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COEFFICIENT ESTIMATES FOR NEW SUBCLASSES OF

MEROMORPHIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH

LINEAR OPERATOR

ADNAN GHAZY ALAMOUSH1, §

Abstract. In this paper, we define a new differential linear operator of meromorphic
bi-univalent functions class Σ′, and obtain the estimates for the coefficients |b0| and |b1|.
Further we pointed out several new or known consequences of our results.

Keywords: Analytic functions, Univalent functions, Bi-univalent functions, Meromorphic
functions, Meromorphic bi-univalent functions, Linear operator, Coefficient estimates.

AMS Subject Classification: 30C45

1. Introduction

Let A denote the class of the functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfy the normalization

condition f(0) = f
′
(0) − 1 = 0. Further, by S we shall denote the class of all functions

f in A which are univalent in U. Some of the important and well-investigated subclasses
of the univalent function class S include (for example) the class S∗(α) (0 ≤ α < 1) of
starlike functions of order α in U and the class K(α) (0 ≤ α < 1) of convex functions of
order α

<
{
zf ′(z)
f(z)

}
> α and <

{
1 + zf ′′(z)

f ′(z)

}
> α, (z ∈ U)

respectively. The well-known Koebe one-quarter theorem asserts that the function f ∈ S
has an inverse, defined on disc Uρ = {z ∈ C : |z| < ρ} , (ρ ≥ 1

4). Thus, the inverse of f ∈ S
is a univalent analytic function on the disc U. It is well known that every function f ∈ S
has an inverse f−1, defined by f−1(f(z)) = z, (z ∈ U) and

f−1f(w) = w, (|w| < r0f(z); r0f(z) ≥ 1
4 )
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where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a2
2 − 5a2a3 + a4)w4 + . . . . (2)

Also, we say that a function f(z) ∈ A is bi-univalent in U if both f(z) and f−1(z) are
univalent in U, these classes are denoted by Σ. Earlier, Brannan and Taha [12] introduced
certain subclasses of bi-univalent function class Σ; namely bi-starlike functions S∗Σ(α) and
bi-convex function K∗Σ(α) of order (α) corresponding to the function classes S∗(α) and
K(α) respectively.

Many authors investigated bounds for various subclasses bi-univalent function class
Σ (see for example ([1],[2],[3],[4],[6],[7],[8],[10],[17],[21])and obtained non-sharp coefficient
estimates on the first two coefficients |a2| and |a3| of (1). A function f is bi-starlike of
Ma-Minda type or bi-convex of Ma-Minda type if both f(z) and f−1(z) are respectively
Ma-Minda starlike or convex. These classes are denoted respectively by S∗Σ(φ) and KΣ(φ)
where φ(z) is given by

φ(z) = 1 +B1z +B2z
2 +B3z

3 + . . . , (B1 > 0, z ∈ U). (3)

Let Σ
′

denote the family of all meromorphic univalent functions of the form

h(z) = z + b0 +
∞∑
n=1

bn
zn

(4)

defined on the domain U∗ = {z : z ∈ C and 1 < |z| <∞}. Since h ∈ Σ
′

is univalent, it
has an inverse h−1 = G(z) that satisfy h−1(h(z)) = z, (z ∈ U∗) and

h−1h(w) = w, (M < |w| <∞, M > 0 )

where

G(w) = h−1(w) = w +

∞∑
n=0

Bn
wn

(M < |w| <∞, M > 0) (5)

in some neighborhood of w =∞. A simple calculation shows that the function G, is given
by

G(w) = h−1(w) = w − b0 −
b1
w
− b2 + b0b1

w2
− b3 + 2b0b2 + b20b1 + b21

w3
+ . . . . (6)

Analogous to the bi-univalent analytic functions, a function h ∈ Σ
′

is said to be mero-
morphic bi-univalent in U∗ if h−1 ∈ Σ

′
. We denote by Σ

′
b the class of all meromorphic

bi-univalent functions in U∗ given by (4). Estimates on the coefficients of meromorphic

univalent functions were investigated in the literature. For h ∈ Σ
′
0, it follows from the area

theorem that |b1| ≤ 1. Schiffer [18] obtained the sharp estimates |b2| ≤ 2
3 for h ∈ Σ

′
0. Also,

Duren [13] gave an elementary proof of the inequality |b2| ≤ 2
n+1 for h ∈ Σ

′
with bk = 0

for 1 ≤ k < n
2 . For the coefficients of the inverse of meromorphic univalent functions,

Springer [20] used variational methods to prove that

|B3 + 1
2B

2
1 | ≤ 1

2 and |B3| ≤ 1

and conjectured that

|B2n−1| ≤ (2n−2)!
n!(n−1)! n = 1, 2, 3, . . . .

Furthermore, Kubota [16] has proved that the Springer conjecture is true for n = 3, 4, 5 by

an elementary application of Grunsky’s inequalities and subsequently, for G ∈ Σ
′
0 Schober

[19] obtained sharp bounds for the coefficients B2n−1, 1 ≤ n ≤ 7. Recently, Kapoor and
Mishra [15] found the coefficient estimates for a class consisting of inverses of meromorphic
starlike univalent functions of order α in U∗.
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A function h in the class Σ
′

is said to be meromorphic bi-univalent starlike of order
α(0 ≤ α < 1) if it satisfies the following inequalities

h ∈ Σ
′
b, <

{
zh′(z)
h(z)

}
> α (z ∈ U∗) and <

{
wG′(w)
G(w)

}
> α, (w ∈ U∗),

where G(w) = h−1(w) is the inverse of h(z) whose series expansion is given by (6).

We denote by Σ
′
b(α) the class of all meromorphic bi-univalent starlike functions of order

α. Similarly, a function h in the class Σ̃
′
b(α) is said to be meromorphic bi-univalent strongly

starlike of order α(0 < α ≤ 1) if it satisfies the following conditions

h ∈ Σ
′
b,
∣∣∣arg zh′(z)

h(z)

∣∣∣ < απ
2 (z ∈ U∗) and <

∣∣∣wG′(w)
G′(w)

∣∣∣ < απ
2 , (w ∈ U∗),

where G(w) is given by (6). We denote by Σ̃
′
b the class of all meromorphic bi-univalent

strongly starlike functions of order α.

For functions h ∈ Σ
′

in the form (4), we define the following new linear operator
D0
λ,µh(z) = h(z), and when λ = µ, also we have Dk

λ,µh(z) = h(z), (k = 0, 1, 2, ...)

D1
λ,µh(z) = Dλ,µh(z) = (1− (λ− µ))h(z) + (λ− µ)zh′(z)

= z +
∞∑
n=0

[1− (λ− µ)(n− 1)]
bn
zn
, 0 ≤ α ≤ λ < 1

n+ 1

and

D2
λ,µh(z) = D[Dλ,µh(z)] = z +

∞∑
n=0

[1− (λ− µ)(n− 1)]2
bn
zn
,

hence, it can be easily seen that

Dk
λ,µh(z) = D[Dk−1

λ,µ h(z)] = z +
∞∑
n=0

[1− (λ− µ)(n− 1)]k
bn
zn
, (7)

where k ∈ N0 = {0, 1, 2, 3, · · · } , 0 ≤ α ≤ λ < 1
n+1 .

Remark 1.1. Note that if µ = 0, we get the linear operator which is defined by Aziz and
Juma [11].

Motivated by the earlier work of ( see ( [11], [14])), we define the following new subclasses

Σ
′
b(k, λ, µ;β) and Σ̃

′
b(k, λ, µ;β) of the function class Σ

′
.

Definition 1.1. A function f given by (1.4) is said to be in the class Σ
′
b(k, λ, µ;β) if the

following conditions are satisfied:

h ∈ Σ
′
b, <

z(Dk
λ,µh(z))′

Dk
λ,µh(z)

(
Dk
λ,µh(z)

z

)β > α (β ≥ 0, 0 ≤ α ≤ λ < 1

n+ 1
, z ∈ U∗) (8)

and

<

w(Dk
λ,µG(w))′

Dk
λ,µG(w)

(
Dk
λ,µG(w)

w

)β > α (β ≥ 0, 0 ≤ α ≤ λ < 1

n+ 1
, w ∈ U∗) (9)

for some α(0 ≤ α < 1), where G is given by (6).
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Definition 1.2. A function f given by (4) is said to be in the class Σ̃
′
b(k, λ, µ;β) if the

following conditions are satisfied:

h ∈ Σ
′
b,

∣∣∣∣∣∣arg

z(Dk
λ,µh(z))′

Dk
λ,µh(z)

(
Dk
λ,µh(z)

z

)β
∣∣∣∣∣∣ < απ

2
(β ≥ 0, 0 ≤ α ≤ λ < 1

n+ 1
, z ∈ U∗)

(10)
and∣∣∣∣∣∣arg

w(Dk
λ,µh(w))′

Dk
λ,µG(w)

(
Dk
λ,µG(w)

w

)β
∣∣∣∣∣∣ < απ

2
(β ≥ 0, 0 ≤ α ≤ λ < 1

n+ 1
, w ∈ U∗) (11)

for some α(0 < α ≤ 1), where G is given by (6).

Remark 1.2. We note that, for k = 0, β = 0, the classes Σ
′
b(k, λ, µ;β) and Σ̃

′
b(k, λ, µ;β)

reduce to the classes
Σ

′
b(0, λ, µ; 0) = Σ

′
b,

Σ̃
′
b(0, λ, µ; 0) = Σ̃

′
b,

respectively, introduced and studied by Halim et al. [14].

In the present investigation, a new subclasses of meromorphic bi-univalent functions are
introduced and estimates for the coefficients |b0| and |b1| of functions in these subclasses
are obtained. Several new consequences of the results are also pointed out.

In order to derive our main results, we shall need the following lemma.

Lemma 1.1. ([10]) If φ ∈ P , the class of all functions with < (φ(z)) > 0 (z ∈ U), then

|cn| ≤ 2, for each k,

where

φ(z) = 1 + c1z + c2z
2 + . . . for (z ∈ U).

2. Coefficient Bounds for the Function Classes Σ
′
b(k, λ, µ;β) and Σ̃

′
b(k, λ, µ;β)

We begin this section by obtaining the coefficients |b0| and |b1| for functions in the class

Σ
′
b(k, λ, µ;β).

Theorem 2.1. Let the function h(z) given by (4) be in the class Σ
′
b(k, λ, µ;β). Then

|b0| ≤
2(1− α)

(1− β)[1− (λ− µ)]k
. (12)

and

|b1| ≤
2(1− α)

[1− 2(λ− µ)]k

√
(1− α)2

(1− β)2
+

1

(2− β)2
. (13)

Proof. It follows from (8) and (9) that

z(Dk
λ,µh(z))′

Dk
λ,µh(z)

(
Dk
λ,µh(z)

z

)β
= α+ (1− α)p(z) (14)

and

w(Dk
λ,µG(w))′

Dk
λ,µG(w)

(
Dk
λ,µG(w)

w

)β
= α+ (1− α)q(w), (15)
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where p(z) and q(w) are functions with positive real part in U∗ and have the following
forms:

p(z) = 1 +
p1

z
+
p2

z2
+ . . . (16)

and
q(w) = 1 +

q1

w
+
q2

w2
+ . . . , (17)

respectively. Now, equating coefficients in (14) and (15), we get

(β − 1)[1− (λ− µ)]kb0 = (1− α)p1, (18)

(β − 2)

[
(1− 2(λ− µ)k)b1 +

(β − 1)[1− (λ− µ)2k]

2
b20

]
= (1− α)p2, (19)

(1− β)[1− (λ− µ)]kb0 = (1− α)q1, (20)

(2− β)

[
(1− 2(λ− µ)k)b1 −

(β − 1)[1− (λ− µ)2k]

2
b20

]
= (1− α)q2. (21)

From (18) and (20), we get
p1 = −q1, (22)

b20 =
(1− α)2(p2

1 + q2
1)

2(1− β)2[1− (λ− µ)]2k
. (23)

Since <(p(z)) > 0 in U∗, the function p(1
z ) ∈ P and hence the coefficients pn and similarly

the coefficients qn of the function q satisfy the inequality in Lemma 1.1, we get

|b0| ≤
2(1− α)

(1− β)[1− (λ− µ)]k
.

This gives the bound on |b0| as asserted in (12).

Next, in order to find the bound on |b1|, we use (19) and (20), which yields,

(1− β)2(β − 2)2[1− (λ− µ)]4kb40 − 4(1− α)2p2q2 = 4(2− β)2[1− 2(λ− µ)]2kb21. (24)

It follows from (23) that

b21 =
(1− β)2[1− (λ− µ)]4kb40

4[1− 2(λ− µ)]2k
− (1− α)2p2q2

(2− β)2[1− 2(λ− µ)]2k
. (25)

Substituting the estimate obtained (24), and applying Lemma 1.1 once again for the
coefficients p2 and q2, we readily get

|b1| ≤
2(1− α)

[1− 2(λ− µ)]k

√
(1− α)2

(1− β)2
+

1

(2− β)2
.

This completes the proof of Theorem 2.1.

For λ = µ or k = 0, we have the following corollary of Theorem 2.1.

Corollary 2.1. Let the function h(z) given by (4) be in the class Σ
′
b(λ, µ;β). Then

|b0| ≤
2(1− α)

(1− β)
. (26)

and

|b1| ≤ 2(1− α)

√
(1− α)2

(1− β)2
+

1

(2− β)2
. (27)

For β = 0 in Corollary 2.1, we have the following result.
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Corollary 2.2. (see [11]) Let the function h(z) given by (4) be in the class Σ
′
b. Then

|b0| ≤ 2(1− α). (28)

and
|b1| ≤ (1− α)

√
4α2 − 8α+ 5. (29)

Next, we estimate the coefficients |b0| and |b1| for functions in the class Σ̃
′
b(k, λ, µ;β)

Theorem 2.2. Let the function h(z) given by (4) be in the class Σ̃
′
b(k, λ, µ;β). Then

|b0| ≤
2α

(β − 1)[1− (λ− µ)]k
. (30)

and

|b1| ≤
2α2

[1− 2(λ− µ)]k

√
1

(1− β)2
+

1

(2− β)2
. (31)

Proof. It follows from (10) and (11) that

z(Dk
λ,µh(z))′

Dk
λ,µh(z)

(
Dk
λ,µh(z)

z

)β
= [p(z)]α (32)

and

w(Dk
λ,µG(w))′

Dk
λ,µG(w)

(
Dk
λ,µG(w)

w

)β
= [q(w)]α, (33)

where p(z) and q(w) have the forms (14) and (15), respectively. Now, equating coefficients
in (32) and (33), we get

(β − 1)[1− (λ− µ)]kb0 = α p1, (34)

(β − 2)

[
(1− 2(λ− µ)k)b1 +

(β − 1)[1− (λ− µ)2k]

2
b20

]
=

1

2

[
α(α− 1)p2

1 + 2αp2

]
, (35)

(1− β)[1− (λ− µ)]kb0 = α q1, (36)

(2− β)

[
(1− 2(λ− µ)k)b1 −

(β − 1)[1− (λ− µ)2k]

2
b20

]
=

1

2

[
α(α− 1)q2

1 + 2αq2

]
. (37)

From (34) and (36), we find that
p1 = −q1, (38)

b20 =
α2(p2

1 + q2
1)

2(1− β)2[1− (λ− µ)]2k
. (39)

As discussed in the proof of Theorem 2.1, applying Lemma 1.1 for the coefficients p2 and
q2, we immediately have

|b0| ≤
2α

(1− β)[1− (λ− µ)]k
.

This gives the bound on |b0| as asserted in (30).

Next, in order to find the bound on |b1|, by using (35) and (37), we get

2(2− β)2[1− 2(λ− µ)]2kb21 + (1− β)2(β − 2)2[1− (λ− µ)]4k
b40
2

=
α2(α− 1)2(p4

1 + q4
1)

4
+ α2(p2

1 + q2
1) + α2(α− 1)(p2

1p2 + q2
1q2) (40)
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It follows from (39) and (40) that

2(2− β)2[1− 2(λ− µ)]2kb21 =
α2(α− 1)2(p4

1 + q4
1)

4
+ α2(p2

1 + q2
1) + α2(α− 1)(p2

1p2 + q2
1q2)

− (1− β)2(β − 2)2α4

8(1− β)2[1− 2(λ− µ)]2k
(p2

1 + q2
1)2.

Applying Lemma 1.1 once again for the coefficients p1, p2, q1 and q2, we readily get

|b1| ≤
2α2

[1− 2(λ− µ)]k

√
1

(1− β)2
+

1

(2− β)2
.

This completes the proof of Theorem 2.2.

For λ = µ or k = 0, we have the following corollary of Theorem 2.2.

Corollary 2.3. Let the function h(z) given by (4) be in the class Σ
′
b(λ, µ;β). Then

|b0| ≤
2α

(1− β)
. (41)

and

|b1| ≤ 2α2

√
1

(1− β)2
+

1

(2− β)2
. (42)

For β = 0 in corollary 2.3, we have the following result.

Corollary 2.4. (see [14]) Let the function h(z) given by (1.4) be in the class Σ
′
b. Then

|b0| ≤ 2α. (43)

and

|b1| ≤
√

5α2. (44)

We note that, if β = 0 and µ = 0 in Theorem 2.1 and Theorem 2.2, we have the same
results due to Aziz and Juma [11].

3. Conclusion

The results here related to meromorphic functions of bi-univalent type. The function is
defined by a linear operator and new classes are introduced. Initial coefficient bounds are
obtained. These similar results can be obtained for classes defined in ([5],[9]) and other
new properties can also be studied.
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