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AN EXTENSION THEOREM ON DEGREE OF APPROXIMATION OF

FOURIER SERIES BY (E, q)B−MEAN

B. P. PADHY1, P. TRIPATHY1, U. K. MISRA2, §

Abstract. Now-a-days, approximation of functions have great importance in the field
of science and engineering because of its wider applicability. It is observed that the de-
termination of trigonometric approximation of functions in various function spaces using
summability techniques of Fourier series and conjugate Fourier series received a growing
interest among the researchers and scientists. In the present article, we have established
a new result on the degree of approximation of a Fourier series of weighted Lipchitz class
W (LP , ξ(u)) by using the product mean (E, q)B.
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1. Introduction

The concept of approximating a function is due to the great mathematician Weierstrass.
To minimize the error in the degree of approximation, different summation methods of
Fourier series were introduced. Looking at its wider applicability in the field of science
and engineering, various researchers have investigated on the degree of approximations
for periodic functions belonging to different spaces like: Lipschitz, Hölder, Zygmund and
Besov. The degree of approximation of functions belonging to different class of functions
have been studied by various investigators like Nigam [6], Padhy et al. [7], Parida et al.[8],
Das et al.([1],[2]), Pradhan et al.[9], Jena et al.[4] etc. Working in the direction to get a
better approximation, we have established a new result on the degree of approximation of
a Fourier series of weighted Lipchitz class W (LP , ξ(u)) by using (E, q)B mean.
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2. Definitions and Notations

Let
∑
bn be the given series and {sn} be its partial sums. If B = (bmn) be an infinite

matrix, then the transformation

τm =
m∑
n=0

bmnsn ,m = 1, 2, ... (1)

denotes the B− transform of the sequence {sn}.
If

τn → s, as n→∞,
then

∑
bn is B−summable to s.

The conditions for the regularity of B−summability are:

(i) sup
m

∞∑
n=0

|bmn| < L, where L is an absolute constant,

(ii) lim
n→∞

bm,n = 0 for every m = 1, 2, 3, ..., and

(iii) lim
m→∞

∞∑
n=0

bm,n = 1.

Further, the transformation [3]

tn =
1

(1 + q)n

n∑
k=0

(
n

k

)
qn−ksk (2)

represents the (E, q)−transform of the sequence {sn}.
If tn → s, as n→∞, the series

∑
bn is summable by (E, q)− method.

It is known that (E, q) is regular [11].
Furthermore, the transformation

wn =
1

(1 + q)n

n∑
k=0

(
n

k

)
qn−kτk (3)

=
1

(1 + q)n

n∑
k=0

(
n

k

)
qn−k{

k∑
ν=0

bkνsν} (4)

defines the (E, q)−transform of the B−transform of {sn}.
If wn → s , as n→∞, then the series

∑
bn is summable (E, q)B to s.

Let g(t) be a 2π periodic function, which is integrable over (−π, π) in Lebesgue’s sense.
Let

g(x) ≡ c0
2

+

∞∑
n=1

(cncos nx+ dnsin nx) ≡
∞∑
n=0

Gn(x) (5)

be the Fourier series at any point ′x′,where c0, cn and dn are the Euler Fourier constants.
Let sn(g;x) be the nth partial sum of the Fourier series (5).
For a function g : R→ R, the L∞−norm of is defined by

‖g‖∞ = sup{|g(x)| : x ∈ R} (6)

and the Lν− norm is defined by

‖g‖ν =
{∫ 2π

0
|g(x)|ν

} 1
ν
, ν ≥ 1. (7)
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The degree of approximation of the function g by a nth degree polynomial Qn(x) under
the norm ‖.‖∞ is given by [10]

‖Qn − g‖∞ = sup
{
|Qn(x)− g(x)| : x ∈ R

}
(8)

and the trigonometric Fourier approximation under the norm Lν is

En(g) = min
Qn
‖Qn − g(x)‖ν (9)

For any real number α, 0 < α ≤ 1, a function g is said to satisfy Lipschitz condition [5]
i.e. Lipα, if

|g(x+ u)− g(x)| = O
{
|u|α

}
, u > 0 (10)

and for any real number r ≥ 1, 0 ≤ x ≤ 2π, g(x) ∈ Lip(α, r) if{∫ 2π

0
|g(x+ u)− g(x)|rdx

} 1
r

= O
(
|u|α

)
, u > 0. (11)

Let ξ(u) be a positive increasing function, then for the real number r ≥ 1, g(x) is said to

belong Lip
(
ξ(u), r

)
, if{∫ 2π

0
|g(x+ u)− g(x)|rdx

} 1
r

= O
(
ξ(u)

)
, r ≥ 1, u > 0. (12)

and for any integer p > 1, the function g(x) ∈W
(
Lp, ξ(u)

)
if(∫ 2π

0
|g(x+ u)− g(x)|p(sinβx)pdx

) 1
p

= O
(
ξ(u)

)
, β ≥ 0. (13)

From (10),(11),(12) and (13), it is clear that

Lipα ⊆ Lip(α, r) ⊆ Lip
(
ξ(u), r

)
⊆W

(
Lp, ξ(u)

)
We use the following notations throughout the chapter:

φ(u) = g(x+ u) + g(x− u)− 2g(x) (14)

and

Kn(u) =
1

2π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

{ k∑
λ=0

bkλ
sin(λ+ 1

2)u

sin(u2 )

}
(15)

3. Known Theorems

Nigam [6] has proved the following theorem on degree of approximation by the product
(E, q)(C, 1)− mean of the Fourier series.

Theorem 3.1. If g is a 2π− periodic function of class Lipα, then degree of approximation
by the product(E, q)(C, 1) summability means on its Fourier series (5) is given by ‖Eqnc1n−
g‖∞ = O

(
1

(n+1)α

)
, 0 < α < 1, where Eqnc1n represents the (E, q) transform of (C, 1)

transform of sn(g;x).

Padhy et al. [7] proved the following theorem using (E, q)B− mean of the Fourier series.

Theorem 3.2. Let B = (bmn)∞×∞ be a regular matrix. If g is a 2π− periodic function of
class Lipα, then degree of approximation by the product (E, q)B summability means on its

Fourier series (5) is given by‖wn − g‖∞ = O
(

1
(n+1)α

)
, 0 < α < 1,where wn is as defined

in (4).
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In this paper, generalizing the result of Padhy et al., by taking the function belonging
to weighted Lipschitz class, we establish the following result.

4. Main Theorem

Theorem 4.1. The degree of trigonometric approximation of the Fourier series (5) of a

2π−periodic function of class W
(
Lp, ξ(u)

)
, p > 1, u > 0 by (E, q)B summability is

‖wν − g‖r = O
(

(ν + 1)β+
1
r ξ
( 1

ν + 1

))
, r ≥ 1, (16)

provided (∫ 1
ν+1

0

(u|φ(u)|sinβu
ξ(u)

)r
du
) 1
r

= O
( 1

ν + 1

)
(17)

and (∫ π

1
ν+1

(u−δ|φ(u)|
ξ(u)

)r
du
) 1
r

= O
(

(ν + 1)δ
)

(18)

hold uniformly with 1
r + 1

s = 1 and for an arbitrary δ , s(1 − δ) − 1 > 0 and wn is as
defined in (4).

5. Required Lemmas

Lemma 5.1. [6] |Kn(t)| = O(n), for 0 ≤ t ≤ 1
n+1 .

Lemma 5.2. [6] |Kn(t)| = O(1t ), for 1
n+1 < t ≤ π.

6. Proof of Main Theorem

Proof. By making use of Riemann-Lebesgue’s theorem and following Titchmarsh[10], we
have

sn(g;x)− g(x) =
1

2π

∫ π

0
φ(u)

sin
(
n+ 1

2

)
u

sin
(
u
2

) du,

and the B−transform of sn(g;x) using (1) is given by

τn − g(x) =
1

2π

∫ π

0
φ(u)

n∑
k=0

bnk
sin
(
n+ 1

2

)
u

sin
(
u
2

) du,

Since, wn is (E, q)B− mean of the sequence {sn(g;x)}, we have

‖wn − g‖ =
1

2π

∫ π

0
φ(u)

n∑
k=0

(
n

k

)
qn−k

(1 + q)n

k∑
λ=0

bkλ
sin
(
n+ 1

2

)
u

sin
(
u
2

) du

=

∫ π

0
Kn(u) φ(u) du =

(∫ 1
n+1

0
+

∫ π

1
n+1

)
φ(u)Kn(u)du

= I1 + I2, say (19)
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Now

|I1| =
1

2π

∫ 1
n+1

0
φ(u)

n∑
k=0

(
n

k

)
qn−k

(1 + q)n

k∑
λ=0

bkλ
sin
(
n+ 1

2

)
u

sin
(
u
2

) du

=
∣∣∣ ∫ 1

n+1

0
φ(u)Kn(u)du

∣∣∣
By using Hölder’s inequality,

|I1| ≤
(∫ 1

n+1

0

∣∣∣uφ(u)sinβu

ξ(u)

∣∣∣rdu) 1
r
(∫ 1

n+1

0

∣∣∣ξ(u)Kn(u)

usinβu

∣∣∣sdu) 1
s
,where

1

r
+

1

s
= 1

= O(1)
(∫ 1

n+1

0

( ξ(u)

u1+β

)s
du
) 1
s
,using lemma 4.1 and (17)

= O
(
ξ
( 1

n+ 1

)(∫ 1
n+1

ε

du

u(β+1)s

) 1
s
, 0 ≤ ε ≤ 1

1 + n
.

= O
(
ξ
( 1

1 + n

))
O
(

(1 + n)β+
−1
s
+1
)

= O
(
ξ
( 1

1 + n

)
(1 + n)β+

1
r

)
(20)

Similarly, by using Hölder’s inequality,

|I2| ≤
(∫ π

1
n+1

∣∣∣u−δ|φ(u)|sinβu
ξ(u)

∣∣∣rdu) 1
r ×

(∫ π

1
n+1

∣∣∣ξ(u)Kn(u)

u−δsinβu

∣∣∣sdu) 1
s
,where

1

r
+

1

s
= 1,

= O
(

(n+ 1)δ
)(∫ π

1
n+1

( ξ(u)

uβ+1−δ

)s
du
) 1
s
, using lemma 4.2 and (18).

= O
(

(1 + n)δ
)(∫ π

1
1+n

( ξ( 1y )

yδ−β−1

)sdy
y2

) 1
s
,

= O
(

(1 + n)1+δξ
( 1

1 + n

))(∫ 1+n

ε

dy

ys(δ−β−1)+2

) 1
s
,

1

π
≤ ε ≤ 1 + n,

by second mean value theorem, (since,
ξ( 1y )

1
y

is positive and increasing)

= O
(

(1 + n)δ+1ξ
( 1

1 + n

))
O
(

(1 + n)1+β−δ−
1
s

)
= O

(
(1 + n)β+

1
r ξ
( 1

1 + n

))
(21)

Then, by using (20) and (21), we get

|wn − g(x)| = O
(

(1 + n)β+
1
r ξ
( 1

1 + n

))
,for,r ≥ 1,

‖wn − g(x)‖ =
(∫ 2π

0
O
(

(1 + n)β+
1
r ξ
( 1

1 + n

))r
dx
) 1
r
, r ≥ 1

= O
(

(1 + n)β+
1
r ξ
( 1

1 + n

))(∫ 2π

0
dx
) 1
r

= O
(

(1 + n)β+
1
r ξ
( 1

1 + n

))
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This completes the proof of the theorem. �

7. Corollaries

Corollary 7.1. The degree of approximation of a function g belonging to the class Lip(α, r), 0 <
α ≤ 1, r ≥ 1 is given by

‖wn − g‖∞ = O
(

(n+ 1)−α+
1
r

)
.

Proof. The corollary follows by putting β = 0 and ξ(u) = uα in the main theorem. �

Corollary 7.2. The degree of approximation of a function g belonging to the class Lip(α), 0 <
α ≤ 1, is given by

‖wn − g‖∞ = O
(

(n+ 1)−α
)

Proof. The corollary follows when we take r →∞ in the corollary 6.1. �

8. Conclusion

Our result established here is more general than some earlier existing results. Also it
generalizes the result of Padhy et.[7] al and Nigam [6].
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