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COLOR LAPLACIAN ENERGY OF SOME CLUSTER GRAPHS

S. D’SOUZA', GOWTHAM H. J.!', PRADEEP G. BHAT', GIRIJA K. P., §

ABSTRACT. The color energy of a graph G is defined as the sum of the absolute values
of the color eigenvalues of G. The graphs with large number of edges are referred as
cluster graphs. Cluster graphs are obtained from complete graphs by deleting few edges
according to some criteria. Bipartite cluster graphs are obtained by deleting few edges
from complete bipartite graphs according to some rule. In this paper, we study the color
Laplacian energy of cluster graphs and bipartite cluster graphs obtained by deleting the
edges of complete and complete bipartite graph respectively.
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1. INTRODUCTION

The energy E(G) of a graph G, defined as the sum of the absolute values of its eigenval-
ues, belongs to the most popular graph invariants in chemical graph theory. It originates
from the m-electron energy in the Hiickel molecular orbital model, but has also gained
purely mathematical interest. Gutman introduced this definition of the energy of a simple
graph in his paper “The energy of a graph”[9]. In the past decade, interest in graph energy
has increased and many different versions have been introduced. In 2006, Gutman and
Zhou defined the Laplacian energy of a graph as the sum of the absolute deviations (i.e.,
distance from the mean) of the eigenvalues of its Laplacian matrix [10]. Similar variants
of graph energy were developed for the signless Laplacian matrix, the distance matrix, the
incidence matrix, and even for a general matrix not associated with a graph [1].

Let G be a simple undirected graph with n vertices. Let A(G) be the adjacency matrix
of G and D(G) be the diagonal matrix of vertex degrees. Then the Laplacian matrix of
G is L(G) = D(G) — A(G). The Laplacian energy of graph G [10] is defined as LE(G) =

n 2m
) 'Mz' -
i=1

— where m is the number of edges in the graph G.
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A coloring of a graph G [12] is a coloring of its vertices such that no two adjacent
vertices share the same color. The minimum number of colors needed for the coloring of
a graph G is called the chromatic number of G and is denoted by x(G).

In 2013, C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth [2], have intro-
duced the energy of colored graph. The entries of the color adjacency matrix A.(G) are
as follows: If ¢(v;) is the color of vertex v;, then

1,  if v; and v; are adjacent with c(v;) # c(v;),
a;j =< —1, if v; and v; are non-adjacent with c(v;)=c(v;),
0, otherwise.

The color energy of a graph G is the sum of absolute values of the color eigenvalues of
n

G, i. e., E.(G) = >_ |\i|, where A\, Ag, ..., A, are the color eigenvalues of graph G.
1

i=

In 2015, P. G. Bhat and S. D’Souza [7] have introduced the color Laplacian matrix of
G as L.(G) = D(G) — A.(G). The eigenvalues pi1, pi2, . .., iy are called color Laplacian
eigenvalues of the graph G. The characteristic polynomial of color Laplacian matrix of G
is denoted by ¢(L.(G), n). The color Laplacian energy of graph is defined as LE.(G) =

n

X
i=
energy, Laplacian energy and color energy of a graph we refer [1, 3, 4, 5, 6, 8].

I. Gutman and L. Pavlovié¢ [11] introduced cluster graphs obtained by deleting the edges
of complete graphs and found energies of cluster graphs. H. B. Walikar and H. S. Ramane
[14] introduced bipartite cluster graphs obtained by deleting edges of complete bipartite
graph. In section 2, we establish color Laplacian energy of some cluster graphs. In section

3, we establish color Laplacian energy of bipartite cluster graphs.

2m
;i — — |, where m is the number of edges in the graph G. For more information on
n

2. COLOR LAPLACIAN ENERGY OF SOME CLUSTER GRAPHS

Definition 2.1. [13] Let (K,,)i,i=1,2,...,k, 1 <k < LEJ , 1 <m < n, be independent
m

complete subgraphs with m vertices of the complete graph K,, n > 3. The cluster graph

Kay(m, k) is obtained from K, by deleting all edges of (Ky)i, i = 1,2,...,k. In addition

Kap(m,0) = Ka,(0,k) = Ka,(0,0) = K,.

Example 2.1. Consider the cluster graph

FIGURE 1. Graph K, (2,2)

Let c(v1) = c(v2) = 1, ¢(vs) = c(vq) = 2, ¢(vs) = 3. The color Laplacian matriz is,
3 1 -1 —-1]-1
1 3 -1 —-1]-1
Le(Kag(2,2)=| -1 -1 3 1 |-1
-1 -1 1 3 | -1
-1 -1 -1 -1] 4

Xyxa ‘ —Juxa1
_J1><4 ‘ 5.[1 - J1><1 ’
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—Jy | 2Dy —J,

Where X =

], 1 is identity matriz and J is the matriz with all

entries one.

Theorem 2.1. Forn>3,0<k < {EJ and 1 <m <n,

m

LE.(Kan(m,k)) = % [2km(m — 1)(n — 1) — 2mk*(m — 1)> + n(n —m — 1+

Vm2(1 — 4k) + (n— 12+ 2m(n— 1+ 21{))} .

Proof. Consider the cluster graph Ka,(m, k) obtained from complete graph K, by deleting
all edges of (Ky,)i, @ =1,2,..., k. Since x(Kan(m,k)) =n— (m — 1)k, we have

Xk k —J
Le (Kan(m, k) = . mkXxm - Jmkx(n—mk)
Y (n—mk)XxXmk ‘ (’I’L B )(n—mk:)x(n—mk)
(n—m-0I,+J, —J, —Jm
—J mn—-—m-1I,+J, | - —J,
X = .
—;7m —;Tm (n—m— i)Im +Im Lk xme

Consider det (1l — L. (Kan(m, k))).

Step 1: Replace R; by R; =R,—R; |,fori=1,2,..m—1,m+1,m+2,...,2m—1,2m+
1,...,mk—2,mk—1,mk+1, mk+2,...,n—2,n—1. Then, det (uI — L. (Ka,(m,k)))
will reduce to a new determinant, say det(C').

Step 2: In det(C), replacing C; by C; =C,+C;_y,fori=23,....,mm+2,m+
3,....2m,2m+2,....,mk—1,mk,mk+2, mk+3,...,n—1,n, a new determinant
det(D) is obtained.

Step 3: On expanding det(D) along the rows R;, fori =1,2,3,...,k—1,k+1,k+2,...,2k—
L,2k+1,26+2,...,mk—2,mk—1,mk+1,mk+2,...,n—2 n—1, it becomes
(n—n+m+ 1)k — p)yr=mk=1 det(E). Where

p—n+1 m m - m n —mk
m p—m+1 m --- m n —mk
det(E) = :
m m m - p—n+1 n—mk
m m m m p—mk (k+1)x (k+1)

Step 4: In det(F), replacing R; by R; =R;— Rjyq, fori=1,2,... k, it reduces to

p—n—m+1 —(p—m—m-+1) 0 0 0
0 p—m—m+1 —(p—n—m-+1) --- 0 0
det(E) = : : : . .
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Step 5: In det(E), replacing C; by C; = C; + Ci_y +---+ Cy, for i = k,k—1,...,2 it

simplifies to

det(E)=(p—n—m+1)

Thus,

O(Le(Kan(m, k), 1) = (1 — 4 m+ 1) D (- ) =m0 (g 1)1

1lp—mn—m+1 n—p
mk w+mk

— (—n—m+ P (2 = (m+n— D — (m? —m)k).

(12 = (m+n—1p— (m* —mk).

So, the color Laplacian spectrum of Ka,(m, k) is {n +m —1 (k — 1 times),
n—m — 1((m — 1)k times),n (n — mk — 1 times),

m+n—1++/(m+n—1)2—4(m?—m)k m—i—n—l—\/(m+n—1)2—4(m2—m)k}.

Average degree of Kay(m,k) is

Hence,

LE.(Kan(m,k)) =(m— 1)k

2 ’ 2
nin—1) —km(m — 1)

n

n

(n_m—l)_”("—l)—nkm(m_l) +(n—mk —1)
o ez =D ) - )
n(n—l)—km(m—l)‘+

’(m+n1)+\/(m+n1)24k(m2m)
2
n(n—l)—km(m—l)’

(m+n—1)—/(m+n—1)2—4k(m2 —m)

* 2

n(n —1) — km(m — 1)‘

= L f2kmim — 1)~ 1)~ 2mk2m )2 (- 14

Vm2(1 = 4k) + (n — 12 + 2m(n — 1 + 2k))} .

n

]

Definition 2.2. [11] For fized integers n > 3 and 0 < k < bJ, the cluster graph Ky, (k)

1s obtained from K, by the deletion of k independent edges.

Corollary 2.1. Forn >3 and 0 < k < LgJ,

LE.(K, (k) = % dk(n—4k —1)+n (n 34/ (n—1)2+4(n— 2k))} .

Proof. Observe that Kj (k) is a special case of Ka,(m, k), when m=2. Thus, by substi-

tuting m = 2 in Theorem 2.1, the result follows.

O
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Definition 2.3. [11] Let n > 3 and k, where 1 <k < n— 1, be fized integers. The cluster
graph K. (k) is obtained from K,, by deleting a k-clique.

Corollary 2.2. Forn>3 and 1 <k <n-—1,
1
LE.(K. (k))=—-12k(k—1)(n—k)+n(n—k—1+
n

Vi —1)2 —3k2 4 2k(n + 1))} .

Proof. The proof follows by noting that K. (k) = Ka,(m,1) in Theorem 2.1. O

Definition 2.4. [11] Let n > 3 and 1 < k < {%J be fized integers. The cluster graph
Ky, (k) is obtained from K, by the deletion of k disjoint triangles.

Corollary 2.3. Forn >3 and 1 <k < LgJ,

LE(K; (k) = % [12k(n % —1)+n <n 4+ /(n—1)2+32n—8k+ 1))] .
Proof. The proof follows by noting that Ky (k) = Ka,(3,k) in Theorem 2.1. O

Definition 2.5. [11] For fized integers n and k, n > 3 and 0 < k < n — 1, the graph
K, (k) is obtained from K, by the deletion of k edges with a common end vertex.

Theorem 2.2. Forn>3 and 0 < k <n —1,

O(Le(Ka, (k) 1)) = (p = )" "2 (= + 1)F2(u* = 3n — k — 2)p® + ((3n® — 4n)—

(2n — Dk)p? — ((n* = 2n% +2n = 3) — (n® —n +2)k)u+ (2n* — 6n +3) — (2n — 3)k).
Proof. Let vy,ve,...,v, be the vertices of complete graph K,. The graph K, (k) is

obtained from K, by the deletion of k£ edges with common end vertex v;, where i =
1,2,3,...,n. and x(K,, (k)) =n — 1. Then, we have

(n—k—1), Cl vk —Jixn—k—1
L. (Ka, (k) = Craxi (n— 1)1 — J —Jxn—k—1
—Jn—k—1x1 —Jn—k—1xk | (N —J)p_k_1

Where C =[1 0 0...0]1x%. Consider det (ul — L. (Kq, (k))).

Step 1: Replace R; by R; =R, —R; y,fori=23,...)kk+1,...,n—2,n—1. Then,
det (ul — L (K, (k))) will reduce to a new determinant, say (u —n 4+ 1)¥72(u —
n)"F=2 det(C).

Step 2: In det(C), replacing C; by C’; =C,+C,_q,fori=4,5...,k+1,k+3,...,n,a
new determinant say det(D) is obtained.

Step 3: On expanding det(D) along the rows R,, for i =3,4,...,k,k+2,...,n—2,n—1,
it reduces to

p—n+k+1 -1 0 n—k—1

_ -1 p—mn+1 n—p—1 0
det(D) = 0 1 p—n+k n—k—1
1 1 kE—1 w—k—1

= (u* — (3n —k —2)® + ((3n% —4n) — (2n — Dk)p>—
(n® =20 +2n —3) — (n® —n+2)k)u+ (2n* — 6n +3) — (2n — 3)k).
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Thus,

O(Le(Fa (K), 1)) = (1 — m)" 200 — 0+ DF2(ut = (3 — k — 2)s® + (302 — An)—
(2n — Dk)p? — (n® = 2n% +2n — 3) — (n? —n +2)k)u + (2n® — 6n + 3) — (2n — 3)k).
O

Definition 2.6. Forn >3 and 0 < k < LgJ, the graph Ken(k) is obtained from K, by
the deletion of k independent paths Pj.
Example 2.2. Consider the cluster graph obtained from Ky deleting two independent

paths {vi,vs,vs} and {ve,va,v6} respectively. Let c(vi) = c(vs) = 1, c(va) = c(vg) = 3,
c(vs) =2, c(vg) =4 and c(vy) = 5.

FIGURE 2. Graph K. (2)

Theorem 2.3. Forn > 3 and 1 < k < LgJ, ¢(Le(Ke, (k), 1) = (0 —n+ 1) (u —

n) 3R (2 — (2n — ) +n? —3n — 3L (pt — (3n — 4)pd + (3n? — 8n + 2k)p® + (k(10 —
4n) — (n3 — 4n? 4+ 3))u + (2n? — 10n + 9)k).

Proof. Consider the graph K., (k). Since x (K., (k)) = n — k, we have

(n—l)[k—Jk (—J‘FQI)k _Jk _ka(n—Bk)

L (K. () = (—J +2I), (n—2)Ix — J, (=J + 1), _‘]k;x(n—Sk)

¢ €n - —Jg (—J + I)k (n - 1)Ik —Jk _ka(n—?»k)
—J(n—3k)xk ~J(—3k) xk ~J(n—3k) xk (nl — J)(n—Sk)

Consider det (1l — L. (K, (k)))-

pop o fori= 12kl kL k42,
i Mg k-1, 2k+1, 2k+2,... 3k-1,
R,— R, ,, fori=n,n-1,..., 3k+2.
Then, det (uI — L. (K, (k))) will reduce to a new determinant, say det(C').

Step 2: In det(C), replacing
Ci+Ciyyq, for i=n-1, n-2,..., 3k+1,
C,+Ci_ +...+C, for i=k, k-1,...,2,
Ci+Ci g +...+Cpy, fori= 2k, 2k-1,... k+2,
Ci+Ciq+...+Cyyy, fori= 3k, 3k-1,... 2k+2.

a new determinant say det(D) is obtained.
Step 3: In det(D), replacing C; by C; = (u—n+1)C;+2C;, fori = k+1,k+2,...,2k—1

and j =1,2,...,k — 1 a new determinant say det(E) is obtained.

Step 1: Replace R; by R; =

C, by C; =
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Step 4: On expanding det(E) along the rows R,, fori =1,2,...,k—1,3k+2,3k+3,...,n—
1,n, it reduces to (i — n)"~3*~1 det(F) which is of order 2k 4 2. Where

P nw—n+3 N k—2 1 k—1 k n — 3k
0 M 0 0 -1 0 0 0
0 0 M 0 —0 -1 0 0

k=2 pu—-m+3 - N p—n+k+2 1 k—1 k—1 n-—3k
det(F)= "o~ uin-1 0 0 p—n+1 .- 0 0 0
0 0 e —p+n-—1 0 0 eoop—n+1 0 0

k w—nmn+3 - N k—1 1 k—1 P n — 3k

k p—n-+3 .- N k 1 e k-1 ko p—3k

where M = p2—(2n—3)u+n?-3n—2, P = py—n—k+land N = (k—1)(u—n+3).

Step 5: In det(F)), replacing C; by CZ{ = C;+Cpyy, for i = 2,3,...,k — 1 and then
expanding det(E) along the rows R, for i =2,3,...,k,k+2,k+3...,2k— 1,2k,
it reduces to

det(F) = (u—n)" 3 Y —n+ 1)1 u? — (2n — 3)u+n? — 3n — 3)*!

p—n+k+1 k—2 k n — 3k
k-2 p—n+k+2 k-1 n— 3k

k k—1 p—n+k+1 n—3k

k k k w— 3k

= (n=n+ )" = (2n =3)u+n® =3n—3)" (1t — Bn—4)p’+
(3n% — 8n + 2k)p?® + (k(10 — 4n) — (n® — 4n® 4+ 3))u + (2n? — 10n + 9)k).
Thus,
G(Le(Ke, (k) 1)) = (n—n+ 1) (= n)""* " (u? = (2n = 3)u+n® = 3n - 3)* !
(u* — (3n — 4)p® + (3n? — 8n + 2k)p? + (k(10 — 4n) — (n® — 4n® + 3))u+
(2n? — 10n + 9)k).
]
Definition 2.7. For fizved integers n > 4 and 0 < k < {%J , the graph Kg, (k) is obtained
from K, by the deletion of k independent paths Py.
Example 2.3. Consider the cluster graph on 7 vertices obtained by deleting one indepen-

dent path {vi,v3,vs,v2}. Let c(v1) = c(vs) = 1, c(v2) = c(va) = 2, ¢(vs) = 3, c(ve) = 4
and c(vy) = 5.

FIGURE 3. Graph Ky (1)
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61, —Jy | (=J+2D)y| —Joxs

The color Laplacian matriz is, Le (Kq, (k) = | (=J +2I), | 41y | —Jax3

—Jaxz | —Jx2 | (TT—J)3

Theorem 2.4. Forn>4 and 1 <k < L%J ,

LE(K, (k) = % [2k((3 + VB —6) — 24k2 +n(n—3+/(n+1)2 — 16/<:)} .

Proof. Consider the cluster graph Ky (k). As x(Ky, (k)) = n — 2k, we have
(TI, — 1)I2k — J2k: (—J + 21)2k _J2k:><(n—4k)
Le (Kg, (k) = (—J +2I),, Xog —J2k x (n—4k)
~Jn—akyx2k | ~Jm—ar)yx2k | (0 = J)(n—ak)
(n73)I2><2 —Jaxa —Jaxa
—Jax2 (n—3)Irys |-+ —Jax2
X = . : :
*J.zxz *J.2><2 (ﬂ*é)bxz

Consider det (ul — L. (Kq, (k))).

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

for i= 1, 2,..., 2k-1, 2k+1,

Ry = Ripy, 2k+3, ..., 4k-3, 4k-1,

R, — R, ;, fori=mn,n-1, ..., 4k+2.

Then, det (uI — L. (K4, (k))) will reduce to a new determinant, say det(C).

Replace R, by R; =

In det(C), replacing
C;+Ciyq, for i=n-1, n-2,..., 4k+2, 4k+1,
C.byC;={ C;+C; | +...+Cy, fori=2k, 2k-1,...,2,

C,+Ci_y+ ...+ C,y, fori=4k, 4k-1,... 2k+2.
a new determinant say det(D) is obtained.
In det(D), replace C; by C; = (u —n + 1)C; + 2C;, for i =2k + 1,2k +2,...,4k
and j =1,2,...,2k — 1. It reduces to det(E).
On expanding det(E) along the rows R,, for i = 1,2,...,2k — 1,2k + 1,2k +
3,...,4k — 3,4k — 1,4k + 2,4k + 3,...,n — 1,n, it becomes (u — n)*~*+1(;2 —
(2n — 4)p +n? — 4n — 1)* det(F). Where

P 2(p—n+3) 4p—m+3) -+ 2k-2)(p—m+3) 2k—2 n-—4k
2k -2 Q R S P n — 4k
2k—2 2(p—n+3) R S P n — 4k
2k—2 2u—-—n+3) 4p—-—m+3) --- S P n — 4k

det(F) = . . .
2k—2 2u—n+3) 4p—-—m+3) --- S P n — 4k
2k—2 2(u—m+3) 4p—-n+3) -+ (2k—2)(p—n+3) P n — 4k
2k—2 2u—-—n+3) 4p—-m+3) -+ (2k—2)(p—n+3) 2k w— 4k

where P=p—n+2k+1,Q =p>+2u(2—n)+n®>—4n+3, R = p? +2u(3 —

n)+n?—6n+9and S = p?+2u(k —n) +n? —k(2n —6) — 9

In det(F'), replacing R, by R; =R, — R, fori=2,3,...,k k+1, it reduces to
p—n+2k+1 2k—-2 n-—4k

det(F) = (u* — (n — 1)2u +n? — 2n — 3)*1 -2 p—n+1 n—p
2k 2k p— 4k
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= (1 = (n=1)2p+n(n—2) = 3)" (4 + (2 — 2n) -
(n? — 2n + 4k — 3)pu + 4k(3 — n)).

Hence, by back substitution, we obtain characteristic polynomial of cluster graph Ky, (k),
O(Le(Ka, () 1)) = (=1 +3)5 (5 — 0 — DF (= )" ¥ (2 = (n + 1) + 4k)
(12 — (2n — Dp+ (n® —4n — 1))k

So, the color Laplacian spectrum of Ky (k) is {n — 3 (k times),n + 1 (k — 1 times),
n (n — 4k — 1 times),n — 2 + /5 (k times),n — 2 — /5 (k times),

n+1+/(n+1)2%— 16k n+1—\/(n+1)2—16k‘}
2 ’ '

2
2_ 5
Average degree of Ky (k) is %Gk Hence,
n? —n — 6k n? —n — 6k
LE(K,, (k) =k n—S—n’+(k‘—l)n—l—l—n'+
2 —n—6k 1+ +/(n+1)% — 16k
(n— 4k — 1) S ek 6 ‘+ n+ (7”;-1- ) B
n

n2n6k’+k

2_n—6k
n_Qif_n”G’
mn

= [K(@ +VBIn —6) — 24K 4 m(n — 3+ v/(n T 12— 168)]

3. COLOR LAPLACIAN ENERGY OF BIPARTITE CLUSTER GRAPHS

Definition 3.1. [14] Let K, ,, be the complete bipartite graph, 1 <r <m, 1 <s <n and
m,n > 1 be the integers. The bi-cluster graph Kby, (7, s) is obtained by deleting the edges
of Ky.s from Ky, p.

Example 3.1. Consider the bi-cluster graph. Let c(vi) = c(v2) = ¢(v3) = ¢(v4) = 1 and
c(vs) = c(vs) = c(vr) = c(vs) = 2.

FIGURE 4. Graph Kby 4(2,2)

Theorem 3.1. Form,n>1 and 0 <r <m, 0<s<n,
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H(Le(Ebmn(r,s), 1) = (p—n+s+1)""(p—m+r+1)""(u—n+1)""" (u-
m+ D" ut = Bn+m) —r—s—4Du*+ (3n* + (6m — 9)n + 3(m? — 3m + 2)—
(3n+2m — 3)r — (2n 4+ 3m — 4r — 3)s)u® — (n® + (4m — 6)n? + (4m* — 12m + 9)n
+m?® —6m? +9m —4 — (3n* + (3m — 6)n + m? — dm + 3)r — (n* + (3m — 4)n+
3m? —6m +3 — (dr(n+m —2))s)u + ((m — 1)n® + (m? — 4m + 3)n? + (m*® — 4m?
+6m —3)n— (m* —3m? +3m —1) — (n® + (m — 3)n? + (m? — 3m + 3)n — m*+
2m — 1)r — ((m — 1)n? + (m? — 3m + 2)n + (m® — 3m? +3m — 1) — (n® + (2m — 4)
n+ (m? —4m + 4))r)s).

Proof. Let U = {ug,u2, ..., Up, Upy1, ..., Uy} and

V = {v,v2,...,0s,V511,...,0,} be the partites of complete bipartite graph K,,,. The
graph Kby, »(r,s) is obtained by deleting the edges of K,y from K,,,. Note that,
X (Kb pn(r,s)) = 2. Then, we have

Jr—}—(n—s— I)IT er(mfr) Orxs _er(nfs)
L. (Kb (7’, 8)) _ J(m—r)xr Jr + (n - 1)I(m—r) 7J(m—r)><s 7J(m—r)><(n—s)
e Osxr _Jsx(mf'r) Jr + (m —r—- 1)19 JsX(nfs)
_Jnfsxr _J(nfs)x(mf'r) J(nfs)xs (J + (m - I)I)UL*S)

Consider det (1l — L¢ (Kby (7, 9))).

Step 1: Replace R; by R; =R, — Ry, fori =1,2....r —1Lr+1r+2...,m-
1,1,2,...,s—1,5s4+1,s+2,...,n—1. Then, det (uf — L (Kbp, (7, s))) will reduce
to a new determinant, say (u—n-+s+1)" " u—m+r+1)* Y (u—n+1)"""(u—
m+ 1)L det(O).

Step 2: In det(C'), replacing

C,+C_+...+Cy, for i=r, r-1,...,2

C,+C_+...+Cy, for i=s, s-1,...,2,

C;+Ci1+...+C,.q, fori=m, m-1,... r+2,

C;+Cii+...+C,q, fori=n, n-1,...s+2.

a new determinant say det(D) is obtained.
Step 3: On expanding det(D) along the rows R,, fori =1,2,...,r—1,r+1,r4+2,...,m—

C; by C; =

1,1,2,...,s—1,s+1,s+2,...,n — 1, it reduces to
u—m+s—r+1 r—m 0 n—s
det(D) = —-r p—m-—-mn+r+1 s n—s
0 m—r p—m+r—s+1 s—n
r m—r —s p—m-—-n+s+1

= (- Bn+m)—r—s—4)u>+ Bn?+ (6m —9)n+3(m? —3m+2) — (3n+
2m — 3)r — (2n +3m — 4r — 3)s)u% — (n3 + (4m — 6)n? + (4m? — 12m + 9)n +m? —
6m? +9m —4 — (3n?+ (3m — 6)n+m? —4m +3)r — (n® + (3m — 4)n+ 3m? — 6m +
3—(r(n+m—2))s)u+ ((m—1)n3+ (m? —4m +3)n? + (m® — 4m? +6m — 3)n —
(m3—=3m2+3m—1)— (n®+ (m—3)n?+ (m?—3m+3)n—m?+2m—1)r — ((m—
Dn?+(m?—3m+2)n+(m3—3m?+3m—1) — (n?+ (2m—4)n+ (m? —4m+4))r)s).



S. D’SOUZA, G. H. J., P. G. BHAT, G. K. P.. COLOR LAP. ENERGY OF A CLUSTER GRAPHS 257

Thus,
H(Le(Ebmn(r,s),p) = (p=n+s+1)""(p—m+r+1)""(u—n+1)""" (u-
m+1)"" 5t — (B(n+m) —r —s—4)p + (3n? + (6m — 9)n + 3(m? —3m +2)—
(3n+2m — 3)r — (2n 4+ 3m — 4r — 3)s)u® — (n® + (4m — 6)n? + (4m* — 12m + 9)n
+m?® —6m? +9m —4 — (3n® + (3m — 6)n +m? — 4m + 3)r — (n® + (3m — 4)n+
3m? —6m +3 — (dr(n+m —2))s)u + ((m — 1)n® + (m? — 4m + 3)n? + (m® — 4m?
+6m —3)n— (m® —3m? +3m —1) — (n® + (m — 3)n? + (m? = 3m + 3)n — m*+
2m — 1)r — ((m — D)n* + (m? = 3m +2)n + (m> — 3m? +3m — 1) — (n> + (2m — 4)
n 4 (m? —4m + 4))r)s)
0
Definition 3.2. [14] Let e;, i = 1,2,...,k, 1 < k < min{m,n}, be independent edges of

the complete bipartite graph Ky, ,, m,n > 1. The graph Kam, (k) is obtained by deleting
e, 1 =1,2,...,k from Ky, .

Theorem 3.2. For m,n >1 and 0 < k < min{m,n}

AL Kapn(k), 1)) = (11— m+ 1" (= 0+ 1" 102 = (n 4 m — 4+
(n(m —2) — (2m = 3))" 1 (u* = 3(m +n —2)p3 + (3(n® +m?) + (6m — 14)n—
14m + 4k 4+ 12)p? — (n® + (4m — 10)n? + (4m? — 18m + 19)n + 4k(n +m — 2)
+m3 —10m? — 19m — 10)pu + ((m — 2)n® + (m? — 6m + 7)n® + (m® — 6m>+
12m — 8)n — (2m® — Tm* + 8m — 3) + (n® + (2m — 4)n + (m? — 4m + 4))k)).

Proof. Let U = {uy,ug, ..., Uk, Uks1,...,Un} and

V = {v1,v9,...,0k, Vkt1,...,0n} be the partites of complete bipartite graph K. The

graph Kap, »(k) is obtained by deleting independent edges e; of the complete bipartite
graph Ky, n, i =1,2,... k. Observe that x(Kamn(k)) = 2. Then, we have

Jk+(n—2)lk ka(m—k) (—J+I)k _ka(nfk)
Lo (Kam (k) = S ) xk (J+ (=11 m—p ~J(m—k)xk ~Jm—r)
(=J+ Dk —Jrx (m—k) Jy + (m —2)1, Jrex (n—k)
k) —J(n—k)x (m—k) Jn—k)yxk (J+ (m—=1)I) ()
Consider det (ud — Lo (Kamn(k))).
Step 1: Replace R; by R; =R, — Ry, for i =y, Uy, ooy Uy, Up 5 Up oy ey Upyq,
VysVgy e v v s V15 Vpy 15 Vpgpr - -+ > U1~ Lhen, det (ul — Le (Kamn(k))) will reduce

to a new determinant, say (1 —n + 1) %Y (u —m + 1)""*~1 det(O).
Step 2: In det(C), replacing
C;+Ci_ +...+C, for i = uy,up_q,. .., Uy,
C,+C_+...+ (4, for i = vy, up,_q,...,0,
Ci+Cig+.. . +Cyy, fori=u,,u, 1,...,u; .,
Ci+Ciy+...+Cy, fori=w,,u, 1,...,0,.
a new determinant say det(D) is obtained.
Step 3: In det(D), replacing C; by C; = (u—n+2)C;,+ Cj, for i = vy, v2,...,v,_1 and
Jj =wui,ug,...,ux_1, it simplifies to a determinant say det(FE).
Step 4: On expanding det(E) along the rows R;, for i = uy, ua, ..., Uk—1, Ugt1,
Ukt2y -+« y Um—15 V1, V2« + oy Uk—1, Ukt 15 k42, - - - , Un—1, it reduces to

C; by C; =
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det(F) = (u®> — (n4+m —4)p+ (n(m —2) — (2m — 3)))+1

w—n—=k+2 k—m k—1 n—=k
—k p—n—m-+k+1 k n—=~k
k—1 m—k pw—m—Fk+2 k—n

k m—k —k p—m-n+k+1

= (4* = (n+m—4)p+(n(m—2) = (2m—3)))* 1 (u! = 3(m+n—2)p’ +
(3(n?+m?) + (6m — 14)n — 14m + 4k +12) % — (n3 + (4m — 10)n? + (4m? — 18m +
19)n+4k(n+m —2) +m3 —10m2 — 19m — 10)u + ((m — 2)n + (m? — 6m + 7)n% +
(m3—6m2+12m—8)n— (2m3 —7Tm?+8m—3)+ (n?+ (2m—4)n+(m? —4m+4))k)).

Thus,

G(Le(Kamp (k), 1)) = (n—m+ 1" g —n 4+ 1) (w? — (n+m — 4)u+
(n(m —2) — (2m — 3))* 1 (u* = 3(m +n — 2)1® + (3(n® + m?) + (6m — 14)n—
14m + 4k + 12)p? — (n® + (4m — 10)n? + (4m? — 18m + 19)n + 4k(n +m — 2)+
m? — 10m? — 19m — 10)p + ((m — 2)n® + (m? — 6m + 7)n® + (m3 — 6m? + 12m
—8)n — (2m> — Tm? + 8m — 3) + (n® + (2m — 4)n + (m? — 4m + 4))k)).

4. CONCLUSION

The energy, color energy and color Laplacian energy of a graph are the emerging con-
cepts within graph theory. In this paper we have evaluated color Laplacian energy of
Cluster and bi-cluster graphs. The color Laplacian spectrum of cluster and bi-cluster
graphs is expressed in terms of its parameters.
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