rs(u1) ≤

n

2
− 2

3
+
d(u1)

2
and rs(v) ≤ n

2
− 1

2
+
d(v)

2

}
,

E2 =

{
u2v | rs(u2) ≤

n

2
− 2

3
+
d(u2)

2
and rs(v) ≤ n

2
− 1

2
+
d(v)

2

}
and

E3 =

{
uv | rs(u) ≤ n

2
− 1

2
+
d(u)

2
and rs(v) ≤ n

2
− 1

2
+
d(v)

2

}
.

It is east to check that |E1| = d(u1), |E2| = d(u2) and |E3| = m − d(u1) − d(u2).
Therefore

HRS(G) =
∑

uv∈E(G)

2

rs(u) + rs(v)

=
∑

u1v∈E1

2

rs(u1) + rs(v)
+

∑
u2v∈E2

2

rs(u2) + rs(v)
+
∑

uv∈E3

2

rs(u) + rs(v)

≥
∑

u1v∈E1

2[
n− 7

6 + 1
2(d(u1) + d(v))

] +
∑

u2v∈E2

2[
n− 7

6 + 1
2(d(u2) + d(v))

]
+
∑

uv∈E3

2[
n− 1 + 1

2(d(u) + d(v))
]

>
∑

uv∈E(G)

2

n− 1 + 1
2 [d(u) + d(v)]

,

which is a contradiction. Hence diam(G) ≤ 2. �

Corollary 2.1. Let G be a connected graph with n vertices, m edges and diam(G) = D.
Let δ and ∆ be the minimum and maximum degree of the vertices of G respectively. Then

2m

n− 1 + ∆
≤ HRS(G) ≤ m

n−1
D +

(
1− 1

D

)
δ
.

Proof. For any vertex u of G, δ ≤ d(u) ≤ ∆. Therefore substituting d(u) + d(v) ≥ 2δ in
the upper bound and d(u) + d(v) ≤ 2∆ in the lower bound of Theorem 2.1, we get the
results. �

Corollary 2.2. Let G be a connected regular graph of degree r on n vertices and m edges
and let diam(G) = D. Then

2m

n− 1 + r
≤ HRS(G) ≤ m

n−1
D +

(
1− 1

D

)
r
.

Equality on both side holds if and only if diam(G) ≤ 2.

Proof. For any vertex u of G, d(u) = r. Therefore the results follows by the Theorem
2.1. �
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Now we compute the harmonic reciprocal status index of some specific graphs.

Proposition 2.1. For a complete graph Kn on n vertices, HRS(Kn) = n
2 .

Proof. For any vertex u of Kn, rs(u) = n − 1. Therefore by the definition of harmonic
reciprocal status index, HRS(Kn) = n

2 . �

Proposition 2.2. For a complete bipartite graph Kp,q, HRS(Kp,q) = 4pq
3(p+q)−2 .

Proof. The vertex set V (Kp,q) can be partitioned into two independent sets V1 and V2
such that for every edge uv of Kp,q, the vertex u ∈ V1 and v ∈ V2. Therefore d(u) = q and
d(v) = p, where |V1| = p and |V2| = q. The graph Kp,q has n = p+ q vertices and m = pq
edges. Also diam(Kp,q) ≤ 2. Threfore by the equality part of Theorem 2.1,

HRS(Kp,q) =
∑

uv∈E(Kp,q)

2

p+ q − 1 + 1
2 [p+ q]

=
4pq

3(p+ q)− 2
.

�

Proposition 2.3. For a path Pn on n vertices,

HRS(Pn) =

[
4

n
n−1 + 2

∑n−2
i=1

1
i

]
+

n−2∑
i=2

 2

n
i(n−i) + 2

[∑i−1
j=1

1
j +

∑n−i−1
j=1

1
j

]
 .

Proof. Let v1, v2, . . . , vn be the vertices of Pn, where vi is adjacent to vi+1, i = 1, 2, . . . , n− 1.
Therefore for i = 1, 2, . . . , n,

rs(v1) =

n−1∑
i=1

1

i
,

rs(vi) =
i−1∑
j=1

1

j
+

n−i∑
j=1

1

j
, for 2 ≤ i ≤ n− 1

and rs(vn) =

n−1∑
i=1

1

i
.

Therefore,

HRS(Pn) =
∑

uv∈E(Pn)

2

rs(u) + rs(v)

=

[
2

rs(v1) + rs(v2)

]
+

n−2∑
i=2

[
2

rs(vi) + rs(vi+1)

]
+

[
2

rs(vn−1) + rs(vn)

]

=

[
2∑n−1

i=1
1
i + 1 +

∑n−2
j=1

1
j

]
+

n−2∑
i=2

[
2∑i−1

j=1
1
j +

∑n−i
j=1

1
j +

∑i
j=1

1
j +

∑n−i−1
j=1

1
j

]

+

[
2∑n−2

j=1
1
j + 1 +

∑n−1
i=1

1
i

]

=

[
4

n
n−1 + 2

∑n−2
i=1

1
i

]
+

n−2∑
i=2

 2

n
i(n−i) + 2

[∑i−1
j=1

1
j +

∑n−i−1
j=1

1
j

]
 .

�



H. S. RAMANE, S. Y. TALWAR : HARMONIC RECIPROCAL STATUS INDEX OF GRAPHS 867

Proposition 2.4. For a cycle Cn on n ≥ 3 vertices,

HRS(Cn) =


n

2
n
+2

∑(n−2)/2
i=1

1
i

, if n is even

n

2
∑(n−1)/2

i=1
1
i

, if n is odd.

Proof. Case (i): If n is even number then for any vertex u of Cn,

rs(u) = 2

[
1 +

1

2
+ · · ·+ 1

n−2
2

]
+

1
n
2

=
2

n
+ 2

(n−2)/2∑
i=1

1

i
.

Therefore,

HRS(Cn) =
∑

uv∈E(Cn)

2

rs(u) + rs(v)

=
∑

uv∈E(Cn)

[
2

2
n + 2

∑(n−2)/2
i=1

1
i + 2

n + 2
∑(n−2)/2

i=1
1
i

]

=
n

2
n + 2

∑(n−2)/2
i=1

1
i

.

Case (ii): If n is odd then for any vertex u of Cn,

rs(u) = 2

[
1 +

1

2
+ · · ·+ 1

n−1
2

]
= 2

(n−1)/2∑
i=1

1

i
.

Therefore

HRS(Cn) =
∑

uv∈E(Cn)

2

rs(u) + rs(v)

=
∑

uv∈E(Cn)

2

2
∑(n−1)/2

i=1
1
i + 2

∑(n−1)/2
i=1

1
i

=
n

2
∑(n−1)/2

i=1
1
i

.

�

A wheel Wk+1 is a graph obtained from the cycle Ck, k ≥ 3, by adding a new vertex
and making it adjacent to all the vertices of Ck. The degree of a cental vertex of Wk+1 is
k and the degree of all other vertices is 3.

Proposition 2.5. For a wheel Wk+1, k ≥ 3,

HRS(Wk+1) =
2k(5k + 9)

3k2 + 12k + 9
.

Proof. Partition the edge set E(Wk+1) into two sets E1 and E2, such that E1 = {uv | d(u) =
k and d(v) = 3} and E2 = {uv | d(u) = 3 and d(v) = 3}. It is easy to check that
|E1| = |E2| = k. Also diam(Wk+1) = 2. Therefore by the equality part of Theorem 2.1,
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HRS(Wk+1) =
∑

uv∈E(Wn+1)

2

k + 1
2 [d(u) + d(v)]

=
∑

uv∈E1

2

k + 1
2 [d(u) + d(v)]

+
∑

uv∈E2

2

k + 1
2 [d(u) + d(v)]

=
∑

uv∈E1

2

k + 1
2(k + 3)

+
∑

uv∈E2

2

k + 1
2(3 + 3)

=
2k

k + 1
2(k + 3)

+
2k

k + 3

=
2k(5k + 9)

3k2 + 12k + 9
.

�

A windmill graph Fk, k ≥ 2, is a graph that can be constructed by coalescence k copies
of the cycle C3 of length 3 with a common vertex. It has 2k + 1 vertices and 3k edges.
The degree of a coalescence vertex of Fk is 2k and the degree of all other vertices is 2.

Proposition 2.6. For a windmill graph Fk, k ≥ 2,

HRS(Fk) =
k(7k + 5)

3k2 + 4k + 1
.

Proof. Partition the edge set E(Fk) into two sets E1 and E2, such that E1 = {uv | d(u) =
2k and d(v) = 2} and E2 = {uv | d(u) = 2 and d(v) = 2}. It is easy to check that
|E1| = 2k ans |E2| = k. Also diam(Fk) = 2. Therefore by the equality part of Theorem
2.1,

HRS(Fk) =
∑

uv∈E(Fk)

2

2k + 1
2 [d(u) + d(v)]

=
∑

uv∈E1

2

2k + 1
2 [d(u) + d(v)]

+
∑

uv∈E2

2

2k + 1
2 [d(u) + d(v)]

=
∑

uv∈E1

2

2k + 1
2 [2k + 2]

+
∑

uv∈E2

2

2k + 1
2 [2 + 2]

=
4k

3k + 1
+

2k

2k + 2

=
k(7k + 5)

3k2 + 4k + 1
.

�

3. Harmonic Reciprocal Status Coindex of Graphs

Theorem 3.1. Let G be a connected graph on n vertices and let diam(G) = D. Then∑
uv/∈E(G)

2

n− 1 + 1
2 [d(u) + d(v)]

≤ HRS(G) ≤
∑

uv/∈E(G)

2
2
D (n− 1) +

(
1− 1

D

)
[d(u) + d(v)]

.

Equality on both sides holds if and only if diam(G) ≤ 2.

Proof. Proof is analogous to that of Theorem 2.1. �
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Corollary 3.1. Let G be a connected graph with n vertices, m edges and diam(G) = D.
Let δ and ∆ be the minimum and maximum degree of the vertices of G respectively. Then

n(n− 1)− 2m

n− 1 + ∆
≤ HRS(G) ≤ n(n− 1)− 2m

2
[
n−1
D +

(
1− 1

D

)
δ
] .

Proof. For any vertex u ∈ V (G), δ ≤ d(u) ≤ ∆. Therefore 2δ ≤ d(u) + d(v) ≤ 2∆. The

graph G has n(n−1)
2 −m pair of non adjacent vertices. Substituting d(u) + d(v) ≥ 2δ in

the upper bound and d(u) + d(v) ≤ 2∆ in the lower bound of Theorem 3.1 we get the
results. �

Corollary 3.2. Let G be a connected r-regular graph on n vertices and let diam(G) = D.
Then

n(n− 1)− nr
n− 1 + r

≤ HRS(G) ≤ n(n− 1)− nr
2
[
n−1
D +

(
1− 1

D

)
r
] .

Equality on both sides holds if and only if diam(G) ≤ 2.

Proof. Substituting d(u) = r for all u ∈ V (G) in Theorem 3.1, we get the results. �

Proposition 3.1. For a complete graph Kn, HRS(Kn) = 0.

Proposition 3.2. For a complete bipartite graph Kp,q,

HRS(Kp,q) =
p(p− 1)

2q + p− 1
+

q(q − 1)

2p+ q − 1
.

Proof. Let V1 and V2 be the partite sets of V (Kp,q), where |V1| = p and |V2| = q such
that for every edge of Kp,q has one end in V1 and other end in V2. If u ∈ V1 then
rs(u) = q + 1

2(p − 1) and if u ∈ V2 then rs(u) = p + 1
2(q − 1). Therefore for u, v ∈ V1,

rs(u) + rs(v) = 2q + (p− 1) and for u, v ∈ V2, rs(u) + rs(v) = 2p+ (q − 1). Therefore,

HRS(Kp,q) =
∑

uv/∈E(Kp,q)

2

rs(u) + rs(v)

=
∑

{u,v}⊆V1

2

rs(u) + rs(v)
+

∑
{u,v}⊆V2

2

rs(u) + rs(v)

=
p(p− 1)

2q + p− 1
+

q(q − 1)

2p+ q − 1
.

�

Proposition 3.3. For a cycle Cn on n ≥ 3 vertices,

HRS(Cn) =


n2−3n

4
n
+4

∑(n−2)/2
i=1

1
i

, if n is even

n3−3n
4
∑(n−1)/2

i=1
1
i

, if n is odd.

Proof. There are n(n−1)
2 − n pairs of non-adjacent vertices in Cn. As seen in Proposition

2.4, we have for a vertex u of Cn,

rs(u) =


2
n + 2

∑(n−2)/2
i=1

1
i , if n is even

2
∑(n−1)/2

i=1
1
i , if n is odd.

Therefore by the definition of harmonic reciprocal status coindex, we get the results. �
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Proposition 3.4. For a wheel Wk+1, k ≥ 3,

HRS(Wk+1) =
k(k − 3)

k + 3
.

Proof. The non adjacent pairs of vertices of the wheel Wk+1 has degree 3 and there are
(k+1)k

2 − 2k pairs of non adjacent vertices in Wk+1. Also diam(Wk+1) = 2. Therefore by
the equality part of Theorem 3.1, we get the result. �

Proposition 3.5. For a windmill graph Fk, k ≥ 2,

HRS(Fk) =
2k(k − 1)

k + 1
.

Proof. The non adjacent pairs of vertices of the windmill graph Fk has degree 2 and there

are 2k(2k+1)
2 − 3k such pairs in Fk. Also diam(Fk) = 2. Therefore by the equality part of

Theorem 3.1, we get the result. �

4. Conclusion

We have introduced harmonic reciprocal status index and coindex of connected graphs
and obtained bounds for these indices. Also these indices of certain standard graphs have
been obtained.
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