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K-G-FUSION WOVEN IN HILBERT SPACES

V. SADRI1, G. RAHIMLOU1, R. AHMADI2, §

Abstract. In this note, we study weaving K-g-fusion frames in separable Hilbert spaces
which motivated by a generalized of fusion frames. We present necessary and sufficient
conditions for these woven and also construct them by a linear bounded operator. Fi-
nally, A Paley-Wiener type perturbation result for weaving K-g-fusion frames will be
investigated.
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1. Introduction and Preliminaries

Fusion frames or frame of subspaces have been introduced by Casazza and Kutyniok in
[2, 3, 4]. They have defined frames for closed subspaces of given Hilbert spaces with the
help of the orthogonal projections. Găvruţa presented frames for operators (or K-frames)
in [12] while studying about the atomic systems with respect to a bounded operator K
which had been introduced by Fechtinger and Werther in [10] and showed that atomic
systems for K are equivalent with the K-frames.

Recently, Bemrose et al. in [1] were able to introduce a new concept of frames as weaving
frames which they have potential applications in wireless sensor networks. Two frames
{fj}j∈J and {gj}j∈J for a Hilbert space H are (weakly) woven if for each subset σ ∈ J, the
family {fj}j∈σ ∪ {gj}j∈σc is a frame for H. Afterwards, this topic was presented in other
frames like g-frames, fusion frames and etc [13, 11, 17]. Recently, we generalized fusion
frames which we called g-fusion frames and also their woven in Hilbert spaces ([14, 15, 16]).
We aim at studying woven for K-g-fusion frames.

Throughout this paper, H is a separable Hilbert space and B(H) is the collection of all
the bounded linear operators of H into H. Also, πV is the orthogonal projection from H
onto a closed subspace V ⊂ H and {Hj}j∈J is a sequence of Hilbert spaces where J is a
subset of Z. The following lemmas are useful in our study on fusion frames.
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Lemma 1.1. ([12]) Let V ⊆ H be a closed subspace, and U be a linear bounded operator
on H. Then

πV U
∗ = πV U

∗πUV .

If U is a unitary (U is bijective and U∗ = U−1), then πUV U = UπV .

If an operator U has closed range, then there exists a right-inverse operator U † (pseudo-
inverse of U) in the following senses.

Lemma 1.2. ([6]) Let U ∈ B(H1, H2) be a bounded operator with closed range R(U).
Then there exists a bounded operator U † ∈ B(H2, H1) for which

UU †x = x, x ∈ R(U).

Lemma 1.3. ([9]). Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H) be on given Hilbert spaces.
Then the following assertions are equivalent:

(1) R(L1) ⊆ R(L2);
(2) L1L

∗
1 ≤ λ2L2L

∗
2 for someλ > 0;

(3) there exists a mapping U ∈ B(H1, H2) such that L1 = L2U .

Moreover, if those conditions are valid, then there exists a unique operator U such that

(a) ‖U‖2 = inf{α > 0 | L1L
∗
1 ≤ αL2L

∗
2};

(b) N (L1) = N (U);

(c) R(U) ⊆ R(L∗2).

Now, we review the notation of K-g-fusion frames and their operators.

Definition 1.1. Let W = {Wj}j∈J be a collection of closed subspaces of H, {vj}j∈J be
a family of weights, i.e. vj > 0, Λj ∈ B(H,Hj) for each j ∈ J and K ∈ B(H). We say
Λ := (Wj ,Λj , vj) is a K-g-fusion frame for H if there exist 0 < A ≤ B <∞ such that for
each f ∈ H,

A‖K∗f‖2 ≤
∑
j∈J

v2
j ‖ΛjπWjf‖2 ≤ B‖f‖2. (1)

When the right hand side of (1.1) holds, Λ is called a g-fusion Bessel sequence for H
with bound B. If K = IdH , we get the g-fusion frame for H. We say Λ is a Parseval
K-g-fusion frame whenever ∑

j∈J
v2
j ‖ΛjπWjf‖2 = ‖K∗f‖2.

The synthesis and the analysis operators of the K-g-fusion frames are defined by (for more
details, we refer to [16])

TΛ : H2 −→ H,

TΛ({fj}j∈J) =
∑
j∈J

vjπWjΛ
∗
jfj ,

and

T ∗Λ : H −→H2,

T ∗Λ(f) = {vjΛjπWjf}j∈J,
where

H2 =
{
{fj}j∈J : fj ∈ Hj ,

∑
j∈J
‖fj‖2 <∞

}
. (2)
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Hence, the g-fusion frame operator is given by

SΛf = TΛT
∗
Λf =

∑
j∈J

v2
jπWjΛ

∗
jΛjπWjf

and

〈SΛf, f〉 =
∑
j∈J

v2
j ‖ΛjπWjf‖2,

for all f ∈ H. Therefore,

〈AKK∗f, f〉 ≤ 〈SΛf, f〉 ≤ 〈Bf, f〉

or

AKK∗ ≤ SΛ ≤ BIdH . (3)

In K-g-fusion frames, if K ∈ B(H) has closed range, then SΛ is an invertible operator on
R(K).

2. K-G-Fusion Woven

Throughout this paper, [m] := {1, 2, · · · ,m} for each m > 1, {Wij}j∈J,i∈[m] is a col-
lection of closed subspaces of H, {vij}j∈J,i∈[m] is a family of weights, K ∈ B(H) and{

Λij
}
j∈J,i∈[m]

∈ B(H,Hij) where Hij are Hilbert spaces.

Definition 2.1. A family of g-fusion frames (Wij ,Λij , vij)j∈J,i∈[m] for H is said to be
K-g-fusion woven if there exist universal positive constants 0 < A ≤ B such that for each
partition {σi}i∈[m] of J, the family (Wij ,Λij , vij)j∈σi,i∈[m] is a K-g-fusion frame for H with
bounds A and B.

It is easy to check that if
{

(Wij ,Λij , vij)j∈J
}

is a g-fusion Bessel sequence for H with
boundBi for each i ∈ [m] then, for any partition {σi}i∈[m] of J, the family (Wij ,Λij , vij)j∈σi,i∈[m]

is a g-fusion Bessel sequence with the Bessel bound
∑

i∈[m]Bi. So, every g-fusion woven

has a universal upper bound. In next theorem, we provide a necessary and sufficient
condition for weaving K-g-fusion frames with the same method of [11].

Theorem 2.1. Assume that (Wj ,Λj , vj)j∈J and (Vj ,Θj , νj)j∈J are two K-g-fusion frames
for H where Λj ∈ B(H,Hj) and Θj ∈ B(H,Hj) for any j ∈ J. The following assertions
are equivalent.

(I) (Wj ,Λj , vj)j∈J and (Vj ,Θj , νj)j∈J are K-g-fusion woven.
(II) There exists α > 0 such that for each σ ⊂ J there exists a bounded linear operator

Ψσ : H σ
2 −→ H,

Ψσ{xj}j∈J =
∑
j∈σ

vjπWjΛ
∗
jxj +

∑
j∈σc

νjπVjΘ
∗
jxj ,

such that αKK∗ ≤ ΨσΨ∗σ, where

H σ
2 =

{
{xj}j∈J = {fj}j∈σ ∪ {gj}j∈σc : fj ∈ Hj , gj ∈ Hj ,

∑
j∈J
‖xj‖2 <∞

}
.

Proof. (I) ⇒ (II): Suppose that A is an universal lower frame bound for (Wj ,Λj , vj)j∈J
and (Vj ,Θj , νj)j∈J. Choose α := A and Ψσ := Tσ for every σ ⊂ J, where Tσ is the synthesis
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operator of (Wj ,Λj , vj)j∈σ ∪ (Vj ,Θj , νj)j∈σc . Then, for any {xj}j∈J ∈H σ
2 we have,

Ψσ{xj}j∈J = Tσ{xj}j∈J
=
∑
j∈σ

vjπWjΛ
∗
jxj +

∑
j∈σc

νjπVjΘ
∗
jxj ,

and also, for each f ∈ H,

A‖K∗f‖2 ≤ ‖T ∗σf‖2 = ‖Ψ∗σf‖2.

Thus, αKK∗ ≤ ΨσΨ∗σ.
(II)⇒ (I): Let σ ⊂ J and f ∈ H, so it is easy to check that

Ψ∗σ{xj}j∈J = {vjΛjπWjf}j∈σ ∪ {νjΘjπVjf}j∈σc .

Therefore,

α‖K∗f‖2 = 〈αKK∗f, f〉
≤ 〈Ψ∗σΨσf, f〉
= ‖Ψσf‖2

=
∑
j∈σ

v2
j ‖ΛjπWjf‖2 +

∑
j∈σc

ν2
j ‖ΘjπVjf‖2.

This gives that α is an universal lower frame bound of (Wj ,Λj , vj)j∈J and (Vj ,Θj , νj)j∈J.
�

Example 2.1. Let H = {(f1, f2, f3) : f1, f2, f3 ≥ 0} ⊂ R3 with the standard orthonormal
basis {e1, e2, e3} and J = {1, 2, 3}. We define

W1 = span{e1}, W2 = span{e1, e2}, W3 = span{e1, e3},
V1 = span{e2, e1}, V2 = span{e2}, V3 = span{e2, e3},

and Λj ,Θj ∈ B(H,C) for any j ∈ J so that

Λ1f = 〈e1, f〉, Λ2f = 〈e1 + e2, f〉, Λ3f = 〈e1 + e3, f〉,
Θ1f = 〈e1 + e2, f〉, Θ2f = 〈e2, f〉, Θ3f = 〈e2 + e3, f〉,

where f = (f1, f2, f3). Also, we define

Ke1 = e1 + e2, Ke2 = e3, Ke3 = 0.

Therefore, K∗f = (f1 + f2, 0, f3) and it is clear that (Wj ,Λj , 1)j∈J and (Vj ,Θj , 1)j∈J are
K-g-fusion frames with bounds 1 and 5. Now, if α := 1 and Ψσ := Tσ, then by Theorem
2.1 it is obvious that (Wj ,Λj , 1)j∈J and (Vj ,Θj , 1)j∈J are K-g-fusion woven.

In next results, we construct a K-g-fusion woven by using a bounded linear operator.

Theorem 2.2. Let (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion woven for H with common frame
bounds A, B and assume that U ∈ B(H) has closed range so that R(K∗) ⊆ R(U) and
KU = UK. Then (UWij ,ΛijπWijU

∗, vij)j∈J,i∈[m] is also K-g-fusion woven for R(U) with

frame bounds A‖U †‖−2 and B‖U‖2.
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Proof. By the open mapping theorem, UWij is closed for any j ∈ J and i ∈ [m]. Using
Lemma 1.1, we can write for each f ∈ R(U),

A‖K∗f‖2 = A‖(U †)∗U∗K∗f‖2

≤ A‖U †‖2‖K∗U∗f‖2

≤ ‖U †‖2
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗f‖2

= ‖U †‖2
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗πUWijf‖2.

The upper bound is obvious. �

Theorem 2.3. Let K have closed range, (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion woven
for H with the universal bounds A,B and U ∈ B(H) so that R(U∗) ⊆ R(K). Then
(UWij ,ΛijπWijU

∗, vij)j∈J,i∈[m] is a K-g-fusion woven for H if and only if there exists a
δ > 0 such that for every f ∈ H,

‖U∗f‖ ≥ δ‖K∗f‖.

Proof. Let f ∈ K and (UWij ,ΛijπWijU
∗, vij)j∈J,i∈[m] be a K-g-fusion woven for K with

the lower bound C and U ∈ B(H) such that R(U∗) ⊆ R(K). Thus, by Lemma 1.1, we get

C‖K∗f‖2 ≤
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗πUWij
f‖2

=
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗f‖2

≤ B‖U∗f‖2.

Therefore, ‖U∗f‖ ≥
√

C
B‖K

∗f‖. For the opposite implication, we can write for all f ∈ H,

‖U∗f‖ = ‖(K†)∗K∗U∗f‖ ≤ ‖K†‖.‖K∗U∗f‖.

Hence, we have

Aδ2‖K†‖−2‖K∗f‖2 ≤ A‖K†‖−2‖U∗f‖2

≤ A‖K∗U∗f‖2

≤
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗f‖2

=
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijU

∗πUWij
f‖2

≤ B‖U‖2‖f‖2.

So, (UWij ,ΛijπWijU
∗, vij)j∈J,i∈[m] is a g-fusion woven forH with frame bounds Aδ2‖K†‖−2

and B‖U‖2. �

Theorem 2.4. Let K have closed range, (Wj ,Λj , vj)j∈J be a K-g-fusion frame for H

with bounds A,B and U ∈ B(H) be a unitary operator. If ‖IdH − U‖2‖K†‖2 <
A

B
, then

(Wj ,Λj , vj)j∈J and (U−1Wj ,ΛjU, vj)j∈J are K-g-fusion woven for R(K).
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Proof. The upper bound is clear. Let σ ⊂ J be a partition and f ∈ R(K). So, by Lemma
1.1 and this fact ‖f‖2 ≤ ‖K†‖2‖K∗f‖2, we can write∑

j∈σ
v2
j ‖ΛjπWjf‖2 +

∑
j∈σc

v2
j ‖ΛjUπU−1Wj

f‖2

=
∑
j∈σ

v2
j ‖ΛjπWjf‖2 +

∑
j∈σc

v2
j ‖ΛjπWjf − (ΛjπWjf + ΛjπWjUf)‖2

≥
∑
j∈J

v2
j ‖ΛjπWjf‖2 −

∑
j∈σc

v2
j ‖ΛjπWj (IdH − U)f‖2

≥ A‖K∗f‖2 −B‖IdH − U‖2‖f‖2

≥ A‖K∗f‖2 −B‖IdH − U‖2‖K†‖2‖K∗f‖2

=
(
A−B‖IdH − U‖2‖K†‖2

)
‖K∗f‖2.

Thus, (Wj ,Λj , vj)j∈σ ∪ (U−1Wj ,ΛjU, vj)j∈σc is a K-g-fusion frame. �

Proposition 2.1. Let (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion woven for H with common

frame bounds A and B. Suppose that 0 ≤ C ≤ |ω(i)
j |2 ≤ D <∞ for any i ∈ [m] and j ∈ J,

then (Wij , ω
(i)
j Λij , vij)j∈J,i∈[m] is a K-g-fusion woven for H with frame bounds AC and

BD.

Proof. For any partition {σi}i∈[m] of J and f ∈ H, we get

AC‖K∗f‖2 = min
i∈[m]

|ω(i)
j |

2A‖K∗f‖2 ≤
∑
i∈[m]

∑
j∈σi

v2
ij‖ω

(i)
j ΛijπWijf‖2

≤ max
i∈[m]

|ω(i)
j |

2B‖f‖2 = BD‖f‖2.

�

Proposition 2.2. Let I ⊂ J be arbitrary and (Wij ,Λij , vij)j∈I,i∈[m] be a K-g-fusion woven
for H. Then (Wij ,Λij , vij)j∈J,i∈[m] is a K-g-fusion woven.

Proof. Assume that σi ⊂ J, so σi∩I ⊂ I andA is the lower bound of (Wij ,Λij , vij)j∈σi∩I,i∈[m],
then for every f ∈ H we have

A‖K∗f‖2 ≤
∑
i∈[m]

∑
j∈σi∩I

v2
ij‖ΛijπWijf‖2 ≤

∑
i∈[m]

∑
j∈σi

v2
ij‖ΛijπWijf‖2.

This implies the statement. �

Next theorem is shows that even if one subspace is deleted, it dose not still remain a
K-g-fusion woven.

Theorem 2.5. Let K has closed range, I ⊂ J and (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion
woven for H with the bounds A,B. If

C :=
∑
i∈[m]

∑
j∈I

v2
ij‖Λij‖2 < A‖K†‖2,

then (Wij ,Λij , vij)j∈J\I,i∈[m] is a K-g-fusion woven for R(K) with frame bounds A − C
and B.
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Proof. The upper bound is obvious. Suppose that {σi}i∈[m] ⊂ J \ I and f ∈ R(K), so we
get

∑
i∈[m]

∑
j∈σi

v2
ij‖ΛijπWijf‖2 =

∑
i∈[m]

∑
j∈σi∪I

v2
ij‖ΛijπWijf‖2 −

∑
i∈[m]

∑
j∈I

v2
ij‖ΛijπWijf‖2

≥ A‖K∗f‖2 −
∑
i∈[m]

∑
j∈I

v2
ij‖Λij‖2‖f‖2

≥ (A− C‖K†‖2)‖K∗f‖2.

�

Corollary 2.1. Let K have closed range operator such that ‖K‖2 ≤ ‖K†‖2 and (WijΛij , vij)j∈J,i∈[m]

be a tight K-g-fusion woven for H with the bound A. Assume that j0 ∈ J. Then the fol-
lowing conditions are equivalent.
(I)
∑

i∈[m] v
2
ij0
‖Λij0πWij0

‖2 < A‖K†‖2;

(II) (Wij ,Λij , vij)j∈J\{j0},i∈[m] is a K-g-fusion woven for R(K).

Proof. (I) ⇒ (II) is clear by Theorem 2.5. For the opposite implication, suppose that
C,D are the frame bounds of (Wij ,Λij , vij)j∈J\{j0},i∈[m]. For any 0 6= f ∈ H we have

C‖K∗f‖2 ≤
∑
i∈[m]

∑
j∈J\{j0}

v2
ij‖ΛijπWijf‖2

=
∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijf‖2 −

∑
i∈[m]

v2
ij0‖Λij0πWij0

f‖2

= A‖K∗f‖2 −
∑
i∈[m]

v2
ij0‖Λij0πWij0

f‖2.

Hence,

0 < C ≤ A−
∑
i∈[m]

v2
ij0

‖Λij0πWij0
f‖2

‖K∗f‖2
≤ A− ‖K‖−2

∑
i∈[m]

v2
ij0

‖Λij0πWij0
f‖2

‖f‖2
.

So, we conclude that
∑

i∈[m] v
2
ij0
‖Λij0πWij0

‖2 < A‖K‖2. �

Theorem 2.6. Let (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion woven for H with the bounds

A,B. For each i ∈ [m], j ∈ J and a index set Iij, Suppose that {f (k)
ij }k∈Iij ∈ Λij(Wij) is a

Parseval frame for Hij such that for every finite subset Kij ⊂ Iij, the set {f (k)
ij }k∈Iij\Kij

is a

frame with the lower bound Cij. Let W̃ij := span{Λ∗ijf
(k)
ij }k∈Iij\Kij

for any i ∈ [m] and j ∈
J, then (W̃ij ,Λij , vij)j∈J,i∈[m] is a K-g-fusion woven for H with the bounds

(
mini∈[m]

j∈J
Cij
)
A

and B.
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Proof. Obviously, B is the upper bound of (W̃ij ,Λij , vij)j∈J,i∈[m]. Assume that f ∈ H and
{σi}i∈[m] ∈ J, so∑

i∈[m]

∑
j∈σi

v2
ij‖ΛijπW̃ij

f‖2 =
∑
i∈[m]

∑
j∈σi

v2
ij

∑
k∈Iij

|〈ΛijπW̃ij
f, f

(k)
ij 〉|

2

≥
∑
i∈[m]

∑
j∈σi

v2
ij

∑
k∈Iij\Kij

|〈ΛijπW̃ij
f, f

(k)
ij 〉|

2

=
∑
i∈[m]

∑
j∈σi

v2
ij

∑
k∈Iij\Lij

|〈ΛijπWijf, f
(k)
ij 〉|

2

≥
∑
i∈[m]

∑
j∈σi

v2
ijCij‖ΛijπWijf‖2

≥
(

min
i∈[m]
j∈J

Cij
) ∑
i∈[m]

∑
j∈σi

v2
ij‖ΛijπWijf‖2

≥
(

min
i∈[m]
j∈J

Cij
)
A‖K∗f‖2.

�

Theorem 2.7. Let (Wij ,Λij , vij)j∈J is a K-g-fusion frame for H for each i ∈ [m]. Suppose
that for a partition collection of disjoint finite sets {τi}i∈[m] of J and for any ε > 0 there
exists a partition {σi}i∈[m] of the set J \

⋃
i∈[m] τi such that (Wij ,Λij , vij)j∈(σi∪τi),i∈[m] has

a lower K-g-fusion frame bound less than ε. Then (Wij ,Λij , vij)j∈J,i∈[m] is not a woven.

Proof. We can write J = ∪j∈NJj , where Jj are disjoint index sets. Assume that τ1j =
∅ for all i ∈ [m] and ε = 1. Then, there exists a partition {σi1}i∈[m] of J such that
(Wij ,Λij , vij)j∈(σi1∪τi1),i∈[m] has a lower bound (also, optimal lower bound) less than 1.
Thus, there is a f1 ∈ H such that∑

i∈[m]

∑
j∈(σi1∪τi1)

v2
ij‖ΛijπWijf1‖2 < ‖K∗f1‖2.

Since ∑
i∈[m]

∑
j∈J

v2
ij‖ΛijπWijf1‖2 <∞,

so, there is a k1 ∈ N such that∑
i∈[m]

∑
j∈K1

v2
ij‖ΛijπWijf1‖2 < ‖K∗f1‖2,

where, K1 = ∪i≥k1+1Jj .
Continuing this way, for ε = 1

n and a partition {τnj}i∈[m] of J1 ∪ · · · ∪ Jkn−1 such that

τni = τ(n−1)i ∪
(
σ(n−1)i ∩ (J1 ∪ · · · ∪ Jkn−1)

)
for all i ∈ [m], there exists a partition {σni}i∈[m] of J \ (J1 ∪ · · · ∪ Jkn−1) such that

(Wij ,Λij , vij)j∈(σni∪τni),i∈[m] has a lower bound less than 1
n . Therefore, there is a fn ∈ H

and kn ∈ N such that kn > kn−1 and∑
i∈[m]

∑
j∈Kn

v2
ij‖ΛijπWijfn‖2 <

1

n
‖K∗f1‖2,
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where, Kn = ∪i≥kn+1Jj . Choose a partition {ςi}i∈[m] of J, where ςi := ∪j∈N{τji} =
τ(n+1)i ∪ (ςi ∩ J \ (J1 ∪ · · · ∪ Jn)). Assume that (Wij ,Λij , vij)j∈ςi,i∈[m] is a K-g-fusion frame
for H with the optimal lower bound A. Then, by the Archimedean Property, there exists
a r ∈ N such that r > 2

A . Now, there exists a fr ∈ H such that

∑
i∈[m]

∑
j∈ςi

v2
ij‖ΛijπWijfr‖2 =

∑
i∈[m]

∑
j∈τ(r+1)i

v2
ij‖ΛijπWijfr‖2+

+
∑
i∈[m]

∑
j∈ςi∩J\(J1∪···∪Jr)

v2
ij‖ΛijπWijfr‖2

≤
∑
i∈[m]

∑
j∈(τri∪σri)

v2
ij‖ΛijπWijfr‖2+

+
∑
i∈[m]

∑
j∈∪k≥r+1Jk

v2
ij‖ΛijπWijfr‖2

<
1

r
‖K∗fr‖2 +

1

r
‖K∗fr‖2

< A‖K∗fr‖2,

and this is a contradiction with the lower bound of A. �

Corollary 2.2. Let (Wij ,Λij , vij)j∈J,i∈[m] be a K-g-fusion woven for H. Then there exists
a collection of disjoint finite subsets {τi}i∈[m] of J and A > 0 such that for each partition
{σi}i∈[m] of the set J\

⋃
i∈[m] τi, some the family (Wij ,Λij , vij)j∈(σi∪τi),i∈[m] is a K-g-fusion

frame for H with the lower frame bound A.

Theorem 2.8. Let (Wij ,Λij , vij)j∈J be a K-g-fusion frame for H with bounds Ai and Bi
for each i ∈ [m]. Suppose that there exists N > 0 such that for all i, k ∈ [m] with i 6= k,
I ⊂ J and f ∈ H,

∑
j∈I
‖(vijΛijπWij

− vkjΛkjπWkj
)f‖2 ≤ N min

{∑
j∈I

v2ij‖ΛijπWij
f‖2,

∑
j∈I

v2kj‖ΛkjπWkj
f‖2
}
.

Then the family (Wij ,Λij , vij)j∈J,i∈[m] is woven with universal bounds

A

(m− 1)(N + 1) + 1
and B,

where A :=
∑

i∈[m]Ai and B :=
∑

i∈[m]Bi.
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Proof. Let {σi}i∈[m] be a partition of J and f ∈ H. Therefore,

∑
i∈[m]

Ai‖K∗f‖2 ≤
∑
i∈[m]

∑
j∈J

v2ij‖ΛijπWij
f‖2

=
∑
i∈[m]

∑
k∈[m]

∑
j∈σk

v2ij‖ΛijπWij
f‖2

≤
∑
i∈[m]

(∑
j∈σi

v2ij‖ΛijπWij
f‖2

+
∑
k∈[m]
k 6=i

∑
j∈σk

{
‖vijΛijπWij

f − vkjΛkjπWkj
f‖2 + v2kj‖ΛkjπWkj

f‖2
})

≤
∑
i∈[m]

(∑
j∈σi

v2ij‖ΛijπWijf‖2 +
∑
k∈[m]
k 6=i

∑
j∈σk

(N + 1)v2kj‖ΛkjπWkj
f‖2
)

= {(m− 1)(N + 1) + 1}
∑
i∈[m]

(∑
j∈σi

v2ij‖ΛijπWij
f‖2
)
.

Thus, we get

A

(m− 1)(N + 1) + 1
‖K∗f‖2 ≤

∑
i∈[m]

(∑
j∈σi

v2
ij‖ΛijπWijf‖2

)
≤ B‖f‖2.

�

Bemrose et al. in [1] proved sufficient conditions for weaving frames by means of per-
turbation and diagonal dominance. Deepshikha and Vashisht in [7, 8] were able to present
some results of perturbation on K-woven. We study a-Paley-Wiener type perturbation
for weaving K-g-fusion frames.

Theorem 2.9. Let (Wj ,Λj , wj)j∈J and (Vj ,Θj , vj)j∈J be two K-g-fusion frames for H
with frame bounds A1, B1 and A2, B2, respectively. Suppose that there exist non-negative
scalers µ and 0 ≤ λ < 1

2 such that (1
2 − λ)A1 > µ and for each f ∈ H,

∑
j∈J

∥∥(wjΛjπWj − vjΘjπVj )f
∥∥2 ≤ λ

∑
j∈J

∥∥wjΛjπWjf
∥∥2

+ µ‖K∗f‖2.

Then, (Wj ,Λj , wj)j∈J and (Vj ,Θj , vj)j∈J are K-g-fusion woven for H with universal frame

bounds (1
2 − λ)A1 − µ and B1 +B2.
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Proof. The upper frame bound is clear. For the lower frame bound, assume that σ ⊂ J
and we get ,by the arithmetic-quadratic mean, for any f ∈ H∑

j∈σ
w2
j‖ΛjπWj

f
∥∥2 +

∑
j∈σc

v2j ‖ΘjπVj
f
∥∥2

=
∑
j∈σ

w2
j‖ΛjπWjf

∥∥2 +
∑
j∈σc

∥∥wjΛjπWjf − (wjΛjπWj − vjΘjπVj )f
∥∥2

≥
∑
j∈σ

w2
j‖ΛjπWjf

∥∥2 +
1

2

∑
j∈σc

w2
j‖ΛjπWjf

∥∥2 −∑
j∈σc

∥∥(wjΛjπWj − vjΘjπVj )f
∥∥2

=
1

2

∑
j∈J

w2
j‖ΛjπWj

f
∥∥2 +

1

2

∑
j∈σ

w2
j‖ΛjπWjf

∥∥2 −∑
j∈σc

∥∥(wjΛjπWj − vjΘjπVj )f
∥∥2

≥ 1

2

∑
j∈J

w2
j‖ΛjπWjf

∥∥2 −∑
j∈σc

∥∥(wjΛjπWj − vjΘjπVj )f
∥∥2

≥ 1

2

∑
j∈J

w2
j‖ΛjπWj

f
∥∥2 − λ∑

j∈J

∥∥wjΛjπWj
f
∥∥2 − µ‖K∗f‖2

≥
(

(
1

2
− λ)A1 − µ

)
‖K∗f‖2.

This completes the proof. �
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